1
|
Röttger SH, Patalag LJ, Hasenmaile F, Milbrandt L, Butschke B, Jones PG, Werz DB. Linear Amine-Linked Oligo-BODIPYs: Convergent Access via Buchwald-Hartwig Coupling. Org Lett 2024; 26:3020-3025. [PMID: 38564714 DOI: 10.1021/acs.orglett.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A convergent route toward nitrogen-bridged BODIPY oligomers has been developed. The synthetic key step is a Buchwald-Hartwig cross-coupling reaction of an α-amino-BODIPY and the respective halide. Not only does the selective synthesis provide control of the oligomer size, but the facile preparative procedure also enables easy access to these types of dyes. Furthermore, functionalized examples were accessible via brominated derivatives.
Collapse
Affiliation(s)
- Sebastian H Röttger
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Lukas J Patalag
- TU Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Felix Hasenmaile
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Lukas Milbrandt
- TU Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Burkhard Butschke
- Albert-Ludwigs-Universität Freiburg, Institute of Inorganic and Analytical Chemistry, Albertstr. 21, 79104 Freiburg im Breisgau, Germany
| | - Peter G Jones
- TU Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Luh T, Cheng Y. Hydrosilylation for the synthesis of sequence‐controlled periodic copolymers. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tien‐Yau Luh
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Yen‐Ju Cheng
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
3
|
Leguizamon SC, Scott TF. Mimicking DNA Functions with Abiotic, Sequence-Defined Polymers. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2014519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Samuel C. Leguizamon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy F. Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Núñez-Villanueva D, Hunter CA. Replication of Sequence Information in Synthetic Oligomers. Acc Chem Res 2021; 54:1298-1306. [PMID: 33554599 PMCID: PMC7931443 DOI: 10.1021/acs.accounts.0c00852] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/12/2022]
Abstract
The holy grail identified by Orgel in his 1995 Account was the development of novel chemical systems that evolve using reactions in which replication and information transfer occur together. There has been some success in the adaption of nucleic acids to make artificial analogues and in templating oligomerization reactions to form synthetic homopolymers, but replication of sequence information in synthetic polymers remains a major unsolved problem. In this Account, we describe our efforts in this direction based on a covalent base-pairing strategy to transfer sequence information between a parent template and a daughter copy. Oligotriazoles, which carry information as a sequence of phenol and benzoic acid side chains, have been prepared from bifunctional monomers equipped with an azide and an alkyne. Formation of esters between phenols and benzoic acids is used as the equivalent of nucleic base pairing to covalently attach monomer building blocks to a template oligomer. Sequential protection of the phenol side chains on the template, ester coupling of the benzoic acid side chains, and deprotection and ester coupling of the phenol side chains allow quantitative selective base-pair formation on a mixed sequence template. Copper catalyzed azide alkyne cycloaddition (CuAAC) is then used to oligomerize the monomers on the template. Finally, cleavage of the ester base pairs in the product duplex by hydrolysis releases the copy strand. This covalent template-directed synthesis strategy has been successfully used to copy the information encoded in a trimer template into a sequence-complementary oligomer in high yield.The use of covalent base pairing provides opportunities to manipulate the nature of the information transferred in the replication process. By using traceless linkers to connect the phenol and benzoic acid units, it is possible to carry out direct replication, reciprocal replication, and mutation. These preliminary results are promising, and methods have been developed to eliminate some of the side reactions that compete with the CuAAC process that zips up the duplex. In situ end-capping of the copy strand was found to be an effective general method for blocking intermolecular reactions between product duplexes. By selecting an appropriate concentration of an external capping agent, it is also possible to intercept macrocyclization of the reactive chain ends in the product duplex. The other side reaction observed is miscoupling of monomer units that are not attached to adjacent sites on the template, and optimization is required to eliminate these reactions. We are still some way from an evolvable synthetic polymer, but the chemical approach to molecular replication outlined here has some promise.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher A. Hunter
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
5
|
Núñez-Villanueva D, Hunter CA. Controlled mutation in the replication of synthetic oligomers. Chem Sci 2021; 12:4063-4068. [PMID: 34163677 PMCID: PMC8179503 DOI: 10.1039/d0sc06770a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Replication of sequence information with mutation is the molecular basis for the evolution of functional biopolymers. Covalent template-directed synthesis has been used to replicate sequence information in synthetic oligomers, and the covalent base-pairs used in these systems provide an opportunity to manipulate the outcome of the information transfer process through the use of traceless linkers. Two new types of covalent base-pair have been used to introduce mutation in the replication of an oligotriazole, where information is encoded as the sequence of benzoic acid and phenol monomer units. When a benzoic acid-benzoic acid base-pairing system was used, a direct copy of a benzoic acid homo-oligomer template was obtained. When a phenol-benzoic acid base-pairing system was used, a reciprocal copy, the phenol homo-oligomer, was obtained. The two base-pairing systems are isosteric, so they can be used interchangeably, allowing direct and reciprocal copying to take place simultaneously on the same template strand. As a result, it was possible to introduce mutations in the replication process by spiking the monomer used for direct copying with the monomer used for reciprocal copying. The mutation rate is determined precisely by the relative proportions of the two monomers. The ability to introduce mutation at a controlled rate is a key step in the development of synthetic systems capable of evolution, which requires replication with variation.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
6
|
Pahlavanlu P, Cheng S, Battaglia AM, Hicks GEJ, Jarrett-Wilkins CN, Evariste S, Seferos DS. Templated approach to well-defined, oxidatively coupled conjugated polymers. Polym Chem 2021. [DOI: 10.1039/d0py01620a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Templated oxidative polymerization affords organic soluble, oxidatively doped PEDOT-based polymers with controlled molecular weights and low dispersities (Đ ∼ 1.2) for the first time.
Collapse
Affiliation(s)
| | - Susan Cheng
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | | | | | | | | | |
Collapse
|
7
|
Luh TY, Lin WY, Lai G. Determination of the Orientation of Pendants on Rigid-Rod Polymers. Chem Asian J 2020; 15:1808-1818. [PMID: 32314531 DOI: 10.1002/asia.202000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 11/08/2022]
Abstract
Bis-norbornene and bis-cyclobutene with different kinds of linkers have been extensively used for the synthesis of double stranded ladderphanes under ruthenium- or molybdenum-catalyzed ring opening metathesis polymerization (ROMP) conditions. The key to the success relies on the selective formation of comb-like polynorbornenes or polycycloubtenes, where pendants are all aligned towards similar direction. This minireview summarizes various methods (chemical methods, spectroscopic means, and nonlinear optical measurements) for determining the comb-like conformations of pendants on these rigid-rod polymers. The approach is based on the proximal relationship between adjacent pendants. Interactions between these adjacent pendants would enable a change in chemical reactivity.
Collapse
Affiliation(s)
- Tien-Yau Luh
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Guoqiao Lai
- Key Laboratory of Organosilicon Chemistry and Material, Technology of Ministry of Eduction,\, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
8
|
Núñez-Villanueva D, Hunter CA. Molecular replication using covalent base-pairs with traceless linkers. Org Biomol Chem 2019; 17:9660-9665. [PMID: 31691702 DOI: 10.1039/c9ob02336d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique feature of kinetically inert covalent base-pairing is that the nature of the chemical information that is transferred can be modulated by changing the chemical connectivity between the two bases. Formation of esters between phenols and benzoic acids has been used as a base-pairing strategy for sequence information transfer in template-directed synthesis of linear oligomers, but the copy strand produced by this process has the complementary sequence to the template strand. It is possible to form a base-pair between two benzoic acids by using a hydroquinone linker, which is eliminated when the product duplex is hydrolysed. Using this approach, covalent template-directed synthesis was carried out using a benzoic acid 3-mer template to produce an identical copy. This direct replication process was used in iterative rounds of replication leading to an increase of the population of the copied oligomer.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
9
|
Song W, Li Y, Liu X, Xu Z, Wu J, Ding L. Functional Block Copolymers Carrying One Double-Stranded Ladderphane and One Single-Stranded Block in a Facile Metathesis Cyclopolymerization Procedure. Int J Mol Sci 2019; 20:E5166. [PMID: 31635234 PMCID: PMC6829535 DOI: 10.3390/ijms20205166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
In order to improve the poor film-forming ability of polymeric ladderphane, di-block copolymers containing perylene diimide (PDI)-linked double-stranded poly(1,6-heptadiyne) ladderphane and branched alkyl side chains modified single-stranded poly(1,6-heptadiyne) were synthesized by metathesis cyclopolymerization (MCP) using Grubbs third-generation catalyst (Ru-III) in tetrahydrofuran solvent. The first block containing the ladderphane structure leads to higher thermal-stability, wider UV-vis absorption, lower LUMO level and ladderphane-induced rigidity and poor film-forming ability. The second block containing long alkyl chains is crucial for the guarantee of excellent film-forming ability. By comparing the effect of ladderphane structure on the resulted copolymers, single-stranded poly(1,6-heptadiyne) derivatives with PDI pedant were also processed. The structures of copolymers were proved by 1H NMR and gel permeation chromatography, electrochemical, photophysical, and thermal-stability performance were achieved by cyclic voltammetry (CV), UV-visible spectroscopy and thermogravimetric analysis (TGA) measurements. According to the experiment results, both copolymers possessed outstanding film-forming ability, which cannot be realized by small PDI molecules and oligomers. And they can serve as a superior candidate as for n-type materials, especially for their relatively wide range of light absorption (λ = 200~800 nm), and lower LUMO level (-4.3 and -4.0 eV).
Collapse
Affiliation(s)
- Wei Song
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yadi Li
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xunhu Liu
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zongyi Xu
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Jianhua Wu
- Department of Materials, College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China.
| | - Liang Ding
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
10
|
Núñez-Villanueva D, Ciaccia M, Iadevaia G, Sanna E, Hunter CA. Sequence information transfer using covalent template-directed synthesis. Chem Sci 2019; 10:5258-5266. [PMID: 31191881 PMCID: PMC6540929 DOI: 10.1039/c9sc01460h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
Kinetically inert ester bonds were used to attach monomers to a template, dictating the sequence of the polymer product.
Template-directed synthesis is the biological method for the assembly of oligomers of defined sequence, providing the molecular basis for replication and the process of evolution. To apply analogous processes to synthetic oligomeric molecules, methods are required for the transfer of sequence information from a template to a daughter strand. We show that covalent template-directed synthesis is a promising approach for the molecular replication of sequence information in synthetic oligomers. Two monomer building blocks were synthesized: a phenol monomer and a benzoic acid monomer, each bearing an alkyne and an azide for oligomerization via copper catalyzed azide alkyne cycloaddition (CuAAC) reactions. Stepwise synthesis was used to prepare oligomers, where information was encoded as the sequence of phenol (P) and benzoic acid (A) units. Ester base-pairing was used to attach monomers to a mixed sequence template, and CuAAC was used to zip up the backbone. Hydrolysis of the ester base-pairs gave back the starting template and the sequence complementary copy. When the AAP trimer was used as the template, the complementary sequence PPA was obtained as the major product, with a small amount of scrambling resulting in PAP as a side-product. This covalent base-pairing strategy represents a general approach that can be implemented in different formats for the replication of sequence information in synthetic oligomers.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Maria Ciaccia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Elena Sanna
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
11
|
Ke YZ, Huang SL, Lai G, Luh TY. Selective ring-opening metathesis polymerization (ROMP) of cyclobutenes. Unsymmetrical ladderphane containing polycyclobutene and polynorbornene strands. Beilstein J Org Chem 2019; 15:44-51. [PMID: 30680037 PMCID: PMC6334803 DOI: 10.3762/bjoc.15.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022] Open
Abstract
At 0 °C in THF in the presence of Grubbs first generation catalyst, cyclobutene derivatives undergo ROMP readily, whereas norbornene derivatives remain intact. When the substrate contains both cyclobutene and norbornene moieties, the conditions using THF as the solvent at 0 °C offer a useful protocol for the selective ROMP of cyclobutene to give norbornene-appended polycyclobutene. Unsymmetrical ladderphane having polycyclobutene and polynorbornene as two strands is obtained by further ROMP of the norbornene appended polycyclobutene in the presence of Grubbs first generation catalyst in DCM at ambient temperature. Methanolysis of this unsymmetrical ladderphane gives polycyclobutene methyl ester and insoluble polynorbornene-amide-alcohol. The latter is converted into the corresponding soluble acetate. Both polymers are well characterized by spectroscopic means. No norbornene moiety is found to be incorporated into polycyclobutene strand at all. The double bonds in the polycyclobutene strand are mainly in cis configuration (ca 70%), whereas the E/Z ratio for polynorbornene strand is 8:1.
Collapse
Affiliation(s)
- Yuan-Zhen Ke
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Guoqiao Lai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tien-Yau Luh
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
12
|
Núñez-Villanueva D, Ciaccia M, Hunter CA. Cap control: cyclic versus linear oligomerisation in covalent template-directed synthesis. RSC Adv 2019; 9:29566-29569. [PMID: 35531529 PMCID: PMC9071899 DOI: 10.1039/c9ra07233k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Covalent template-directed synthesis was used to oligomerise monomer building blocks in a controlled manner to give exclusively the linear trimer. Competing reaction pathways were blocked by addition of a large excess of a monomeric capping agent. At a concentration of 1 mM, the cap selectively prevented further reaction of the product chain ends to give polymeric and macrocyclic products, but did not interfere with the templating process. The right concentration of capping agent is required to control the product distribution in covalent template-directed synthesis of linear oligomers using CuAAC.![]()
Collapse
Affiliation(s)
| | - Maria Ciaccia
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | | |
Collapse
|
13
|
Flid VR, Gringolts ML, Shamsiev RS, Finkelshtein ES. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4834] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The methods for synthesis of promising norbornene monomers from norbornadiene and quadricyclane are summarized. A strategy for their synthesis is discussed, combining theoretical and experimental approaches to the selection of catalysts and the conditions for carrying out stereoselective reactions. The mechanisms of catalytic reactions of synthesis of norbornene monomers, as well as the progress in the macromolecular design of functional polymeric materials based on them, are considered. The data on industrial processes of production of polynorbornenes and areas of their use are presented.
The bibliography includes 297 references.
Collapse
|
14
|
Lai G, Luh TY. Polynorbornene-based Template for Polymer Synthesis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Guoqiao Lai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tien-Yau Luh
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
15
|
|
16
|
Ding L, Li T, Li J, Song W. Azobenzene-Incorporated Single- and Double-Stranded Polynorbornenes: Facile Synthesis and Diverse Photoresponsive Property. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Ding
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
- Department of Chemistry; National Taiwan University; Taipei 106 Taiwan
| | - Tianjing Li
- School of Automotive Engineering; Yancheng Vocational Institute of Industry Technology; Yancheng 224005 China
| | - Juan Li
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Wei Song
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| |
Collapse
|
17
|
Danjo H, Kidena Y, Kawahata M, Sato H, Katagiri K, Miyazawa T, Yamaguchi K. Multilayered inclusion nanocycles of anionic spiroborates. Org Lett 2015; 17:2466-9. [PMID: 25915175 DOI: 10.1021/acs.orglett.5b00974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multilayered spiroborate nanocycles were prepared from tris- or tetrakis(dihydroxynaphthalene) and tetrahydroxyanthraquinone as pillar and crossbar units via the reversible formation of a spiroborate linkage. The four-layered spiroborate nanocycle recognized two cationic aromatic guests simultaneously and exhibited the ability to form a supramolecular one-dimensional array by combining with methyl viologen dimer as the ditopic guest.
Collapse
Affiliation(s)
| | | | - Masatoshi Kawahata
- §Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Hiroyasu Sato
- ⊥Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
| | | | | | - Kentaro Yamaguchi
- §Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
18
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Lin NT, Satyanarayana K, Chen CH, Tsai YF, Yu SSF, Chan SI, Luh TY. Controlling the Orientation of Pendants in Two-Dimensional Comb-Like Polymers by Varying Stiffness of Polymeric Backbones. Macromolecules 2014. [DOI: 10.1021/ma5007655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nai-Ti Lin
- Department
of Chemistry, National Taiwan University, Taipei, 106 Taiwan
| | | | - Chih-Hsien Chen
- Department
of Chemical Engineering, Feng Chia University, Taichung, 407 Taiwan
| | - Yi-Fang Tsai
- Institute
of Chemistry, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Steve Sheng-Fa Yu
- Institute
of Chemistry, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Sunney I. Chan
- Institute
of Chemistry, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Tien-Yau Luh
- Department
of Chemistry, National Taiwan University, Taipei, 106 Taiwan
| |
Collapse
|
20
|
Moatsou D, Hansell CF, O'Reilly RK. Precision polymers: a kinetic approach for functional poly(norbornenes). Chem Sci 2014. [DOI: 10.1039/c4sc00752b] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Control over monomer sequence in the ring-opening metathesis polymerization of functional norbornenes is explored based on the difference in reactivity of endo and exo isomers.
Collapse
Affiliation(s)
- Dafni Moatsou
- Department of Chemistry
- University of Warwick
- Coventry, UK
| | | | | |
Collapse
|