1
|
Maity T, Paul S, De P. Side-chain amino acid-based macromolecular architectures. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tanmoy Maity
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
2
|
Dinda P, Anas M, Banerjee P, Mandal TK. Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
3
|
Kanto R, Yonenuma R, Yamamoto M, Furusawa H, Yano S, Haruki M, Mori H. Mixed Polyplex Micelles with Thermoresponsive and Lysine-Based Zwitterionic Shells Derived from Two Poly(vinyl amine)-Based Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3001-3014. [PMID: 33650430 DOI: 10.1021/acs.langmuir.0c02197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two series of poly(vinyl amine) (PVAm)-based block copolymers with zwitterionic and thermoresponsive segments were synthesized by the reversible addition-fragmentation chain transfer polymerization. A mixture of the two copolymers, poly(N-acryloyl-l-lysine) (PALysOH) and poly(N-isopropylacrylamide) (PNIPAM), which have the same cationic PVAm chain but different shell-forming segments, were used to prepare mixed polyplex micelles with DNA. Both PVAm-b-PALysOH and PVAm-b-PNIPAM showed low cytotoxicity, with characteristic assembled structures and stimuli-responsive properties. The cationic PVAm segment in both block copolymers showed site-specific interactions with DNA, which were evaluated by dynamic light scattering, zeta potential, circular dichroism, agarose gel electrophoresis, atomic force microscopy, and transmission electron microscopy measurements. The PVAm-b-PNIPAM/DNA polyplexes showed the characteristic temperature-induced formation of assembled structures in which the polyplex size, surface charge, chiroptical property of DNA, and polymer-DNA binding were governed by the nitrogen/phosphate (N/P) ratio. The DNA binding strength and colloidal stability of the PVAm-b-PALysOH/DNA polyplexes could be tuned by introducing an appropriate amount of zwitterionic PALysOH functionality, while maintaining the polyplex size, surface charge, and chiroptical property, regardless of the N/P ratio. The mixed polyplex micelles showed temperature-induced stability originating from the hydrophobic (dehydrated) PNIPAM chains upon heating, and remarkable stability under salty conditions owing to the presence of the zwitterionic PALysOH chain on the polyplex surface.
Collapse
Affiliation(s)
- Ryosuke Kanto
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Ryo Yonenuma
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Mizuki Yamamoto
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
| | - Hiroyuki Furusawa
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Mitsuru Haruki
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
4
|
Schönemann E, Koc J, Karthäuser JF, Özcan O, Schanzenbach D, Schardt L, Rosenhahn A, Laschewsky A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021; 22:1494-1508. [PMID: 33709699 DOI: 10.1021/acs.biomac.0c01705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jana F Karthäuser
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Onur Özcan
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Dirk Schanzenbach
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - André Laschewsky
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.,Fraunhofer Institute of Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
5
|
Ghosh P, Bera A, De P. Current status, challenges and future directions in the treatment of neurodegenerative diseases by polymeric materials. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Sun CC, Zhou MY, Yuan JJ, Yan Y, Song YZ, Fang LF, AbdAllah H, Shalaby MS, Shaban AM, Zhu BK. Regulating the aggregation of anionic nanoparticles for size-tunable nanochannels. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Membranes with negatively-charged nanochannels fabricated from aqueous sulfonated polysulfone nanoparticles for enhancing the rejection of divalent anions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Archer WR, Fiorito A, Heinz-Kunert SL, MacNicol PL, Winn SA, Schulz MD. Synthesis and Rare-Earth-Element Chelation Properties of Linear Poly(ethylenimine methylenephosphonate). Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- William R. Archer
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Agustin Fiorito
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sherrie L. Heinz-Kunert
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Piper L. MacNicol
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha A. Winn
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Kanto R, Qiao Y, Masuko K, Furusawa H, Yano S, Nakabayashi K, Mori H. Synthesis, Assembled Structures, and DNA Complexation of Thermoresponsive Lysine-Based Zwitterionic and Cationic Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4646-4659. [PMID: 30845801 DOI: 10.1021/acs.langmuir.8b04303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A series of anionic, zwitterionic, and cationic lysine-based block copolymers with a thermoresponsive segment were synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization of N-acryloyl- N-carbobenzoxy-l-lysine [A-Lys(Cbz)-OH], which contains a carboxylic acid and a protected amine-functionality in the monomer unit. Carboxylic acid-containing homopolymers, poly(A-Lys(Cbz)-OH), with predetermined molecular weights with relatively low polydispersities were initially synthesized by RAFT polymerization of A-Lys(Cbz)-OH. The chain extension of the dithiocarbamate-terminated poly(A-Lys(Cbz)-OH) to N-isopropylacrylamide (NIPAM) via the RAFT process and subsequent deprotection afforded the zwitterionic block copolymer composed of thermoresponsive poly(NIPAM) and poly(A-Lys-OH), which exhibited switchability among the zwitterionic, anionic, and cationic states by pH change. The assembled structures and thermoresponsive and chiroptical properties of these block copolymers were evaluated by dynamic light scattering, circular dichroism, and turbidity measurements. Finally, the cationic block copolymer, poly(A-Lys-OMe)- b-poly(NIPAM), was obtained by the methylation of the carboxylic acid group in the zwitterionic poly(A-Lys-OH) segment. Selective interactions of DNA with the cationic poly(A-Lys-OMe) segment in the lysine-based block copolymer were further evaluated by agarose gel electrophoresis and atomic force microscopy measurements, which revealed characteristic assembled structures and temperature-responsive properties of the polyplexes.
Collapse
|
10
|
Saha B, Choudhury N, Bhadran A, Bauri K, De P. Amino acid-derived alternating polyampholyte luminogens. Polym Chem 2019. [DOI: 10.1039/c9py00462a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A unique polyampholyte luminogen comprised of alternatively placed oppositely charged moieties onto the poly(styrene-alt-maleimide) skeleton was synthesized, and used for the specific detection of carbon disulfide (CS2) in both solution and vapor phases.
Collapse
Affiliation(s)
- Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| | - Neha Choudhury
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| | - Abhi Bhadran
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| | - Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- Purulia 723133
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| |
Collapse
|
11
|
Imamura R, Mori H. Synthesis of Zwitterionic Polymers Containing a Tertiary Sulfonium Group for Protein Stabilization. Biomacromolecules 2018; 20:904-915. [DOI: 10.1021/acs.biomac.8b01542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ryutaro Imamura
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
12
|
Takahashi N, Sudo A, Endo T. Isolation of Epimers in the Synthesis of Vinylcyclopropane Bearing Two Alanine Moieties and Their Radical Ring-Opening Polymerization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naoya Takahashi
- Molecular Engineering
Institute, Kindai University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan
| | - Atsushi Sudo
- Department of Applied
Chemistry, Faculty of Science and Engineering, Kindai University, Kowakae
3-4-1, Higashi Osaka, Osaka 577-8502, Japan
| | - Takeshi Endo
- Molecular Engineering
Institute, Kindai University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan
| |
Collapse
|
13
|
Tsvetkov N, Lezov A, Vlasov P, Gubarev A, Lezova A, Lebedeva E, Polushina G, Domnina N. Macromolecules of polycarboxybetaine poly(4-N,N-diallyl-N-methylammonio) butanoate: Synthesis and molecular characteristics. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Responsive Polymer Nanostructures. POLYMER-ENGINEERED NANOSTRUCTURES FOR ADVANCED ENERGY APPLICATIONS 2017. [DOI: 10.1007/978-3-319-57003-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Maji T, Banerjee S, Bose A, Mandal TK. A stimuli-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding antifouling polymer with tunable thermosensitivity. Polym Chem 2017. [DOI: 10.1039/c7py00460e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report describes a dual pH- and thermo-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding zwitterionic antifouling polymer with ion-induced tunable thermosensitivity.
Collapse
Affiliation(s)
- Tanmoy Maji
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sanjib Banerjee
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Avijit Bose
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
16
|
Mommer S, Keul H, Möller M. One-Pot Synthesis of Amino Acid-Based Polyelectrolytes and Nanoparticle Synthesis. Biomacromolecules 2016; 18:159-168. [DOI: 10.1021/acs.biomac.6b01420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Mommer
- Institute of Technical and
Macromolecular Chemistry and DWI - Leibniz Institute for Interactive
Materials, RWTH Aachen University, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Helmut Keul
- Institute of Technical and
Macromolecular Chemistry and DWI - Leibniz Institute for Interactive
Materials, RWTH Aachen University, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Martin Möller
- Institute of Technical and
Macromolecular Chemistry and DWI - Leibniz Institute for Interactive
Materials, RWTH Aachen University, Forckenbeckstraße 50, 52056 Aachen, Germany
| |
Collapse
|
17
|
Liu N, Han J, Zhang X, Yang Y, Liu Y, Wang Y, Wu G. pH-responsive zwitterionic polypeptide as a platform for anti-tumor drug delivery. Colloids Surf B Biointerfaces 2016; 145:401-409. [DOI: 10.1016/j.colsurfb.2016.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/23/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
|
18
|
Abdilla A, Shi S, Burke NAD, Stöver HDH. Multistimuli responsive ternary polyampholytes: Formation and crosslinking of coacervates. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Allison Abdilla
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Shanna Shi
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Nicholas A. D. Burke
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Harald D. H. Stöver
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
19
|
Cao Z, Zhang G. Dynamics of polyzwitterions in salt-free and salt solutions. Phys Chem Chem Phys 2016; 17:27045-51. [PMID: 26411726 DOI: 10.1039/c5cp04827c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dynamics of polyzwitterions remains largely unclear. We have prepared zwitterionic poly[1-(3-sulphopropyl) betaine-2-vinylpyridinium] (PSB) and investigated its dynamics in aqueous solution as a function of added salt (NaCl) concentration (Cs) by dynamic laser light scattering (DLS) and sedimentation velocity (SV) in analytical ultracentrifugation (AUC). A fast and a slow mode can be observed by DLS in a salt-free and low-salt solution, where the latter exhibits a maximum intensity at Cs ∼ 10(-3) M. SV measurements demonstrate that the fast mode corresponds to the diffusion of individual chains and the slow mode arises from the dynamic inhomogeneity due to interchain electrostatic repulsion. As Cs increases, the sedimentation coefficient exhibits a maximum at Cs ∼ 0.1 M whereas the diffusion coefficient has a minimum at Cs ∼ 10(-3) M and a maximum at Cs ∼ 0.1 M. Namely, PSB shows a complex dynamics in a salt-free and low-salt solution and anti-polyelectrolyte behavior in a high-salt solution. Our studies reveal that the dynamics of polyzwitterions is mediated by the long range interchain electrostatic repulsion and short range intrachain attraction, which are determined by effective charges on the chains.
Collapse
Affiliation(s)
- Zhonglin Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | | |
Collapse
|
20
|
Brisson ERL, Xiao Z, Connal LA. Amino Acid Functional Polymers: Biomimetic Polymer Design Enabling Catalysis, Chiral Materials, and Drug Delivery. Aust J Chem 2016. [DOI: 10.1071/ch16028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amino acids are the natural building blocks for the world around us. Highly functional, these small molecules have unique catalytic properties, chirality, and biocompatibility. Imparting these properties to surfaces and other macromolecules is highly sought after and represents a fast-growing field. Polymers functionalized with amino acids in the side chains have tunable optical properties, pH responsiveness, biocompatibility, structure and self-assembly properties. Herein, we review the synthesis of amino acid functional polymers, discuss manipulation of available strategies to achieve the desired responsive materials, and summarize some exciting applications in catalysis, chiral particles, and drug delivery.
Collapse
|
21
|
Breucker L, Schöttler S, Landfester K, Taden A. Polyurethane Dispersions with Peptide Corona: Facile Synthesis of Stimuli-Responsive Dispersions and Films. Biomacromolecules 2015; 16:2418-26. [DOI: 10.1021/acs.biomac.5b00672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laura Breucker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Henkel AG & Co. KGaA, Adhesive Research, Henkelstrasse 67, 40589 Düsseldorf, Germany
| | - Susanne Schöttler
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Andreas Taden
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Henkel AG & Co. KGaA, Adhesive Research, Henkelstrasse 67, 40589 Düsseldorf, Germany
| |
Collapse
|
22
|
Maji T, Banerjee S, Biswas Y, Mandal TK. Dual-Stimuli-Responsive l-Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01099] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tanmoy Maji
- Polymer
Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Sanjib Banerjee
- Polymer
Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Yajnaseni Biswas
- Polymer
Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Tarun K. Mandal
- Polymer
Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| |
Collapse
|
23
|
Dubey A, Burke NAD, Stöver HDH. Preparation and characterization of narrow compositional distribution polyampholytes as potential biomaterials: Copolymers ofN-(3-aminopropyl)methacrylamide hydrochloride (APM) and methacrylic acid (MAA). ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ankita Dubey
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON Canada L8S 4M1
| | - Nicholas A. D. Burke
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON Canada L8S 4M1
| | - Harald D. H. Stöver
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON Canada L8S 4M1
| |
Collapse
|
24
|
Li W, Liu Q, Liu L. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1730-42. [DOI: 10.1080/09205063.2014.948332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Bühler J, Gietzen S, Reuter A, Kappel C, Fischer K, Decker S, Schäffel D, Koynov K, Bros M, Tubbe I, Grabbe S, Schmidt M. Selective Uptake of Cylindrical Poly(2-Oxazoline) Brush-AntiDEC205 Antibody-OVA Antigen Conjugates into DEC-Positive Dendritic Cells and Subsequent T-Cell Activation. Chemistry 2014; 20:12405-10. [DOI: 10.1002/chem.201403942] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 01/20/2023]
|
26
|
Liu Q, Li W, Singh A, Cheng G, Liu L. Two amino acid-based superlow fouling polymers: poly(lysine methacrylamide) and poly(ornithine methacrylamide). Acta Biomater 2014; 10:2956-64. [PMID: 24613545 DOI: 10.1016/j.actbio.2014.02.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/23/2014] [Accepted: 02/25/2014] [Indexed: 01/15/2023]
Abstract
We developed and investigated two new antifouling zwitterionic polymers, poly(lysine methacrylamide) (pLysAA) and poly(ornithine methacrylamide) (pOrnAA), both derived from natural amino acids - lysine and ornithine, respectively. The pLysAA and pOrnAA brushes were grafted on gold via the surface-initiated photoiniferter-mediated polymerization, with the polymer film thickness controlled by the UV-irradiation time. Nonspecific adsorption from human blood serum and plasma was investigated by surface plasmon resonance. Results show that the adsorption level decreased with the increasing film thickness. With the thin films of ∼14.5 nm, the minimal adsorption on pLysAA was 3.9 ng cm(-2) from serum and 5.4 ng cm(-2) from plasma, whereas the lowest adsorption on pOrnAA was 1.8 and 3.2 ng cm(-2), from serum and plasma, respectively. Such protein resistance is comparable to other widely reported antifouling surfaces such as poly(sulfobetaine methacrylate) and polyacrylamide, with a much thinner polymer film thickness. Both pLysAA and pOrnAA showed better protein resistance than the previously reported serine-based poly(serine methacrylate), whereas the pOrnAA is the best among three. The pLysAA- and pOrnAA-grafted surfaces also highly resisted the endothelial cell attachment and Escherichia coli K12 bacterial adhesion. Nanogels made of pLysAA and pOrnAA were found to be ultrastable in undiluted serum, with no aggregation observed after culturing for 24h. Dextran labeled with fluorescein isothiocyanate (FITC-dextran) was encapsulated in nanogels as a model drug. The encapsulated FITC-dextran exhibited controlled release from the pOrnAA nanogels. The superlow fouling, biomimetic and multifunctional properties of pLysAA and pOrnAA make them promising materials for a wide range of applications, such as implant coating, drug delivery and biosensing.
Collapse
Affiliation(s)
- Qingsheng Liu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, United States
| | - Wenchen Li
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, United States
| | - Anuradha Singh
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, United States
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, United States
| | - Lingyun Liu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, United States.
| |
Collapse
|