1
|
Qian Q, Furner CT, Li CY. Crystallization of Poly(l-lactic acid) on Water Surfaces via Controlled Solvent Evaporation and Langmuir-Blodgett Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6285-6294. [PMID: 38478723 DOI: 10.1021/acs.langmuir.3c03788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Solvent evaporation is one of the most fundamental processes in soft matter. Structures formed via solvent evaporation are often complex yet tunable via the competition between solute diffusion and solvent evaporation time scales. This work concerns the polymer evaporative crystallization on the water surface (ECWS). The dynamic and two-dimensional (2D) nature of the water surface offers a unique way to control the crystallization pathway of polymeric materials. Using poly(l-lactic acid) (PLLA) as the model polymer, we demonstrate that both one-dimensional (1D) crystalline filaments and two-dimensional (2D) lamellae are formed via ECWS, in stark contrast to the 2D Langmuir-Blodgett monolayer systems as well as polymer solution crystallization. Results show that this filament-lamella biphasic structure is tunable via chemical structures such as molecular weight and processing conditions such as temperature and evaporation rate.
Collapse
Affiliation(s)
- Qian Qian
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Carl T Furner
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Li B, Zhao Y, Chen X, Wang Z, Xu J, Shi W. Polymer Crystallization with Configurable Birefringence in Double Emulsion Droplets. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Baihui Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaotong Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqi Wang
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Grating assembly in periodic crystal aggregates of aliphatic polyesters with potential iridescence photonics. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
In-Situ Growth of Nucleus Geometry to Dual Types of Periodically Ringed Assemblies in Poly(nonamethylene terephthalate). CRYSTALS 2021. [DOI: 10.3390/cryst11111338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring of nucleus geometry and growth into dual types of periodically ring-banded morphology in poly(nonamethylene terephthalate) (PNT), respectively, Type-1 and Type-2, are done with detailed analyses using polarized-light optical microscopy (POM) in-situ CCD recording; the periodic assembly morphologies are characterized using atomic-force microscopy (AFM) and scanning electron microscopy (SEM). Different annealing treatments (Tmax = 110, 120, 130 °C) are accomplished at a crystallization temperature of 85 °C; effects on the nucleus geometry, number (25–10%) and volume fractions (33–15%) of Type-2 among two types of banded PNT spherulites are expounded. Growth of a specific type of periodically banded PNT spherulite is initiated from either highly elongated sheaf-like or well-rounded nuclei, with the final grown lamellae being self-packed as multi-shell structures. Nucleation geometry and crystallization parameters collectively lead to development of multiple types of banded PNT spherulites of different relative fractions.
Collapse
|
5
|
Matxinandiarena E, Múgica A, Zubitur M, Ladelta V, Zapsas G, Cavallo D, Hadjichristidis N, Müller AJ. Crystallization and Morphology of Triple Crystalline Polyethylene- b-poly(ethylene oxide)- b-poly(ε-caprolactone) PE- b-PEO- b-PCL Triblock Terpolymers. Polymers (Basel) 2021; 13:polym13183133. [PMID: 34578032 PMCID: PMC8473441 DOI: 10.3390/polym13183133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
The morphology and crystallization behavior of two triblock terpolymers of polymethylene, equivalent to polyethylene (PE), poly (ethylene oxide) (PEO), and poly (ε-caprolactone) (PCL) are studied: PE227.1-b-PEO4615.1-b-PCL3210.4 (T1) and PE379.5-b-PEO348.8-b-PCL297.6 (T2) (superscripts give number average molecular weights in kg/mol and subscripts composition in wt %). The three blocks are potentially crystallizable, and the triple crystalline nature of the samples is investigated. Polyhomologation (C1 polymerization), ring-opening polymerization, and catalyst-switch strategies were combined to synthesize the triblock terpolymers. In addition, the corresponding PE-b-PEO diblock copolymers and PE homopolymers were also analyzed. The crystallization sequence of the blocks was determined via three independent but complementary techniques: differential scanning calorimetry (DSC), in situ SAXS/WAXS (small angle X-ray scattering/wide angle X-ray scattering), and polarized light optical microscopy (PLOM). The two terpolymers (T1 and T2) are weakly phase segregated in the melt according to SAXS. DSC and WAXS results demonstrate that in both triblock terpolymers the crystallization process starts with the PE block, continues with the PCL block, and ends with the PEO block. Hence triple crystalline materials are obtained. The crystallization of the PCL and the PEO block is coincident (i.e., it overlaps); however, WAXS and PLOM experiments can identify both transitions. In addition, PLOM shows a spherulitic morphology for the PE homopolymer and the T1 precursor diblock copolymer, while the other systems appear as non-spherulitic or microspherulitic at the last stage of the crystallization process. The complicated crystallization of tricrystalline triblock terpolymers can only be fully grasped when DSC, WAXS, and PLOM experiments are combined. This knowledge is fundamental to tailor the properties of these complex but fascinating materials.
Collapse
Affiliation(s)
- Eider Matxinandiarena
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
| | - Agurtzane Múgica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
| | - Manuela Zubitur
- Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
| | - George Zapsas
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy;
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
- Correspondence: (N.H.); (A.J.M.)
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Correspondence: (N.H.); (A.J.M.)
| |
Collapse
|
6
|
Nagarajan S. Lamellar Assembly Mechanism on Dendritic Ring-Banded Spherulites of Poly(ε-caprolactone). Macromol Rapid Commun 2021; 42:e2100359. [PMID: 34491601 DOI: 10.1002/marc.202100359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/30/2021] [Indexed: 01/09/2023]
Abstract
The self-assembly structures of lamellae in optical ring bands have a critical effect on their optical and physical arrangements. Two different types of dendritic banded spherulites (namely ring-banded and zigzag ring-banded) are formed in poly(ε-caprolactone)/poly (phenyl methacrylate) blend at crystallization temperatures of 42 and 46 °C, respectively. The difference in optical birefringence of ring bands in two types of spherulites is resolved by means of direct morphological comparison. Banded spherulites are fractured carefully to facilitate lamellar orientation analyses of both the top surface and the interior surface. The results have revealed the existence of tree-like dendritic fractal growth lamellar assemblies in both banded spherulites. The optical ring patterns of the banded spherulites are differentiated mainly by the fractal orientation of the edge-on crystal branches in the ridge region. On the basis of detailed morphological analysis, 3D-lamellar assembly mechanisms are proposed to explain the growth of dendritic ring-banded spherulites at 42 °C and dendritic zigzag ring-banded spherulites at 46 °C.
Collapse
Affiliation(s)
- Selvaraj Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
7
|
Yang CE, Woo EM, Nagarajan S. Epicycloid extinction-band assembly in Poly(decamethylene terephthalate) confined in thin films and crystallized at high temperatures. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Nagarajan S, Woo EM. Three-dimensional periodic architecture in Poly(ε-caprolactone) crystallized in bulk aggregates. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Nguyen-Tri P, Carrière P, Duong A, Nanda S. Graphene Oxide-Induced Interfacial Transcrystallization of Single-Fiber Milkweed/Polycaprolactone/Polyvinylchloride Composites. ACS OMEGA 2020; 5:22430-22439. [PMID: 32923801 PMCID: PMC7482230 DOI: 10.1021/acsomega.0c02913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Understanding the interfacial crystallization is crucial for semi-crystalline polymer/natural fiber composites because it links to the final properties. This work reports, for the first time, the interfacial crystallization of a miscible blend between polycaprolactone (PCL) and polyvinylchloride (PVC) with milkweed fibers. We have first described the morphology of the fibers and the chemical composition of waxes covered on its surface. Our findings show that the transcrystallization (TC) layer of PCL/PVC could appear at the interface by simply coating with a layer of graphene oxide (GO) on the milkweed fiber. In our study, atomic force microscopy-infrared spectroscopy analysis shows that the crystallinity of the blends is higher at the vicinity of the interface compared to that in the bulk. The kinetic of the interfacial crystallization in terms of spherulite morphology and crystal growth rates at the nanoscale is examined. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy were used to analyze the prepared GO and evaluate its relationship with the interfacial crystallization behavior of the blends.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Department
of Chemistry, Biochemistry and Physics, University du Québec à Trois-Rivières, Trois-Rivieres G9A 5H7, Québec, Canada
| | - Pascal Carrière
- Laboratoire
des Matériaux, Polymères, Interfaces et Environnement
Marin (MAPIEM), Université de Toulon, La Garde 83130 France
| | - Adam Duong
- Department
of Chemistry, Biochemistry and Physics, University du Québec à Trois-Rivières, Trois-Rivieres G9A 5H7, Québec, Canada
| | - Sonil Nanda
- Department
of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon S7N 5A9, Saskatchewan, Canada
| |
Collapse
|
10
|
Palacios JK, Zhang H, Zhang B, Hadjichristidis N, Müller AJ. Direct identification of three crystalline phases in PEO-b-PCL-b-PLLA triblock terpolymer by In situ hot-stage atomic force microscopy. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Kajiki T, Komba S, Iwaura R. Supramolecular Organogelation Directed by Weak Noncovalent Interactions in Palmitoylated 1,5-Anhydro-d-Glucitol Derivatives. Chempluschem 2020; 85:701-710. [PMID: 32267103 DOI: 10.1002/cplu.202000147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Indexed: 01/11/2023]
Abstract
We synthesized a series of novel alicyclic compounds by modifying 1,5-anhydro-d-glucitol with two to four palmitoyl chains, and we explored their self-assembly and gelation behaviors in paraffin. The obtained organogels were studied by field emission scanning electron microscopy, atomic force microscopy, variable-temperature Fourier transform IR spectroscopy, X-ray diffraction analysis, polarized optical microscopy, and transmission spectroscopy. While all the palmitoylated derivatives spontaneously formed fibrous networks and gelated the paraffin, an acetylated derivative of 1,5-anhydro-d-glucitol did not gelatinize the solvent, thus indicating the importance of aliphatic chains for gelation. Interestingly, α- and β- d-glucopyranose with five palmitoyl chains neither gelatinized the solvent nor formed fibrous networks, thus suggesting that the absence of C-1 substitution in 1,5-anhydro-d-glucitol is important for gelation. Fourier transform IR spectroscopy suggested that the formation of weak hydrogen bonds between the carbonyl groups and the C-H groups was the driving force for formation of the supramolecular fibers and for gelation of the solvent.
Collapse
Affiliation(s)
- Takahito Kajiki
- SUNUS CO., LTD., 3-20 Nan-ei, Kagoshima, Kagoshima, 891-0196, Japan
| | - Shiro Komba
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Rika Iwaura
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| |
Collapse
|
12
|
Lv T, Hu C, Li J, Huang S, Wen H, Li H, Chen J, Yu D, de Claville Christiansen J, Jiang S. Thermal dynamics affected formation and dislocation of PDLA morphology. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Li L, Yang L, Tang J, Yang J, Li W, Zhou S, Ma H, Zhu H, Zhu Z. Modulated crystallization behavior of bacterial copolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Effect of a linear multiple amides derivative as a nucleator. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2019.1710534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lingling Li
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Linxuan Yang
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Jingjing Tang
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Jinjun Yang
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Wei Li
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Shanshan Zhou
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Huimin Ma
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Haibo Zhu
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Zhen Zhu
- Department of Environment and Safety, Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
14
|
Wei J, Wu L, Zhu H, Li Y, Wang Z. Formation of well-organized, concentric-ringed spherulites of four-arm star symmetric PEO-b-PCL via confined evaporative crystallization. CrystEngComm 2020. [DOI: 10.1039/d0ce01183e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Toluene solvent-assisted topology confinement facilitates PCL block templated rhythmic crystallization into concentric-ringed spherulites of star symmetric P(EO2.5k-b-CL2.7k)4.
Collapse
Affiliation(s)
- Jing Wei
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- Ningbo Key Laboratory of Specialty Polymers
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
| | - Lin Wu
- Anhui Collaborative Innovation Centre for Petrochemical New Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Hao Zhu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- Ningbo Key Laboratory of Specialty Polymers
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
| | - Yiguo Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- Ningbo Key Laboratory of Specialty Polymers
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
| | - Zongbao Wang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science
- Ningbo Key Laboratory of Specialty Polymers
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
| |
Collapse
|
15
|
Palacios JK, Liu G, Wang D, Hadjichristidis N, Müller AJ. Generating Triple Crystalline Superstructures in Melt Miscible PEO‐
b
‐PCL‐
b
‐PLLA Triblock Terpolymers by Controlling Thermal History and Sequential Crystallization. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jordana K. Palacios
- POLYMAT and Polymer Science and Technology DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Dujin Wang
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Nikos Hadjichristidis
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionKAUST Catalysis Center Thuwal 23955 Saudi Arabia
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
- IkerbasqueBasque Foundation for Science Bilbao 48013 Spain
| |
Collapse
|
16
|
Armas JA, Reynolds KJ, Marsh ZM, Fernández-Blázquez JP, Ayala D, Cronin AD, Del Aguila J, Fideldy R, Abdou JP, Bilger DW, Vilatela JJ, Stefik M, Scott GE, Zhang S. Supramolecular Assembly of Oriented Spherulitic Crystals of Conjugated Polymers Surrounding Carbon Nanotube Fibers. Macromol Rapid Commun 2019; 40:e1900098. [PMID: 31328312 DOI: 10.1002/marc.201900098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/06/2019] [Indexed: 12/17/2022]
Abstract
The directed assembly of conjugated polymers into macroscopic organization with controlled orientation and placement is pivotal in improving device performance. Here, the supramolecular assembly of oriented spherulitic crystals of poly(3-butylthiophene) surrounding a single carbon nanotube fiber under controlled solvent evaporation of solution-cast films is reported. Oriented lamellar structures nucleate on the surface of the nanotube fiber in the form of a transcrystalline interphase. The factors influencing the formation of transcrystals are investigated in terms of chemical structure, crystallization temperature, and time. Dynamic process measurements exhibit the linear growth of transcrystals with time. Microstructural analysis of transcrystals reveals individual lamellar organization and crystal polymorphism. The form II modification occurs at low temperatures, while both form I and form II modifications coexist at high temperatures. A possible model is presented to interpret transcrystallization and polymorphism.
Collapse
Affiliation(s)
- Jeremy A Armas
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Karina J Reynolds
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Zachary M Marsh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Denzel Ayala
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Adam D Cronin
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jeremy Del Aguila
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Rikki Fideldy
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - John P Abdou
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - David W Bilger
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | | | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory E Scott
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Shanju Zhang
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
17
|
Liu X, Contal C, Schmutz M, Krafft MP. Two-Dimensional Radial or Ring-Banded Nonbirefringent Spherulites of Semifluorinated Alkanes Coexistent with Close-Packed Self-Assembled Surface Nanodomains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15126-15133. [PMID: 30403356 DOI: 10.1021/acs.langmuir.8b01893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of semifluorinated alkanes (C nF2 n+1C mH2 m+1 diblocks, F n H m, n = 6, 8, 10; m = 16, 18, 20), when cast as films onto solid substrates, were found to form ring-banded or radial spherulites when heated above their isotropic temperature and subsequently cooled down to room temperature, demonstrating that the formation of two-dimensional (2D) spherulites is a general feature of molecular fluorocarbon-hydrocarbon diblocks. These spherulites are not birefringent, a seldom encountered feature for such structures (never, so far, for spherulites made of small molecules). They also provide examples of fluorinated 2D spherulites. Film morphology was analyzed by optical microscopy, interferometric profilometry, atomic force microscopy (AFM), and scanning electron microscopy. Increasing the length of the Fn segment favors the formation of ring-banded spherulites, whereas short Fn segments tend to favor extended radial stripes. Variation of the cooling rate provides control over the size and morphology of the spherulites: slow cooling promotes fibers and radial spherulites, whereas fast cooling fosters ring-banded spherulites. The AFM studies of F10 H16 films revealed that the latter consist of stacks of regularly spaced lamellae. We also observed that, remarkably, stacked lamellae (repeating distance ∼6 nm) can coexist with a layer of close-packed monodisperse circular self-assembled surface nanodomains of Fn Hm diblocks (∼30 nm in diameter); the latter are known to form from such diblocks at interfaces at room temperature. Substrates partially covered with F10 H16 contain incomplete ring-banded spherulites and smaller objects in which the lamellae and circular nanodomains coexist.
Collapse
Affiliation(s)
- Xianhe Liu
- University of Strasbourg, Institut Charles Sadron (ICS CNRS) , 23 rue du Loess , 67034 Strasbourg , France
| | - Christophe Contal
- University of Strasbourg, Institut Charles Sadron (ICS CNRS) , 23 rue du Loess , 67034 Strasbourg , France
| | - Marc Schmutz
- University of Strasbourg, Institut Charles Sadron (ICS CNRS) , 23 rue du Loess , 67034 Strasbourg , France
| | - Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (ICS CNRS) , 23 rue du Loess , 67034 Strasbourg , France
| |
Collapse
|
18
|
Li Y, Yao Z, Wu L, Wang Z. Nonbirefringent bands in thin films of a copolymer melt: rapid rhythmic crystal growth with an unusual crystal–melt interface. CrystEngComm 2018. [DOI: 10.1039/c8ce00134k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rhythmic-growth-induced nonbirefringent bands that are comprised of repetitive stacks of discrete flat-on lamellae along the growth directions are reported in a thin film of an asymmetric PCL-b-PEO during isothermal melt crystallization.
Collapse
Affiliation(s)
- Yiguo Li
- Anhui Collaborative Innovation Centre for Petrochemical New Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Zhilong Yao
- Anhui Collaborative Innovation Centre for Petrochemical New Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Lin Wu
- Anhui Key Laboratory of Optoelectronic and Magnetism Functional Materials
- Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes
- Anqing Normal University
- Anqing 246011
- China
| | - Zongbao Wang
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
19
|
|
20
|
Palacios JK, Tercjak A, Liu G, Wang D, Zhao J, Hadjichristidis N, Müller AJ. Trilayered Morphology of an ABC Triple Crystalline Triblock Terpolymer. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01576] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Guoming Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dujin Wang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junpeng Zhao
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nikos Hadjichristidis
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
21
|
Morphological Control of Polymer Spherulites via Manipulating Radial Lamellar Organization upon Evaporative Crystallization: A Mini Review. CRYSTALS 2017. [DOI: 10.3390/cryst7040115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Crystallization behavior of biodegradable poly(ethylene adipate) modulated by a benign nucleating agent: Zinc phenylphosphonate. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1917-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Li Y, Wu L, He C, Wang Z, He T. Strong enhancement of the twisting frequency of achiral orthorhombic lamellae in poly(ε-caprolactone) banded spherulites via evaporative crystallization. CrystEngComm 2017. [DOI: 10.1039/c6ce02577c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Lan Q, Yu J, Zhang J, He J. Direct formation of banded spherulites in poly(l-lactide) from the glassy state: Unexpected synergistic role of chain structure and compressed CO2. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Ponjavic M, Nikolic MS, Jevtic S, Rogan J, Stevanovic S, Djonlagic J. Influence of a low content of PEO segment on the thermal, surface and morphological properties of triblock and diblock PCL copolymers. Macromol Res 2016. [DOI: 10.1007/s13233-016-4048-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Li Y, Wang Z, Gu Q, Wu X. Enhance understanding of rhythmic crystallization in confined evaporating polymer solution films: from environment to solution film and then to one period. RSC Adv 2016. [DOI: 10.1039/c6ra02803a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An enhanced understanding of rhythmic crystallization in an evaporating polymer solution is explored from the environment to the film and to within one period.
Collapse
Affiliation(s)
- Yiguo Li
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| | - Zongbao Wang
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315016
- China
| | - Qun Gu
- Institute of Material Engineering
- Ningbo University of Technology
- Ningbo 315211
- China
| | - Xuedong Wu
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
27
|
The banded spherulites of iPP induced by pressure vibration injection molding. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1708-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Ni'mah H, Woo EM. Coexisting Straight, Radial, and Banded Lamellae on the Six Corners of Hexagon-Shaped Spherulites in Poly(l-Lactide). MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hikmatun Ni'mah
- Department of Chemical Engineering; National Cheng Kung University; Tainan 701 Taiwan
- Department of Chemical Engineering; Faculty of Industrial Technology; Sepuluh Nopember Institute of Technology; Kampus ITS Sukolilo Surabaya East Java 60111 Indonesia
| | - Eamor M. Woo
- Department of Chemical Engineering; National Cheng Kung University; Tainan 701 Taiwan
| |
Collapse
|