1
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
2
|
Kirila T, Smirnova A, Razina A, Tenkovtsev A, Filippov A. Influence of Salt on the Self-Organization in Solutions of Star-Shaped Poly-2-alkyl-2-oxazoline and Poly-2-alkyl-2-oxazine on Heating. Polymers (Basel) 2021; 13:1152. [PMID: 33916516 PMCID: PMC8038499 DOI: 10.3390/polym13071152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
The water-salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0-0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.
Collapse
Affiliation(s)
- Tatyana Kirila
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy Pr. 31, 199004 Saint Petersburg, Russia; (A.S.); (A.R.); (A.T.); (A.F.)
| | | | | | | | | |
Collapse
|
3
|
Lee H, Stryutsky A, Mahmood AU, Singh A, Shevchenko VV, Yingling YG, Tsukruk VV. Weakly Ionically Bound Thermosensitive Hyperbranched Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2913-2927. [PMID: 33621461 DOI: 10.1021/acs.langmuir.0c03487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We synthesized novel amphiphilic hyperbranched polymers (HBPs) with variable contents of weakly ionically tethered thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) macrocations in contrast to traditional covalent linking. Their assembling behavior was studied below and above the lower critical solution temperature (LCST). The HBPs underwent a morphological transition under changing temperature and ionic strength due to the LCST transition of PNIPAM and the reduction in the ionization degree of terminal ionic groups, respectively. We suggest that, in contrast to traditional branched polymers, ionically linked PNIPAM macrocations can reversibly disassociate from the sulfonate groups and form mobile coronas, endowing the dynamic micellar morphologies. In addition, assembly at the air-water interface confined PNIPAM macrocations and resulted in the formation of heterogeneous Langmuir-Blodgett (LB) monolayers with diverse surface morphologies for different peripheral compositions with circular domains formed in the condensed state. The HBPs with 25% PNIPAM showed larger and more stable circular domains that were partially preserved at high compression than those of HBPs with 50% PNIPAM. Moreover, the LB monolayers showed variable surface mechanical and surface charge distribution, which can be attributed to net dipole redistribution caused by the behavior of mobile PNIPAM macrocations and core sulfonate groups.
Collapse
Affiliation(s)
- Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandr Stryutsky
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Akhlak-Ul Mahmood
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Valery V Shevchenko
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Zhong Q, Hu N, Mi L, Wang JP, Metwalli E, Bießmann L, Herold C, Yang J, Wu GP, Xu ZK, Cubitt R, Müller-Buschbaum P. Impact of Thermal History on the Kinetic Response of Thermoresponsive Poly(diethylene glycol monomethyl ether methacrylate)- block-poly(poly(ethylene glycol)methyl ether methacrylate) Thin Films Investigated by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6228-6237. [PMID: 32388986 DOI: 10.1021/acs.langmuir.0c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impact of thermal history on the kinetic response of thin thermoresponsive diblock copolymer poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate), abbreviated as PMEO2MA-b-POEGMA300, films is investigated by in situ neutron reflectivity. The PMEO2MA and POEGMA300 blocks are both thermoresponsive polymers with a lower critical solution temperature. Their transition temperatures (TTs) are around 25 °C (TT1, PMEO2MA) and 60 °C (TT2, POEGMA300). Thus, by applying different temperature protocols (20 to 60 or 20 to 40 to 60 °C), the PMEO2MA-b-POEGMA300 thin films experience different thermal histories: the first protocol directly switches from a swollen to a collapsed state, whereas the second one switches first from a swollen to a semicollapsed and finally to a collapsed state. Although the applied thermal histories differ, the response and final state of the collapsed films are very close to each other. After the thermal stimulus, both films present a complicated response composed of an initial shrinkage, followed by a rearrangement. Interestingly, a subsequent reswelling of the collapsed film is only observed in the case of having applied a thermal stimulus of 20 to 40 °C. The normalized film thickness and the D2O amount of each layer in the PMEO2MA-b-POEGMA300 films are consistent at the end of the two different thermal stimuli. Hence, it can be concluded that the thermal history does not influence the final state of the PMEO2MA-b-POEGMA300 films upon heating. Based on this property, these thin films are especially suitable for the temperature switches on the nanoscale, which may experience different thermal histories.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Lei Mi
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Ji-Ping Wang
- Shanghai University of Engineering Science, 333 Long Teng Road, 201620 Shanghai, China
| | - Ezzeldin Metwalli
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Lorenz Bießmann
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christian Herold
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Jing Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
5
|
Tagliabue A, Izzo L, Mella M. Interface Counterion Localization Induces a Switch between Tight and Loose Configurations of Knotted Weak Polyacid Rings despite Intermonomer Coulomb Repulsions. J Phys Chem B 2020; 124:2930-2937. [PMID: 32154720 DOI: 10.1021/acs.jpcb.0c00620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stochastic simulations have been used to investigate the conformational behavior of knotted weak polyacid rings as a function of pH. Different from the commonly expected ionization-repulsion-expansion scheme upon increasing pH, theoretical results suggest a nonmonotonic behavior of the gyration radius Rg2. Polyelectrolyte recontraction at high ionization is induced by the weakening of Coulomb repulsion due to counterions (CIs) localizing at the interphase between the polymer and solvent, and the more marked it appears, the more complex is the knot topology. Compared with strong polyelectrolytic species of identical ionization, weak polyacids present tighter knots due to their ability to localize neutral monomers inside the tangled part. Increasing the solvent Bjerrum length enhances CIs localization, lowering the pH at which polyacids start decreasing their average size. A similar effect is also obtained by increasing the amount of "localizable" cations by adding salts.
Collapse
Affiliation(s)
- Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Universitá degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy
| | - Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita, Universitá degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Universitá degli Studi dell'Insubria, via Valleggio 9, 22100 Como, Italy
| |
Collapse
|
6
|
Lezov A, Gubarev A, Mikhailova M, Lezova A, Mikusheva N, Kalganov V, Dudkina M, Ten’kovtsev A, Nekrasova T, Andreeva L, Saprykina N, Smyslov R, Gorshkova Y, Romanov D, Höppener S, Perevyazko I, Tsvetkov N. Star-Shaped Poly(2-ethyl-2-oxazoline) and Poly(2-isopropyl-2-oxazoline) with Central Thiacalix[4]Arene Fragments: Reduction and Stabilization of Silver Nanoparticles. Polymers (Basel) 2019; 11:E2006. [PMID: 31817077 PMCID: PMC6960741 DOI: 10.3390/polym11122006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/08/2023] Open
Abstract
The interaction of silver nitrate with star-shaped poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) containing central thiacalix[4]arene cores, which proceeds under visible light in aqueous solutions at ambient temperature, was studied. It was found that this process led to the formation of stable colloidal solutions of silver nanoparticles. The kinetics of the formation of the nanoparticles was investigated by the observation of a time-dependent increase in the intensity of the plasmon resonance peak that is related to the nanoparticles and appears in the range of 400 to 700 nm. According to the data of electron and X-ray spectroscopy, scanning and transmission electron microscopy, X-ray diffraction analysis, and dynamic light scattering, the radius of the obtained silver nanoparticles is equal to 30 nm. In addition, the flow birefringence experiments showed that solutions of nanoparticles have high optical shear coefficients.
Collapse
Affiliation(s)
- Alexey Lezov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Alexander Gubarev
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Maria Mikhailova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Alexandra Lezova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Nina Mikusheva
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Vladimir Kalganov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Marina Dudkina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Andrey Ten’kovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Tatyana Nekrasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Larisa Andreeva
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Natalia Saprykina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Ruslan Smyslov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
- Institute of Biomedical Systems and Technologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Yulia Gorshkova
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region, Russia
| | - Dmitriy Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, 199034 St. Petersburg, Russia;
| | - Stephanie Höppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldt Straße 10, 07743 Jena, Germany;
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743 Jena, Germany
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Nikolay Tsvetkov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| |
Collapse
|
7
|
Kirila T, Smirnova A, Filippov A, Razina A, Tenkovtsev A, Filippov A. Thermosensitive star-shaped poly-2-ethyl-2-oxazine. Synthesis, structure characterization, conformation, and self-organization in aqueous solutions. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Tagliabue A, Izzo L, Mella M. Impact of Charge Correlation, Chain Rigidity, and Chemical Specific Interactions on the Behavior of Weak Polyelectrolytes in Solution. J Phys Chem B 2019; 123:8872-8888. [DOI: 10.1021/acs.jpcb.9b06017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy
| | - Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
9
|
Erwin AJ, Lee H, Ge S, Zhao S, Korolovych VF, He H, Matyjaszewski K, Sokolov AP, Tsukruk VV. Viscoelastic properties and ion dynamics in star-shaped polymerized ionic liquids. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
|
11
|
Korolovych VF, Erwin A, Stryutsky A, Lee H, Heller WT, Shevchenko VV, Bulavin LA, Tsukruk VV. Thermally Responsive Hyperbranched Poly(ionic liquid)s: Assembly and Phase Transformations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00845] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Volodymyr F. Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrew Erwin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandr Stryutsky
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William T. Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valery V. Shevchenko
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Leonid A. Bulavin
- Taras Shevchenko
National University of Kyiv, Volodymyrska Str. 64, 01601 Kyiv, Ukraine
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Erwin AJ, Korolovych VF, Iatridi Z, Tsitsilianis C, Ankner JF, Tsukruk VV. Tunable Compartmentalized Morphologies of Multilayered Dual Responsive Star Block Polyampholytes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew J. Erwin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Volodymyr F. Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zacharoula Iatridi
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | | | - John F. Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Mielańczyk A, Kupczak M, Burek M, Mielańczyk Ł, Klymenko O, Wandzik I, Neugebauer D. Functional (mikto)stars and star-comb copolymers from d-gluconolactone derivative: An efficient route for tuning the architecture and responsiveness to stimuli. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Zhou H, Lu Y, Yu Q, Manners I, Winnik MA. Monitoring Collapse of Uniform Cylindrical Brushes with a Thermoresponsive Corona in Water. ACS Macro Lett 2018; 7:166-171. [PMID: 35610913 DOI: 10.1021/acsmacrolett.7b00991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We generated rod-like micelles of uniform length by living crystallization-driven self-assembly of a polyferrocenylsilane (PFS) block copolymer PFS26-b-POEGMA163 in a methanol-ethanol mixture and then transferred these micelles to water. The corona chains consisted of poly(oligoethylene glycol methacrylate) that had a lower critical solution temperature (LCST) of 40.5 °C in water. We used a combination of static (SLS) and dynamic (DLS) multiangle light scattering to determine the dimensions of these cylindrical brush micelles in solution. Measurements carried out in dilute solution in water over a series of temperatures from 23 to 50 °C showed that the collapse transition was broad and continuous, upon both heating and cooling. This response is different from the collapse transition of POEGMA163 homopolymer in water, which occurs over a very narrow temperature range. Thus, we show that the collapse transition of a cylindrical brush has important features in common with the collapse of a brush of thermoresponsive polymers on a planar surface.
Collapse
Affiliation(s)
- Hang Zhou
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yijie Lu
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Qing Yu
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
15
|
Meleshko TK, Ivanova AS, Kashina AV, Ivanov IV, Nekrasova TN, Zakharova NV, Filippov AP, Yakimansky AV. Synthesis of Graft Copolyimides with Poly(N,N-dimethylamino-2-ethyl methacrylate) Side Chains and Hybrid Nanocomposites with Silver Nanoparticles. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090417060045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhulina EB, Borisov OV. Dendritic polyelectrolyte brushes. POLYMER SCIENCE SERIES C 2017. [DOI: 10.1134/s1811238217010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Bercea M, Wolf BA. Viscometry of polyelectrolyte solutions: Star-like versus linear poly[[2-(methacryloyloxy)ethyl] trimethylammonium iodide] and specific salt effects. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Amirova A, Rodchenko S, Milenin S, Tatarinova E, Kurlykin M, Tenkovtsev A, Filippov A. Influence of a hydrophobic core on thermoresponsive behavior of dendrimer-based star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1285-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Pageni P, Kabir MP, Yang P, Tang C. Binding of Cobaltocenium-containing Polyelectrolytes with Anionic Probes. J Inorg Organomet Polym Mater 2017; 27:1100-1109. [PMID: 29097986 PMCID: PMC5662110 DOI: 10.1007/s10904-017-0561-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 11/27/2022]
Abstract
Cationic cobaltocenium-containing polyelectrolytes have a unique ability to form ionic complex with various anionic species. We carried out two sets of model study to compare the relative binding strength of a cobaltocenium-containing polyelectrolyte. First, the nature and relative strength of intermolecular interaction between cobaltocenium-containing polyelectrolytes and different anionic probes were investigated by spectroscopic methods. A dye-displacement method was used to monitor absorbance and fluorescence emissions. Second, the binding strength of this cobaltocenium-containing polyelectrolyte was compared with a classical quaternary ammonium polymer. Formation of polyelectrolyte complex between the cobaltocenium-containing polyelectrolyte and a common anionic polyelectrolyte at various concentrations was examined by optical absorption and light scattering.
Collapse
Affiliation(s)
- Parasmani Pageni
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mohammad Pabel Kabir
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Peng Yang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
21
|
Adjusting the size of multicompartmental containers made of anionic liposomes and polycations by introducing branching and PEO moieties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Kudryavtseva AA, Kurlykin MP, Tarabukina EB, Tenkovtsev AV, Filippov AP. Behavior of thermosensitive graft copolymer with aromatic polyester backbone and poly-2-ethyl-2-oxazoline side chains in aqueous solutions. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1342188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. A. Kudryavtseva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - M. P. Kurlykin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - E. B. Tarabukina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A. V. Tenkovtsev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A. P. Filippov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
23
|
Ivanova AS, Zakharova NV, Filippov AP, Meleshko TK, Yakimansky AV. Effects of concentration and pH on the thermosensitive behavior of a graft copolymer with polyimide backbone and poly(N,N-dimethylamino-2-ethyl methacrylate) side chains. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17030087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Self-assembly of comb-like amphiphilic copolymers in aqueous solution. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Stubbs E, Laskowski E, Conor P, Heinze DA, Karis D, Glogowski EM. Control of pH- and temperature-responsive behavior of mPEG-b-PDMAEMA copolymers through polymer composition. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1282694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Bercea M, Morariu S, Wolf BA. Consequences of linking charged and uncharged monomers to binary copolymers studied in dilute solution. Part I: Viscometric behavior of the homopolymers, the effects of charging, and uncommon salt effects. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Lauber L, Santarelli J, Boyron O, Chassenieux C, Colombani O, Nicolai T. pH- and Thermoresponsive Self-Assembly of Cationic Triblock Copolymers with Controlled Dynamics. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lionel Lauber
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - Julien Santarelli
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - Olivier Boyron
- C2P2
UMR5265 CNRS, LCPP Group, ESCPE Lyon, Université de Lyon, Bat 308, 43
Bd du 11 novembre 1918, 69616 Villeurbanne, France
| | - Christophe Chassenieux
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - Olivier Colombani
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - Taco Nicolai
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| |
Collapse
|
28
|
Korolovych VF, Ledin PA, Stryutsky A, Shevchenko VV, Sobko O, Xu W, Bulavin LA, Tsukruk VV. Assembly of Amphiphilic Hyperbranched Polymeric Ionic Liquids in Aqueous Media at Different pH and Ionic Strength. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Volodymyr F. Korolovych
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petr A. Ledin
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandr Stryutsky
- Institute
of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Valery V. Shevchenko
- Institute
of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Oleh Sobko
- Institute
of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Weinan Xu
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Leonid A. Bulavin
- Taras Shevchenko
National University of Kyiv, Volodymyrska
Str. 64, 01601 Kyiv, Ukraine
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
29
|
Uhlík F, Košovan P, Zhulina EB, Borisov OV. Charge-controlled nano-structuring in partially collapsed star-shaped macromolecules. SOFT MATTER 2016; 12:4846-4852. [PMID: 27140226 DOI: 10.1039/c6sm00109b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrophobic polyelectrolytes exhibit intra-molecular nano-scale self-organization instead of macroscopic phase separation because of the interplay between short-range hydrophobic attraction and long-range electrostatic repulsion. We aim to unravel how the morphology of the intra-molecular nanostructures can be controlled through the topology of the macromolecule on one hand and by adjustable ionization on the other hand. Specifically, we focus on hydrophobic star-branched polyelectrolytes, composed of either strong or weak acidic monomers. While both collapse in a globule when uncharged, and expand to full stretching of arms at high ionization, they exhibit quite different intermediate scenarios. For the strong ones, we observe the formation of bundles of arms as the main structural motif, and for the weak ones the intramolecular micelle-like structure is found at the same overall charge of the macromolecule. Here intramolecular disproportionation leaves some arms in a collapsed virtually neutral core, while others are substantially ionized and stretched in the corona.
Collapse
Affiliation(s)
- Filip Uhlík
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia and St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia
| | - Oleg V Borisov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia and CNRS, UMR 5254 - IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Maériaux, 2 avenue du Président Angot, 64053 Pau, France.
| |
Collapse
|
30
|
Xu W, Ledin PA, Iatridi Z, Tsitsilianis C, Tsukruk VV. Multicompartmental Microcapsules with Orthogonal Programmable Two‐Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angew Chem Int Ed Engl 2016; 55:4908-13. [DOI: 10.1002/anie.201600383] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/08/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Weinan Xu
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| | - Petr A. Ledin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| | | | | | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
31
|
Xu W, Ledin PA, Iatridi Z, Tsitsilianis C, Tsukruk VV. Multicompartmental Microcapsules with Orthogonal Programmable Two‐Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Weinan Xu
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| | - Petr A. Ledin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| | | | | | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
32
|
Li Y, Zheng X, Wu K, Lu M. Synthesis and self-assembly of a dual thermal and pH-responsive ternary graft copolymer for sustained release drug delivery. RSC Adv 2016. [DOI: 10.1039/c5ra23625h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustrations of the self-assembly of TGCs and possible loading and release mechanism.
Collapse
Affiliation(s)
- Yinwen Li
- School of Chemistry & Chemical Engineering
- Linyi University
- Linyi 276000
- PR China
| | - Xiuwen Zheng
- School of Chemistry & Chemical Engineering
- Linyi University
- Linyi 276000
- PR China
| | - Kun Wu
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- PR China
| | - Mangeng Lu
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- PR China
| |
Collapse
|
33
|
Ye C, Malak ST, Hu K, Wu W, Tsukruk VV. Cellulose Nanocrystal Microcapsules as Tunable Cages for Nano- and Microparticles. ACS NANO 2015; 9:10887-10895. [PMID: 26434779 DOI: 10.1021/acsnano.5b03905] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate the fabrication of highly open spherical cages with large through pores using high aspect ratio cellulose nanocrystals with "haystack" shell morphology. In contrast to traditional ultrathin shell polymer microcapsules with random porous morphology and pore sizes below 10 nm with limited molecular permeability of individual macromolecules, the resilient cage-like microcapsules show a remarkable open network morphology that facilitates across-shell transport of large solid particles with a diameter from 30 to 100 nm. Moreover, the transport properties of solid nanoparticles through these shells can be pH-triggered without disassembly of these shells. Such behavior allows for the controlled loading and unloading of solid nanoparticles with much larger dimensions than molecular objects reported for conventional polymeric microcapsules.
Collapse
Affiliation(s)
- Chunhong Ye
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Sidney T Malak
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Kesong Hu
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Weibin Wu
- School of Light Industry Science and Engineering, Nanjing Forestry University , Nanjing, Jiangsu 210037, PR China
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Xu W, Ledin PA, Shevchenko VV, Tsukruk VV. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12570-12596. [PMID: 26010902 DOI: 10.1021/acsami.5b01833] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.
Collapse
Affiliation(s)
- Weinan Xu
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petr A Ledin
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Valery V Shevchenko
- ‡Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkovskoe shosse 48, Kiev 02160, Ukraine
| | - Vladimir V Tsukruk
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Xu W, Ledin PA, Iatridi Z, Tsitsilianis C, Tsukruk VV. Multiresponsive Star-Graft Quarterpolymer Monolayers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Weinan Xu
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Petr A. Ledin
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Zacharoula Iatridi
- Department
of Chemical Engineering, University of Patras, 26504 Patras, Greece
- Institute of Chemical
Engineering Sciences (FORTH/ICE-HT), 26504 Patras, Greece
| | - Constantinos Tsitsilianis
- Department
of Chemical Engineering, University of Patras, 26504 Patras, Greece
- Institute of Chemical
Engineering Sciences (FORTH/ICE-HT), 26504 Patras, Greece
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
36
|
Bekhradnia S, Diget JS, Zinn T, Zhu K, Sande SA, Nyström B, Lund R. Charged Star Diblock Copolymers in Dilute Solutions: Synthesis, Structure, and Chain Conformations. Macromolecules 2015. [DOI: 10.1021/ma502488u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sara Bekhradnia
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Department
of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway
| | - Jakob Stensgaard Diget
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Thomas Zinn
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Kaizheng Zhu
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Sverre Arne Sande
- Department
of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
37
|
Mella M, Mollica L, Izzo L. Influence of charged intramolecular hydrogen bonds in weak polyelectrolytes: A Monte Carlo study of flexible and extendible polymeric chains in solution and near charged spheres. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia; Università degli Studi dell'Insubria; via Valleggio 9 22100 Como (I)
| | - Luca Mollica
- CompuNet, Istituto Italiano di Tecnologia; via Morego, 30 I-16163 Genova Italy
| | - Lorella Izzo
- Dipartimento di Chimica e Biologia; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano (I)
| |
Collapse
|
38
|
Filippov AP, Belyaeva EV, Zakharova NV, Sasina AS, Ilgach DM, Meleshko TK, Yakimansky AV. Double stimuli-responsive behavior of graft copolymer with polyimide backbone and poly(N,N-dimethylaminoethyl methacrylate) side chains. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3441-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
|
40
|
Li Y, Guo H, Zheng J, Gan J, Zhang Y, Guan X, Wu K, Lu M. Synthesis and encapsulation of an amphiphilic thermoresponsive star polymer with β-cyclodextrin and hyperbranched poly(oligo(ethylene glycol)methacrylate) as building blocks. RSC Adv 2014. [DOI: 10.1039/c4ra10407b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustrations of the thermally-induced self-assembly and possible encapsulation behaviors with single or multi-guests for PE-CD–POEGMAS.
Collapse
Affiliation(s)
- Yinwen Li
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Key Laboratory of Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
| | - Huilong Guo
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Key Laboratory of Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
| | - Jian Zheng
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Key Laboratory of Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
| | - Jianqun Gan
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Key Laboratory of Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
| | - Yan Zhang
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Key Laboratory of Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
| | - Xiaoxiao Guan
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Key Laboratory of Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
| | - Kun Wu
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Key Laboratory of Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
| | - Mangeng Lu
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Key Laboratory of Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|