1
|
Deng L, Olea AR, Ortiz-Perez A, Sun B, Wang J, Pujals S, Palmans ARA, Albertazzi L. Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device. SMALL METHODS 2024; 8:e2301072. [PMID: 38348928 DOI: 10.1002/smtd.202301072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Indexed: 10/18/2024]
Abstract
The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Alis R Olea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Ana Ortiz-Perez
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bingbing Sun
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Silvia Pujals
- Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, 08034, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Lorenzo Albertazzi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
2
|
Dykeman-Bermingham PA, Stingaciu LR, Do C, Knight AS. Dynamic Implications of Noncovalent Interactions in Amphiphilic Single-Chain Polymer Nanoparticles. ACS Macro Lett 2024; 13:889-895. [PMID: 38959296 DOI: 10.1021/acsmacrolett.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Single-chain polymer nanoparticles (SCNPs) combine the chemical diversity of synthetic polymers with the intricate structure of biopolymers, generating versatile biomimetic materials. The mobility of polymer chain segments at length scales similar to secondary structural elements in proteins is critical to SCNP structure and thus function. However, the influence of noncovalent interactions used to form SCNPs (e.g., hydrogen-bonding and biomimetic secondary-like structure) on these conformational dynamics is challenging to quantitatively assess. To isolate the effects of noncovalent interactions on SCNP structure and conformational dynamics, we synthesized a series of amphiphilic copolymers containing dimethylacrylamide and monomers capable of forming these different interactions: (1) di(phenylalanine) acrylamide that forms intramolecular β-sheet-like cross-links, (2) phenylalanine acrylamide that forms hydrogen-bonds but lacks a defined local structure, and (3) benzyl acrylamide that has the lowest propensity for hydrogen-bonding. Each SCNP formed folded structures comparable to those of intrinsically disordered proteins, as observed by size exclusion chromatography and small angle neutron scattering. The dynamics of these polymers, as characterized by a combination of dynamic light scattering and neutron spin echo spectroscopy, was well described using the Zimm with internal friction (ZIF) model, highlighting the role of each noncovalent interaction to additively restrict the internal relaxations of SCNPs. These results demonstrate the utility of local scale interactions to control SCNP polymer dynamics, guiding the design of functional biomimetic materials with refined binding sites and tunable kinetics.
Collapse
Affiliation(s)
- Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Laura R Stingaciu
- NScD, SNS, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Changwoo Do
- NScD, SNS, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Dykeman-Bermingham PA, Bogen MP, Chittari SS, Grizzard SF, Knight AS. Tailoring Hierarchical Structure and Rare Earth Affinity of Compositionally Identical Polymers via Sequence Control. J Am Chem Soc 2024; 146:8607-8617. [PMID: 38470430 DOI: 10.1021/jacs.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Macromolecule sequence, structure, and function are inherently intertwined. While well-established relationships exist in proteins, they are more challenging to define for synthetic polymer nanoparticles due to their molecular weight, sequence, and conformational dispersities. To explore the impact of sequence on nanoparticle structure, we synthesized a set of 16 compositionally identical, sequence-controlled polymers with distinct monomer patterning of dimethyl acrylamide and a bioinspired, structure-driving di(phenylalanine) acrylamide (FF). Sequence control was achieved through multiblock polymerizations, yielding unique ensembles of polymer sequences which were simulated by kinetic Monte Carlo simulations. Systematic analysis of the global (tertiary- and quaternary-like) structure in this amphiphilic copolymer series revealed the effect of multiple sequence descriptors: the number of domains, the hydropathy of terminal domains, and the patchiness (density) of FF within a domain, each of which impacted both chain collapse and the distribution of single- and multichain assemblies. Furthermore, both the conformational freedom of chain segments and local-scale, β-sheet-like interactions were sensitive to the patchiness of FF. To connect sequence, structure, and target function, we evaluated an additional series of nine sequence-controlled copolymers as sequestrants for rare earth elements (REEs) by incorporating a functional acrylic acid monomer into select polymer scaffolds. We identified key sequence variables that influence the binding affinity, capacity, and selectivity of the polymers for REEs. Collectively, these results highlight the potential of and boundaries of sequence control via multiblock polymerizations to drive primary sequence ensembles hierarchical structures, and ultimately the functionality of compositionally identical polymeric materials.
Collapse
Affiliation(s)
- Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew P Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Savannah F Grizzard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Wijker S, Palmans ARA. Protein-Inspired Control over Synthetic Polymer Folding for Structured Functional Nanoparticles in Water. Chempluschem 2023; 88:e202300260. [PMID: 37417828 DOI: 10.1002/cplu.202300260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The folding of proteins into functional nanoparticles with defined 3D structures has inspired chemists to create simple synthetic systems mimicking protein properties. The folding of polymers into nanoparticles in water proceeds via different strategies, resulting in the global compaction of the polymer chain. Herein, we review the different methods available to control the conformation of synthetic polymers and collapse/fold them into structured, functional nanoparticles, such as hydrophobic collapse, supramolecular self-assembly, and covalent cross-linking. A comparison is made between the design principles of protein folding to synthetic polymer folding and the formation of structured nanocompartments in water, highlighting similarities and differences in design and function. We also focus on the importance of structure for functional stability and diverse applications in complex media and cellular environments.
Collapse
Affiliation(s)
- Stefan Wijker
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Wijker S, Deng L, Eisenreich F, Voets IK, Palmans ARA. En Route to Stabilized Compact Conformations of Single-Chain Polymeric Nanoparticles in Complex Media. Macromolecules 2022; 55:6220-6230. [PMID: 35910311 PMCID: PMC9330768 DOI: 10.1021/acs.macromol.2c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Precise control over the folding pathways of polypeptides using a combination of noncovalent and covalent interactions has evolved into a wide range of functional proteins with a perfectly defined 3D conformation. Inspired hereby, we develop a series of amphiphilic copolymers designed to form compact, stable, and structured single-chain polymeric nanoparticles (SCPNs) of defined size, even in competitive conditions. The SCPNs are formed through a combination of noncovalent interactions (hydrophobic and hydrogen-bonding interactions) and covalent intramolecular cross-linking using a light-induced [2 + 2] cycloaddition. By comparing different self-assembly pathways of the nanoparticles, we show that, like for proteins in nature, the order of events matters. When covalent cross-links are formed prior to the folding via hydrophobic and supramolecular interactions, larger particles with less structured interiors are formed. In contrast, when the copolymers first fold via hydrophobic and hydrogen-bonding interactions into compact conformations, followed by covalent cross-links, good control over the size of the SCPNs and microstructure of the hydrophobic interior is achieved. Such a structured SCPN can stabilize the solvatochromic dye benzene-1,3,5-tricarboxamide-Nile Red via molecular recognition for short periods of time in complex media, while showing slow exchange dynamics with the surrounding complex media at longer time scales. The SCPNs show good biocompatibility with cells and can carry cargo into the lysosomal compartments of the cells. Our study highlights the importance of control over the folding pathway in the design of stable SCPNs, which is an important step forward in their application as noncovalent drug or catalyst carriers in biological settings.
Collapse
Affiliation(s)
- Stefan Wijker
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Linlin Deng
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Fabian Eisenreich
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Department of Chemical Engineering
and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Deng L, Albertazzi L, Palmans ARA. Elucidating the Stability of Single-Chain Polymeric Nanoparticles in Biological Media and Living Cells. Biomacromolecules 2022; 23:326-338. [PMID: 34904821 PMCID: PMC8753603 DOI: 10.1021/acs.biomac.1c01291] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Indexed: 11/29/2022]
Abstract
The controlled folding of synthetic polymer chains into single-chain polymeric nanoparticles (SCPNs) of defined size and shape in water is a viable way to create compartmentalized, nanometer-sized structures for a range of biological applications. Understanding the relationship between the polymer's microstructure and the stability of folded structures is crucial to achieving desired applications. Here, we introduce the solvatochromic dye Nile red into SCPNs and apply a combination of spectroscopic and microscopic techniques to relate polymer microstructure to nanoparticle stability in complex biological media and cellular environments. Our experimental data show that the polymer's microstructure has little effect on the stability of SCPNs in biological media and cytoplasm of living cells, but only SCPNs comprising supramolecular benzene-1,3,5-tricarboxamide (BTA) motifs showed good stability in lysosomes. The results indicate that the polymer's microstructure is vital to ensure nanoparticle stability in highly competitive environments: both hydrophobic collapse and a structured interior are required. Our study provides an accessible way of probing the stability of SCPNs in cellular environments and paves the way for designing highly stable SCPNs for efficient bio-orthogonal catalysis and sensing applications.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory
for Macromolecular and Organic Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Molecular
Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Laboratory
for Macromolecular and Organic Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
8
|
Kalmer H, Sbordone F, Frisch H. Peptide based folding and function of single polymer chains. Polym Chem 2022. [DOI: 10.1039/d2py00717g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular synthetic strategy to fold single polymer chains upon deprotection of pendent cysteine terminal peptides is reported. The one step deprotection initiates both folding and catalytic activity of the macromolecular architectures.
Collapse
Affiliation(s)
- Henrik Kalmer
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Federica Sbordone
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
9
|
Warren JL, Dykeman-Bermingham PA, Knight AS. Controlling Amphiphilic Polymer Folding beyond the Primary Structure with Protein-Mimetic Di(Phenylalanine). J Am Chem Soc 2021; 143:13228-13234. [PMID: 34375094 PMCID: PMC9362848 DOI: 10.1021/jacs.1c05659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While methods for polymer synthesis have proliferated, their functionality pales in comparison to natural biopolymers-strategies are limited for building the intricate network of noncovalent interactions necessary to elicit complex, protein-like functions. Using a bioinspired di(phenylalanine) acrylamide (FF) monomer, we explored the impact of various noncovalent interactions in generating ordered assembled structures. Amphiphilic copolymers were synthesized that exhibit β-sheet-like local structure upon collapsing into single-chain assemblies in aqueous environments. Systematic analysis of a series of amphiphilic copolymers illustrated that the global collapse is primarily driven by hydrophobic forces. Hydrogen-bonding and aromatic interactions stabilize local structure, as β-sheet-like interactions were identified via circular dichroism and thioflavin T fluorescence. Similar analysis of phenylalanine (F) and alanine-phenylalanine acrylamide (AF) copolymers found that distancing the aromatic residue from the polymer backbone is sufficient to induce β-sheet-like local structure akin to the FF copolymers; however, the interactions between AF subunits are less stable than those formed by FF. Further, hydrogen-bond donating hydrophilic monomers disrupt internal structure formed by FF within collapsed assemblies. Collectively, these results illuminate design principles for the facile incorporation of multiple facets of protein-mimetic, higher-order structure within folded synthetic polymers.
Collapse
Affiliation(s)
- Jacqueline L Warren
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Brás A, Arizaga A, Agirre U, Dorau M, Houston J, Radulescu A, Kruteva M, Pyckhout-Hintzen W, Schmidt AM. Chain-End Effects on Supramolecular Poly(ethylene glycol) Polymers. Polymers (Basel) 2021; 13:2235. [PMID: 34300992 PMCID: PMC8309292 DOI: 10.3390/polym13142235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass Me is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups: thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively. These observations are concomitant with an increase of the Flory-Huggins interaction parameter from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types. The upy association into spherical clusters is established by the Percus-Yevick approximation that models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed network. Moreover, a second relaxation time of different nature is also obtained from the complex shear modulus measurements of PEG-upy by the inverse of the angular frequency where G' and G'' crosses from the network-like to glass-like transition relaxation time, which is related to the segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much slower than the ones for PEG-thy/dat. However, the activation energy related to the association dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics, the glass transition temperature obtained from both rheological and calorimetric analysis is similar and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our results show how supramolecular PEG properties vary by modifying the H-bonding association type and changing the molecular Flory-Huggins interaction parameter, which can be further explored for possible applications.
Collapse
Affiliation(s)
- Ana Brás
- Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany; (A.A.); (U.A.); (M.D.); (A.M.S.)
| | - Ana Arizaga
- Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany; (A.A.); (U.A.); (M.D.); (A.M.S.)
| | - Uxue Agirre
- Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany; (A.A.); (U.A.); (M.D.); (A.M.S.)
| | - Marie Dorau
- Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany; (A.A.); (U.A.); (M.D.); (A.M.S.)
| | - Judith Houston
- Jülich Centre for Neutron Science (JCNS-1) at Heinz Maier Leibnitz-Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85748 Garching, Germany; (J.H.); (A.R.)
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS-1) at Heinz Maier Leibnitz-Zentrum (MLZ), Forschungszentrum Jülich GmbH, 85748 Garching, Germany; (J.H.); (A.R.)
| | - Margarita Kruteva
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (M.K.); (W.P.-H.)
| | - Wim Pyckhout-Hintzen
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (M.K.); (W.P.-H.)
| | - Annette M. Schmidt
- Institute of Physical Chemistry, University of Cologne, 50939 Cologne, Germany; (A.A.); (U.A.); (M.D.); (A.M.S.)
| |
Collapse
|
11
|
Neal T, Parnell AJ, King SM, Beattie DL, Murray MW, Williams NSJ, Emmett SN, Armes SP, Spain SG, Mykhaylyk OO. Control of Particle Size in the Self-Assembly of Amphiphilic Statistical Copolymers. Macromolecules 2021; 54:1425-1440. [PMID: 33583958 PMCID: PMC7879426 DOI: 10.1021/acs.macromol.0c02341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Indexed: 11/29/2022]
Abstract
A range of amphiphilic statistical copolymers is synthesized where the hydrophilic component is either methacrylic acid (MAA) or 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the hydrophobic component comprises methyl, ethyl, butyl, hexyl, or 2-ethylhexyl methacrylate, which provide a broad range of partition coefficients (log P). Small-angle X-ray scattering studies confirm that these amphiphilic copolymers self-assemble to form well-defined spherical nanoparticles in an aqueous solution, with more hydrophobic copolymers forming larger nanoparticles. Varying the nature of the alkyl substituent also influenced self-assembly with more hydrophobic comonomers producing larger nanoparticles at a given copolymer composition. A model based on particle surface charge density (PSC model) is used to describe the relationship between copolymer composition and nanoparticle size. This model assumes that the hydrophilic monomer is preferentially located at the particle surface and provides a good fit to all of the experimental data. More specifically, a linear relationship is observed between the surface area fraction covered by the hydrophilic comonomer required to achieve stabilization and the log P value for the hydrophobic comonomer. Contrast variation small-angle neutron scattering is used to study the internal structure of these nanoparticles. This technique indicates partial phase separation within the nanoparticles, with about half of the available hydrophilic comonomer repeat units being located at the surface and hydrophobic comonomer-rich cores. This information enables a refined PSC model to be developed, which indicates the same relationship between the surface area fraction of the hydrophilic comonomer and the log P of the hydrophobic comonomer repeat units for the anionic (MAA) and cationic (DMAEMA) comonomer systems. This study demonstrates how nanoparticle size can be readily controlled and predicted using relatively ill-defined statistical copolymers, making such systems a viable attractive alternative to diblock copolymer nanoparticles for a range of industrial applications.
Collapse
Affiliation(s)
- Thomas
J. Neal
- Department
of Chemistry, The University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K.
| | - Andrew J. Parnell
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Sheffield S3 7RH, U.K.
| | - Stephen M. King
- ISIS
Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, U.K.
| | - Deborah L. Beattie
- Department
of Chemistry, The University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K.
| | - Martin W. Murray
- AkzoNobel
Decorative Paints, Wexham
Road, Slough, Berkshire SL2 5DS, U.K.
| | | | - Simon N. Emmett
- AkzoNobel
Decorative Paints, Wexham
Road, Slough, Berkshire SL2 5DS, U.K.
| | - Steven P. Armes
- Department
of Chemistry, The University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K.
| | - Sebastian G. Spain
- Department
of Chemistry, The University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K.
| | - Oleksandr O. Mykhaylyk
- Department
of Chemistry, The University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K.
| |
Collapse
|
12
|
Abdouni Y, Ter Huurne GM, Yilmaz G, Monaco A, Redondo-Gómez C, Meijer EW, Palmans ARA, Becer CR. Self-Assembled Multi- and Single-Chain Glyconanoparticles and Their Lectin Recognition. Biomacromolecules 2020; 22:661-670. [PMID: 33373527 DOI: 10.1021/acs.biomac.0c01486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe the physicochemical characterization of amphiphilic glycopolymers synthesized via copper(0)-mediated reversible-deactivation radical polymerization (Cu-RDRP). Depending on the chemical composition of the polymer, these glycopolymers are able to form multi-chain or single-chain polymeric nanoparticles. The folding of these polymers is first of all driven by the amphiphilicity of the glycopolymers and furthermore by the supramolecular formation of helical supramolecular stacks of benzene-1,3,5-tricarboxamides (BTAs) stabilized by threefold hydrogen bonding. The obtained polymeric nanoparticles were subsequently evaluated for their lectin-binding affinity toward a series of mannose- and galactose-binding lectins via surface plasmon resonance. We found that addition of 2-ethylhexyl acrylate to the polymer composition results in compact particles, which translates to a reduction in binding affinity, whereas with the addition of BTAs, the relation between the nature of the particle and the binding ability system becomes more unpredictable.
Collapse
Affiliation(s)
- Yamin Abdouni
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - Gijs M Ter Huurne
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Gokhan Yilmaz
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alessandra Monaco
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Carlos Redondo-Gómez
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - C Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
13
|
Chen R, Berda EB. 100th Anniversary of Macromolecular Science Viewpoint: Re-examining Single-Chain Nanoparticles. ACS Macro Lett 2020; 9:1836-1843. [PMID: 35653673 DOI: 10.1021/acsmacrolett.0c00774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single-chain nanoparticles (SCNP) are a class of polymeric nanoparticles obtained from the intramolecular cross-linking of polymers bearing reactive pendant groups. The development of SCNP has drawn tremendous attention since the fabrication of SCNP mimics the self-folding behavior in natural biomacromolecules and is highly desirable for a variety of applications ranging from catalysis, nanomedicine, nanoreactors, and sensors. The versatility of novel chemistries available for SCNP synthesis has greatly expanded over the past decade. Significant progress was also made in the understanding of a structure-property relationship in the single-chain folding process. In this Viewpoint, we discuss the effect of precursor polymer topology on single polymer folding. We summarize the progress in SCNP of complex architectures and highlight unresolved issues in the field, such as scalability and topological purity of SCNP.
Collapse
|
14
|
Robles-Hernández B, González E, Pomposo JA, Colmenero J, Alegría Á. Water dynamics and self-assembly of single-chain nanoparticles in concentrated solutions. SOFT MATTER 2020; 16:9738-9745. [PMID: 32996537 DOI: 10.1039/d0sm01447h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-chain polymer nanoparticles (SCNPs) are soft nano-objects consisting of uni-macromolecular chains collapsed to a certain degree by intramolecular crosslinking. The similarities between the behaviour of SCNPs and that of intrinsically disordered proteins suggest that SCNPs in concentrated solutions can be used as models to design artificial micro-environments, which mimic many of the general aspects of cellular environments. In this work, the self-assembly into SCNPs of an amphiphilic random copolymer, composed by oligo(ethylene glycol)methyl ether methacrylate (OEGMA) and 2-acetoacetoxy ethyl methacrylate (AEMA), has been investigated by means of the dielectric relaxation of water. Direct evidence of segregation of the AEMA repeating units is provided by comparison with the dielectric relaxation of water in similar solutions of the linear hydrophilic polymer, P(OEGMA). Furthermore, the results of comparative studies with similar water solutions of an amphiphilic block copolymer forming multi-chain micelles support the single-chain character of the self-assembly of the random copolymer. The overall obtained results highlight the suitability of the dielectric spectroscopy to confirm the self-assembly of the amphiphilic random copolymers into globular like core-shell single-chain nanoparticles at a concentration well above the overlap concentration.
Collapse
Affiliation(s)
- Beatriz Robles-Hernández
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain.
| | | | | | | | | |
Collapse
|
15
|
Huang SY, Cheng CC. Spontaneous Self-Assembly of Single-Chain Amphiphilic Polymeric Nanoparticles in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2006. [PMID: 33053654 PMCID: PMC7601091 DOI: 10.3390/nano10102006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
Single-chain polymeric nanoparticles (SCPNs) have great potential as functional nanocarriers for drug delivery and bioimaging, but synthetic challenges in terms of final yield and purification procedures limit their use. A new concept to modify and improve the synthetic procedures used to generate water-soluble SCPNs through amphiphilic interactions has been successfully exploited. We developed a new ultrahigh molecular weight amphiphilic polymer containing a hydrophobic poly(epichlorohydrin) backbone and hydrophilic poly(ethylene glycol) side chains. The polymer spontaneously self-assembles into SCPNs in aqueous solution and does not require subsequent purification. The resulting SCPNs possess a number of distinct physical properties, including a uniform hydrodynamic nanoparticle diameter of 10-15 nm, extremely low viscosity and a desirable spherical-like morphology. Concentration-dependent studies demonstrated that stable SCPNs were formed at high concentrations up to 10 mg/mL in aqueous solution, with no significant increase in solution viscosity. Importantly, the SCPNs exhibited high structural stability in media containing serum or phosphate-buffered saline and showed almost no change in hydrodynamic diameter. The combination of these characteristics within a water-soluble SCPN is highly desirable and could potentially be applied in a wide range of biomedical fields. Thus, these findings provide a path towards a new, innovative route for the development of water-soluble SCPNs.
Collapse
Affiliation(s)
- Shan-You Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
16
|
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020; 25:E3731. [PMID: 32824172 PMCID: PMC7464532 DOI: 10.3390/molecules25163731] [Citation(s) in RCA: 518] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles (NPs) are particles within the size range from 1 to 1000 nm and can be loaded with active compounds entrapped within or surface-adsorbed onto the polymeric core. The term "nanoparticle" stands for both nanocapsules and nanospheres, which are distinguished by the morphological structure. Polymeric NPs have shown great potential for targeted delivery of drugs for the treatment of several diseases. In this review, we discuss the most commonly used methods for the production and characterization of polymeric NPs, the association efficiency of the active compound to the polymeric core, and the in vitro release mechanisms. As the safety of nanoparticles is a high priority, we also discuss the toxicology and ecotoxicology of nanoparticles to humans and to the environment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Filipa Carreiró
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Ana M. Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Andreia Neves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Bárbara Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - D. Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643 001, Tamil Nadu, India;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60–355 Poznań, Poland;
| | - Amélia M. Silva
- Department of Biology and Environment, University of Tras-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
18
|
Frisch H, Tuten BT, Barner‐Kowollik C. Macromolecular Superstructures: A Future Beyond Single Chain Nanoparticles. Isr J Chem 2020. [DOI: 10.1002/ijch.201900145] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hendrik Frisch
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
| | - Bryan T. Tuten
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
| | - Christopher Barner‐Kowollik
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie KarlsruheInstitute of Technology (KIT) Engesserstr.18 76131 Karlsruhe Germany
| |
Collapse
|
19
|
Shin I, Seo M. Viscosifying a Noncovalently Joined Polymer Nanoparticle Solution upon Heating. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isaac Shin
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Myungeun Seo
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Department of Chemistry, KAIST, Daejeon 34141, Korea
- KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
20
|
Nitsche T, Blanksby SJ, Blinco JP, Barner-Kowollik C. Pushing the limits of single chain compaction analysis by observing specific size reductions via high resolution mass spectrometry. Polym Chem 2020. [DOI: 10.1039/c9py01910c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we push the limits of single chain nanoparticle analysis to directly observe the specific compaction of defined single chains dependent on the number of compaction steps.
Collapse
Affiliation(s)
- Tobias Nitsche
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Stephen J. Blanksby
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Central Analytical Research Facility
| | - James P. Blinco
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| |
Collapse
|
21
|
Klein T, Gruschwitz FV, Rogers S, Hoeppener S, Nischang I, Brendel JC. The influence of directed hydrogen bonds on the self-assembly of amphiphilic polymers in water. J Colloid Interface Sci 2019; 557:488-497. [PMID: 31541918 DOI: 10.1016/j.jcis.2019.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Molecules forming directed intermolecular hydrogen bonds, such as the well-known benzene-1,3,5-tricarboxamides (BTA) motif, are known to self-assemble into long fibrous structures. However, only a few of these systems have so far demonstrated the ability to form such anisotropic nanostructures, if they are combined with hydrophilic polymers to create an amphiphilic material. Here, we designed BTA-polymer conjugates to investigate whether the directionality of the hydrogen bonds or the ratio of hydrophobic to hydrophilic parts of the molecule, and thus the packing parameter, is decisive for obtaining anisotropic supramolecular structures in water. EXPERIMENTS Poly(ethylene glycol) was conjugated to BTA moieties with varying lengths of hydrophobic alkyl spacers ranging from two to twelve methylene units. The resulting amphiphilic materials were characterized in aqueous solution by light and small-angle neutron scattering, analytical ultracentrifugation, and cryo-transmission electron microscopy. FINDINGS While spherical micelles were observed for C6 and C10 alkyl spacers, anisotropic structures were only present in case of the C12 spacer. The comparison to an analogous material, which lacks the directed hydrogen bonds, revealed that the BTA motif cannot provide a sufficient driving force to induce anisotropic structures, but increases the packing density in the hydrophobic part. Therefore, the packing parameter governs the appearance of anisotropic aggregates.
Collapse
Affiliation(s)
- Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Sarah Rogers
- ISIS Neutron Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
22
|
Guazzelli E, Martinelli E, Galli G, Cupellini L, Jurinovich S, Mennucci B. Single-chain self-folding in an amphiphilic copolymer: An integrated experimental and computational study. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Lombardo D, Munaò G, Calandra P, Pasqua L, Caccamo MT. Evidence of pre-micellar aggregates in aqueous solution of amphiphilic PDMS-PEO block copolymer. Phys Chem Chem Phys 2019; 21:11983-11991. [PMID: 31134980 DOI: 10.1039/c9cp02195g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly process in a water solution of an amphiphilic polydimethylsiloxane-b-polyethyleneoxide (PDMS-PEO) diblock copolymer was investigated by means of small-angle X-ray scattering (SAXS) experiments in the concentration region below (and near) the critical micellar concentration (c.m.c. = 0.007 g cm-3). In the highly diluted region, at the copolymer concentration of c = 0.002 g cm-3, the early stage of the self-assembly process was characterized by the formation of small (primary) micellar units (with a radius of R = 2.7 nm) with core-shell morphology, which coexisted with larger supramolecular aggregates of entangled micelles (with an average radius of R = 9.5 nm). The increase in the copolymer concentration (to c = 0.005 and c = 0.01 g cm-3) caused increase in the sizes of both the small micelles and supra-micellar aggregates. Interestingly, at the concentration of c = 0.005 g cm-3, both the size and micelle aggregation number (Nagg) were found to increase on increasing the temperature in the range of 10 ≤ T ≤ 55 °C. This phenomenon was characterised by the dehydration process of the ethylene oxide (EO) segments, as evidenced by the calculation of excess water in the hydrophilic shell of the micelles. The more compact (less hydrated) structure of the hydrophilic PEO chains, which strongly influenced the spontaneous curvature of the amphiphile hydrophilic region, turned out to be the driving factor that favoured the increase in the micelle aggregation number with the increase in temperature. The obtained results evidence that the self-assembly process of PDMS-PEO copolymer amphiphiles is a gradual process that is already present at the very low concentration region (far below the macroscopically determined c.m.c.); moreover, it is characterised by a multi-stage organization process, where the primary building blocks self-assemble into more complex secondary structures that encompass multiple length scales.
Collapse
Affiliation(s)
- Domenico Lombardo
- CNR-IPCF, Istituto per i Processi Chimico Fisici - (Sez. Messina) Viale, F. Stagno D'Alcontres, 37, I-98158, Messina, Italy.
| | | | | | | | | |
Collapse
|
24
|
Engelke J, Brandt J, Barner-Kowollik C, Lederer A. Strengths and limitations of size exclusion chromatography for investigating single chain folding – current status and future perspectives. Polym Chem 2019. [DOI: 10.1039/c9py00336c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthetic approaches for Single-Chain Nanoparticles (SCNPs) developed rapidly during the last decade, opening a multitude of avenues for the design of functional macromolecular chains able to collapse into defined nanoparticles. However, the analytical evaluation of the SCNP formation process still requires critical improvements.
Collapse
Affiliation(s)
- Johanna Engelke
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Technische Universität Dresden
| | - Josef Brandt
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Albena Lederer
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Technische Universität Dresden
| |
Collapse
|
25
|
Elacqua E, Geberth GT, Vanden Bout DA, Weck M. Synthesis and folding behaviour of poly( p-phenylene vinylene)-based β-sheet polychromophores. Chem Sci 2018; 10:2144-2152. [PMID: 30881638 PMCID: PMC6385485 DOI: 10.1039/c8sc05111a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022] Open
Abstract
This contribution describes the design and synthesis of β-sheet-mimicking synthetic polymers comprising distinct poly(p-phenylene vinylene) (PPV) and poly(norbornene) (PNB) backbones with multiple turns.
This contribution describes the design and synthesis of β-sheet-mimicking synthetic polymers comprising distinct poly(p-phenylene vinylene) (PPV) and poly(norbornene) (PNB) backbones with multiple turns. The rod–coil–coil–rod tetrablock copolymers, synthesized using ring-opening metathesis polymerization (ROMP) and featuring orthogonal face-to-face π–π stacking and phenyl/perfluorophenyl interactions, show persistent folding both in bulk and at the single molecule level, irrespective of the number of β-turns. Single molecule polarization studies reveal that the copolymers are more anisotropic than the corresponding homopolymers. Examination of the spectral signatures of the single molecules shows a dominant emissive chromophore in the linked materials compared to the homopolymer. The lack of significant spectral changes of the folded materials along with the existence of a dominant emission spectrum supports the proposed structure of well-aligned, minimally-interacting chromophores. Utilization of this reliably folding, phenyl/perfluorophenyl functionality could provide an extremely useful tool in future functional materials design.
Collapse
Affiliation(s)
- Elizabeth Elacqua
- Molecular Design Institute , Department of Chemistry , New York University , New York , NY 10003 , USA . .,Department of Chemistry , The Pennsylvania State University , University Park , PA 16802 , USA
| | - Geoffrey T Geberth
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712 , USA .
| | - David A Vanden Bout
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712 , USA .
| | - Marcus Weck
- Molecular Design Institute , Department of Chemistry , New York University , New York , NY 10003 , USA .
| |
Collapse
|
26
|
Huurne GM, Vantomme G, Bersselaar BWL, Thota BNS, Voets IK, Palmans ARA, Meijer EW. The effect of dendritic pendants on the folding of amphiphilic copolymers via supramolecular interactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gijs M. Huurne
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic ChemistryEindhoven University of Technology P.O. Box 513 5600 MB, 5600, Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic ChemistryEindhoven University of Technology P.O. Box 513 5600 MB, 5600, Eindhoven The Netherlands
| | - Bart W. L. Bersselaar
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic ChemistryEindhoven University of Technology P.O. Box 513 5600 MB, 5600, Eindhoven The Netherlands
| | - Bala N. S. Thota
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic ChemistryEindhoven University of Technology P.O. Box 513 5600 MB, 5600, Eindhoven The Netherlands
| | - Ilja K. Voets
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic ChemistryEindhoven University of Technology P.O. Box 513 5600 MB, 5600, Eindhoven The Netherlands
| | - Anja R. A. Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic ChemistryEindhoven University of Technology P.O. Box 513 5600 MB, 5600, Eindhoven The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic ChemistryEindhoven University of Technology P.O. Box 513 5600 MB, 5600, Eindhoven The Netherlands
| |
Collapse
|
27
|
Kröger APP, Paulusse JMJ. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J Control Release 2018; 286:326-347. [PMID: 30077737 DOI: 10.1016/j.jconrel.2018.07.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022]
Abstract
As a relatively new class of materials, single-chain polymer nanoparticles (SCNPs) just entered the field of (biomedical) applications, with recent advances in polymer science enabling the formation of bio-inspired nanosized architectures. Exclusive intramolecular collapse of individual polymer chains results in individual nanoparticles. With sizes an order of magnitude smaller than conventional polymer nanoparticles, SCNPs are in the size regime of many proteins and viruses (1-20 nm). Multifaceted syntheses and design strategies give access to a wide set of highly modular SCNP materials. This review describes how SCNPs have been rendered water-soluble and highlights ongoing research efforts towards biocompatible SCNPs with tunable properties for controlled drug delivery, targeted imaging and protein mimicry.
Collapse
Affiliation(s)
- A Pia P Kröger
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M J Paulusse
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
28
|
Oyarzún B, Mognetti BM. Programming configurational changes in systems of functionalised polymers using reversible intramolecular linkages. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1503745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bernardo Oyarzún
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| | - Bortolo Matteo Mognetti
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| |
Collapse
|
29
|
Martinelli E, Guazzelli E, Galli G, Telling MTF, Poggetto GD, Immirzi B, Domenici F, Paradossi G. Prolate and Temperature-Responsive Self-Assemblies of Amphiphilic Random Copolymers with Perfluoroalkyl and Polyoxyethylene Side Chains in Solution. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Mark T. F. Telling
- STFC Rutherford Appleton Laboratory; Chilton OX11 0QX UK
- Department of Materials; University of Oxford; Parks Road Oxford UK
| | | | - Barbara Immirzi
- Istituto per i Polimeri Compositi e Biomateriali; CNR; 80078 Pozzuoli Italy
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; 000133 Roma Italy
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; 000133 Roma Italy
| |
Collapse
|
30
|
Oyarzún B, Mognetti BM. Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles. J Chem Phys 2018; 148:114110. [PMID: 29566497 DOI: 10.1063/1.5020158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We present a new simulation technique to study systems of polymers functionalized by reactive sites that bind/unbind forming reversible linkages. Functionalized polymers feature self-assembly and responsive properties that are unmatched by the systems lacking selective interactions. The scales at which the functional properties of these materials emerge are difficult to model, especially in the reversible regime where such properties result from many binding/unbinding events. This difficulty is related to large entropic barriers associated with the formation of intra-molecular loops. In this work, we present a simulation scheme that sidesteps configurational costs by dedicated Monte Carlo moves capable of binding/unbinding reactive sites in a single step. Cross-linking reactions are implemented by trial moves that reconstruct chain sections attempting, at the same time, a dimerization reaction between pairs of reactive sites. The model is parametrized by the reaction equilibrium constant of the reactive species free in solution. This quantity can be obtained by means of experiments or atomistic/quantum simulations. We use the proposed methodology to study the self-assembly of single-chain polymeric nanoparticles, starting from flexible precursors carrying regularly or randomly distributed reactive sites. We focus on understanding differences in the morphology of chain nanoparticles when linkages are reversible as compared to the well-studied case of irreversible reactions. Intriguingly, we find that the size of regularly functionalized chains, in good solvent conditions, is non-monotonous as a function of the degree of functionalization. We clarify how this result follows from excluded volume interactions and is peculiar of reversible linkages and regular functionalizations.
Collapse
Affiliation(s)
- Bernardo Oyarzún
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium
| | - Bortolo Matteo Mognetti
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium
| |
Collapse
|
31
|
Martinelli E, Annunziata L, Guazzelli E, Pucci A, Biver T, Galli G. The Temperature-Responsive Nanoassemblies of Amphiphilic Random Copolymers Carrying Poly(siloxane) and Poly(oxyethylene) Pendant Chains. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Luisa Annunziata
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Tarita Biver
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| |
Collapse
|
32
|
Ji X, Zhang Y, Zhao H. Amphiphilic Janus Twin Single-Chain Nanoparticles. Chemistry 2018; 24:3005-3012. [DOI: 10.1002/chem.201705487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaotian Ji
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; P. R. China
| | - Yue Zhang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; P. R. China
| |
Collapse
|
33
|
Zhou Y, Qu Y, Yu Q, Chen H, Zhang Z, Zhu X. Controlled synthesis of diverse single-chain polymeric nanoparticles using polymers bearing furan-protected maleimide moieties. Polym Chem 2018. [DOI: 10.1039/c8py00481a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study is devoted to the control fabrication of SCNPs from the same precursor and exploring the surface properties of SCNP-made films.
Collapse
Affiliation(s)
- Yu Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
34
|
Ślęczkowski ML, Meijer EW, Palmans ARA. Cooperative Folding of Linear Poly(dimethyl siloxane)s via Supramolecular Interactions. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/22/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Marcin L. Ślęczkowski
- Laboratory of Macromolecular and Organic Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic Chemistry; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
35
|
Ter Huurne GM, de Windt LNJ, Liu Y, Meijer EW, Voets IK, Palmans ARA. Improving the Folding of Supramolecular Copolymers by Controlling the Assembly Pathway Complexity. Macromolecules 2017; 50:8562-8569. [PMID: 29151619 PMCID: PMC5688411 DOI: 10.1021/acs.macromol.7b01769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/27/2017] [Indexed: 12/20/2022]
Abstract
![]()
A family of amphiphilic,
heterograft copolymers containing hydrophilic,
hydrophobic, and supramolecular units based on Jeffamine M-1000, dodecylamine,
and benzene-1,3,5-tricarboxamide (BTA) motifs, respectively, was prepared
via a postfunctionalization approach. The folding of the copolymers
in water into nanometer-sized particles was analyzed by a combination
of dynamic and static light scattering, circular dichroism spectroscopy,
and small-angle neutron scattering. The sample preparation protocol
was crucial for obtaining reproducible and consistent results, showing
that only full control over the structure and pathway complexity will
afford the desired folded structure, a phenomenon similar to protein
folding. The results revealed that relatively small changes in the
polymer’s graft composition strongly affected the intra- versus
intermolecular assembly processes. Depending on the amount of the
hydrophobic grafts based on either dodecyl or BTA groups, pronounced
behavioral differences were observed for copolymers that comprise
similar degrees of hydrophobic content. A high number of BTA grafts
(>10%) resulted in the formation of multichain aggregates comprising
around six polymer chains. In contrast, for copolymers comprising
up to 10% BTA grafts the folding results in nanoparticles that adopt
open, sparse conformations and comprise one to two polymer chains.
Interestingly, predominantly single-chain polymeric nanoparticles
were formed when the copolymer comprised only Jeffamine or Jeffamine
and dodecyl grafts. In addition, replacing part of the BTA grafts
by hydrophobic dodecyl grafts while keeping the hydrophobic content
constant promoted single-chain folding and resulted in the formation
of a compact, globular nanoparticle with a more structured interior.
Thus, the intra- and intermolecular self-assembly pathways can be
directed by carefully tuning the polymer’s hydrophilic–hydrophobic
balance in combination with the number of supramolecular grafts.
Collapse
Affiliation(s)
- Gijs M Ter Huurne
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lafayette N J de Windt
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yiliu Liu
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K Voets
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
36
|
Elacqua E, Manning KB, Lye DS, Pomarico SK, Morgia F, Weck M. Supramolecular Multiblock Copolymers Featuring Complex Secondary Structures. J Am Chem Soc 2017; 139:12240-12250. [DOI: 10.1021/jacs.7b06201] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Elizabeth Elacqua
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Kylie B. Manning
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Diane S. Lye
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Scott K. Pomarico
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Federica Morgia
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| |
Collapse
|
37
|
Thanneeru S, Duay SS, Jin L, Fu Y, Angeles-Boza AM, He J. Single Chain Polymeric Nanoparticles to Promote Selective Hydroxylation Reactions of Phenol Catalyzed by Copper. ACS Macro Lett 2017; 6:652-656. [PMID: 35650866 DOI: 10.1021/acsmacrolett.7b00300] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-containing single chain polymeric nanoparticles (SCPNs) can be used as synthetic mimics of metalloenzymes. Currently, the role of the folded polymer backbones on the activity and selectivity of metal sites is not clear. Herein, we report our findings on how polymeric frameworks modulate the coordination of Cu sites and the catalytic activity/selectivity of Cu-containing SCPNs mimicking monophenol hydroxylation reactions. Imidazole-functionalized copolymers of poly(methyl methacrylate-co-3-imidazolyl-2-hydroxy propyl methacrylate) were used for intramolecular Cu-imidazole binding that triggered the self-folding of polymers. Polymer chains imposed steric hindrance which yielded unsaturated Cu sites with an average coordination number of 3.3. Cu-containing SCPNs showed a high selectivity for the hydroxylation reaction of phenol to catechol, >80%, with a turnover frequency of >870 h-1 at 60 °C. The selectivity was largely influenced by the flexibility of the folded polymer backbone where a more flexible polymer backbone allows the cooperative catalysis of two Cu sites. The second coordination sphere provided by the folded polymer that has been less studied is therefore critical in the design of active mimics of metalloenzymes.
Collapse
Affiliation(s)
- Srinivas Thanneeru
- Department of Chemistry, and ‡Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lei Jin
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Youjun Fu
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jie He
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
38
|
Ogura Y, Artar M, Palmans ARA, Sawamoto M, Meijer EW, Terashima T. Self-Assembly of Hydrogen-Bonding Gradient Copolymers: Sequence Control via Tandem Living Radical Polymerization with Transesterification. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yusuke Ogura
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Müge Artar
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mitsuo Sawamoto
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - E. W. Meijer
- Laboratory
of Macromolecular and Organic Chemistry and Institute for Complex
Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Takaya Terashima
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
39
|
Nguyen TK, Lam SJ, Ho KKK, Kumar N, Qiao GG, Egan S, Boyer C, Wong EHH. Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria. ACS Infect Dis 2017; 3:237-248. [PMID: 28135798 DOI: 10.1021/acsinfecdis.6b00203] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infections caused by multidrug-resistant bacteria are on the rise and, therefore, new antimicrobial agents are required to prevent the onset of a postantibiotic era. In this study, we develop new antimicrobial compounds in the form of single-chain polymeric nanoparticles (SCPNs) that exhibit excellent antimicrobial activity against Gram-negative bacteria (e.g., Pseudomonas aeruginosa) at micromolar concentrations (e.g., 1.4 μM) and remarkably kill ≥99.99% of both planktonic cells and biofilm within an hour. Linear random copolymers, which comprise oligoethylene glycol (OEG), hydrophobic, and amine groups, undergo self-folding in aqueous systems due to intramolecular hydrophobic interactions to yield these SCPNs. By systematically varying the hydrophobicity of the polymer, we can tune the extent of cell membrane wall disruption, which in turn governs the antimicrobial activity and rate of resistance acquisition in bacteria. We also show that the incorporation of OEG groups into the polymer design is essential in preventing complexation with proteins in biological medium, thereby maintaining the antimicrobial efficacy of the compound even in in vivo mimicking conditions. In comparison to the last-resort antibiotic colistin, our lead agents have a higher therapeutic index (by ca. 2-3 times) and hence better biocompatibility. We believe that the SCPNs developed here have potential for clinical applications and the information pertaining to their structure-activity relationship will be valuable toward the general design of synthetic antimicrobial (macro)molecules.
Collapse
Affiliation(s)
- Thuy-Khanh Nguyen
- Centre for Advanced
Macromolecular Design (CAMD) and Australian Centre for NanoMedicine
(ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Shu Jie Lam
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kitty K. K. Ho
- School of
Chemistry, UNSW Australia, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of
Chemistry, UNSW Australia, Sydney, NSW 2052, Australia
| | - Greg G. Qiao
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation, School
of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced
Macromolecular Design (CAMD) and Australian Centre for NanoMedicine
(ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced
Macromolecular Design (CAMD) and Australian Centre for NanoMedicine
(ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Pomposo JA, Rubio-Cervilla J, Moreno AJ, Lo Verso F, Bacova P, Arbe A, Colmenero J. Folding Single Chains to Single-Chain Nanoparticles via Reversible Interactions: What Size Reduction Can One Expect? Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02427] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José A. Pomposo
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE - Basque
Foundation for Science, María
Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Jon Rubio-Cervilla
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
| | - Angel J. Moreno
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Federica Lo Verso
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Petra Bacova
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
41
|
Hanlon AM, Martin I, Bright ER, Chouinard J, Rodriguez KJ, Patenotte GE, Berda EB. Exploring structural effects in single-chain “folding” mediated by intramolecular thermal Diels–Alder chemistry. Polym Chem 2017. [DOI: 10.1039/c7py00320j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a method to fold single polymer chains into nanoparticles using simple thermal Diels–Alder (DA) chemistry.
Collapse
Affiliation(s)
| | - Ian Martin
- Department of Chemistry
- University of New Hampshire
- Durham
- USA
| | | | | | | | | | - Erik B. Berda
- Department of Chemistry
- University of New Hampshire
- Durham
- USA
- Material Science Program
| |
Collapse
|
42
|
Wang F, Diesendruck CE. Advantages and limitations of diisocyanates in intramolecular collapse. Polym Chem 2017. [DOI: 10.1039/c7py00712d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive examination of the synthesis of single chain polymer nanoparticles (SCPNs) from a copolymer of methyl acrylate (MA) and 2-hydroxyethyl acrylate (HEA) via the intra-chain urethane formation by using hexamethylene diisocyanate (HDI) as a cross-linker is described.
Collapse
Affiliation(s)
- Feng Wang
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|
43
|
Catalysis Inside Folded Single Macromolecules in Water. EFFECTS OF NANOCONfiNEMENT ON CATALYSIS 2017. [DOI: 10.1007/978-3-319-50207-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Bartolini A, Tempesti P, Resta C, Berti D, Smets J, Aouad YG, Baglioni P. Poly(ethylene glycol)-graft-poly(vinyl acetate) single-chain nanoparticles for the encapsulation of small molecules. Phys Chem Chem Phys 2017; 19:4553-4559. [DOI: 10.1039/c6cp07967a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic poly(ethylene glycol)-graft-poly(vinyl acetate) copolymers with a low degree of grafting undergo self-folding in water driven by hydrophobic interactions, resulting in single-chain nanoparticles (SCNPs) possessing a hydrodynamic radius of about 10 nm.
Collapse
Affiliation(s)
- Arianna Bartolini
- Department of Chemistry “Ugo Schiff” and CSGI
- University of Florence
- via della Lastruccia 3
- 50019 Florence
- Italy
| | - Paolo Tempesti
- Department of Chemistry “Ugo Schiff” and CSGI
- University of Florence
- via della Lastruccia 3
- 50019 Florence
- Italy
| | - Claudio Resta
- Department of Chemistry “Ugo Schiff” and CSGI
- University of Florence
- via della Lastruccia 3
- 50019 Florence
- Italy
| | - Debora Berti
- Department of Chemistry “Ugo Schiff” and CSGI
- University of Florence
- via della Lastruccia 3
- 50019 Florence
- Italy
| | - Johan Smets
- The Procter & Gamble Company
- 1853 Strombeek Bever
- Belgium
| | - Yousef G. Aouad
- The Procter & Gamble Company
- Winton Hill Technical Center 6100 Center Hill
- Cincinnati
- USA
| | - Piero Baglioni
- Department of Chemistry “Ugo Schiff” and CSGI
- University of Florence
- via della Lastruccia 3
- 50019 Florence
- Italy
| |
Collapse
|
45
|
Fan W, Tong X, Li G, Zhao Y. Photoresponsive liquid crystalline polymer single-chain nanoparticles. Polym Chem 2017. [DOI: 10.1039/c7py00668c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Single-chain nanoparticles prepared from a side-chain liquid crystalline polymer bearing azobenzene moieties can be multifunctional.
Collapse
Affiliation(s)
- Weizheng Fan
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke
- Canada, J1K 2R1
| | - Xia Tong
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke
- Canada, J1K 2R1
| | - Guo Li
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke
- Canada, J1K 2R1
| | - Yue Zhao
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke
- Canada, J1K 2R1
| |
Collapse
|
46
|
Gao Y, Newland B, Zhou D, Matyjaszewski K, Wang W. Controlled Polymerization of Multivinyl Monomers: Formation of Cyclized/Knotted Single-Chain Polymer Architectures. Angew Chem Int Ed Engl 2016; 56:450-460. [DOI: 10.1002/anie.201608786] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Yongsheng Gao
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
- Charles Institute of Dermatology, School of Medicine; University College Dublin; Dublin Ireland
| | - Ben Newland
- Leibniz-Institut für Polymerforschung; Dresden Germany
- Brain Repair Group; Cardiff University; Cardiff UK
| | - Dezhong Zhou
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
- Charles Institute of Dermatology, School of Medicine; University College Dublin; Dublin Ireland
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry; Carnegie Mellon University; Pittsburgh PA 15213 USA
| | - Wenxin Wang
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
- Charles Institute of Dermatology, School of Medicine; University College Dublin; Dublin Ireland
| |
Collapse
|
47
|
Gao Y, Newland B, Zhou D, Matyjaszewski K, Wang W. Kontrollierte Polymerisation von Multivinyl-Monomeren: Bildung einer cyclischen/verknoteten Einzelketten-Polymerarchitektur. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongsheng Gao
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
- Charles Institute of Dermatology, School of Medicine; University College Dublin; Dublin Irland
| | - Ben Newland
- Leibniz-Institut für Polymerforschung; Dresden Deutschland
- Brain Repair Group; Cardiff University; Cardiff Großbritannien
| | - Dezhong Zhou
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
- Charles Institute of Dermatology, School of Medicine; University College Dublin; Dublin Irland
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry; Carnegie Mellon University; Pittsburgh PA 15213 USA
| | - Wenxin Wang
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
- Charles Institute of Dermatology, School of Medicine; University College Dublin; Dublin Irland
| |
Collapse
|
48
|
Zhang J, Gody G, Hartlieb M, Catrouillet S, Moffat J, Perrier S. Synthesis of Sequence-Controlled Multiblock Single Chain Nanoparticles by a Stepwise Folding–Chain Extension–Folding Process. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01962] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Junliang Zhang
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Guillaume Gody
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Matthias Hartlieb
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | | | - Jonathan Moffat
- Asylum Research, Halifax
Road, High Wycombe, Buckinghamshire HP12 3SE, U.K
| | - Sébastien Perrier
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
49
|
Swift T, Swanson L, Geoghegan M, Rimmer S. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. SOFT MATTER 2016; 12:2542-9. [PMID: 26822456 DOI: 10.1039/c5sm02693h] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescence spectroscopy on a series of aqueous solutions of poly(acrylic acid) containing a luminescent label showed that polymers with molar mass, Mn < 16.5 kDa did not exhibit a pH responsive conformational change, which is typical of higher molar mass poly(acrylic acid). Below this molar mass, polymers remained in an extended conformation, regardless of pH. Above this molar mass, a pH-dependent conformational change was observed. Diffusion-ordered nuclear magnetic resonance spectroscopy confirmed that low molar mass polymers did not undergo a conformational transition, although large molar mass polymers did exhibit pH-dependent diffusion.
Collapse
Affiliation(s)
- Thomas Swift
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK and School of Chemistry and Forensic Sciences, University of Bradford, Richmond Building, Bradford BD7 1DP, UK.
| | - Linda Swanson
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK.
| | - Stephen Rimmer
- Department of Chemistry, Brook Hill, University of Sheffield, Sheffield S3 7HF, UK and School of Chemistry and Forensic Sciences, University of Bradford, Richmond Building, Bradford BD7 1DP, UK.
| |
Collapse
|
50
|
Berkovich I, Mavila S, Iliashevsky O, Kozuch S, Lemcoff NG. Single-chain polybutadiene organometallic nanoparticles: an experimental and theoretical study. Chem Sci 2016; 7:1773-1778. [PMID: 28936327 PMCID: PMC5592374 DOI: 10.1039/c5sc04535e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 11/21/2022] Open
Abstract
High molecular weight polybutadienes and rhodium complexes were used to produce single chain organometallic nanoparticles. Irradiation of high cis-polybutadiene in the presence of a photosensitizer isomerised the double bonds to produce differing cis/trans ratios within the polymer. Notably, a higher cis percentage of carbon-carbon double bonds within the polymer structure led to faster binding of metal ions, as well as their faster removal by competing phosphine ligands. The experimental results were supported and rationalized by DFT computations.
Collapse
Affiliation(s)
- Inbal Berkovich
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel .
| | - Sudheendran Mavila
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel .
| | - Olga Iliashevsky
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Sebastian Kozuch
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel .
- Lise Meitner - Minerva Center for Computational Quantum Chemistry , Israel
| | - N Gabriel Lemcoff
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel .
| |
Collapse
|