1
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Deeprose MJ, Lowe M, Noble A, Booker-Milburn KI, Aggarwal VK. Sequential Photocatalytic Reactions for the Diastereoselective Synthesis of Cyclobutane Scaffolds. Org Lett 2021; 24:137-141. [PMID: 34882426 DOI: 10.1021/acs.orglett.1c03746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of densely functionalized cyclobutanes containing all-carbon quaternary stereocenters in high regio- and diastereoselectivity remains synthetically challenging. Herein, we show that this can be achieved by using a sequential photocatalysis strategy, wherein 3-chloromaleimides undergo triplet sensitized [2 + 2] photocycloadditions with alkynes or alkenes followed by photoredox-catalyzed dechlorinative C-C bond forming reactions to install quaternary stereocenters. This allows the rapid assembly of structurally complex and sterically congested 3-azabicyclo[3.2.0]heptane scaffolds from readily available starting materials.
Collapse
Affiliation(s)
- Mark J Deeprose
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Martin Lowe
- Medicinal Chemistry Department, UCB, 216 Bath Road, Slough, SL1 3WE, U.K
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | | | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| |
Collapse
|
3
|
Arslan M, Ceylan O, Arslan R, Tasdelen MA. Facile UV-induced covalent modification and crosslinking of styrene-isoprene-styrene copolymer via Paterno-Büchi [2 + 2] photocycloaddition. RSC Adv 2021; 11:8585-8593. [PMID: 35423409 PMCID: PMC8695305 DOI: 10.1039/d1ra00033k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
The chemical functionalization or modification of polymers to alter or improve the physical and mechanical properties constitutes an important field in macromolecular research. Fabrication of polymeric materials via structural tailoring of commercial or commodity polymers that are produced in vast quantities especially possess unique advantages in material applications. In the present study, we report on benign chemical modification of unsaturated styrene–isoprene–styrene (SIS) copolymer using available backbone alkene groups. Covalent attachment of aldehyde functional substrates onto reactive isoprene double bond residues was conveniently carried out using UV-induced Paterno–Büchi [2 + 2] cycloaddition. Model organic compounds with different structures were utilized in high efficiency chemical modification of parent polymer chains via oxetane ring formation. Functionalization studies were confirmed via1H NMR, FT-IR and SEC analyses. The methodology was extended to covalent crosslinking of polymer chains to obtain organogels with tailorable crosslinking degrees and physical characteristics. Considering the outstanding elastic properties of unsaturated rubbers and their high commercial availability, abundant reactive double bonds in backbone chains of these polymers offer easy to implement structural modification via proposed Paterno–Büchi photocycloaddition. Paterno–Büchi reaction is reported as a convenient chemical reaction tool to modify unsaturated copolymer elastomers.![]()
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University 77100 Yalova Turkey
| | - Ozgur Ceylan
- Central Research Laboratory, Yalova University 77100 Yalova Turkey
| | - Rabia Arslan
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University 77100 Yalova Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University 77100 Yalova Turkey
| |
Collapse
|
4
|
García-Lacuna J, Domínguez G, Pérez-Castells J. Flow Chemistry for Cycloaddition Reactions. CHEMSUSCHEM 2020; 13:5138-5163. [PMID: 32662578 DOI: 10.1002/cssc.202001372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Continuous flow reactors form part of a rapidly growing research area that has changed the way synthetic chemistry is performed not only in academia but also at the industrial level. This Review highlights the most recent advances in cycloaddition reactions performed in flow systems. Cycloadditions are atom-efficient transformations for the synthesis of carbo- and heterocycles, involved in the construction of challenging skeletons of complex molecules. The main advantages of translating these processes into flow include using intensified conditions, safer handling of hazardous reagents and gases, easy tuning of reaction conditions, and straightforward scaling up. These benefits are especially important in cycloadditions such as the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), Diels-Alder reaction, ozonolysis and [2+2] photocycloadditions. Some of these transformations are key reactions in the industrial synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
5
|
Aljuaid M, Liarou E, Town J, Baker JR, Haddleton DM, Wilson P. Synthesis and [2+2]-photodimerisation of monothiomaleimide functionalised linear and brush-like polymers. Chem Commun (Camb) 2020; 56:9545-9548. [PMID: 32691028 DOI: 10.1039/d0cc04067c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[2+2]-Photodimerisation of monothiomaleimides has been demonstrated on functionalised linear and brush-like polymers. In water/acetonitrile (95 : 5) mixtures the rate of reaction is accelerated significantly by irradiation of the thiomaleimide end group (λmax = 350 nm) with UV light, reaching full conversion within 10 minutes.
Collapse
Affiliation(s)
- Mohammed Aljuaid
- University of Warwick, Department of Chemistry, Library Road, Coventry, UK. and Taif University, Department of Chemistry, Faculty of Applied Medical Sciences, Turabah, Saudi Arabia
| | - Evelina Liarou
- University of Warwick, Department of Chemistry, Library Road, Coventry, UK.
| | - James Town
- University of Warwick, Department of Chemistry, Library Road, Coventry, UK.
| | - James R Baker
- University College London, Department of Chemistry, 20 Gordon St, London, UK
| | - David M Haddleton
- University of Warwick, Department of Chemistry, Library Road, Coventry, UK.
| | - Paul Wilson
- University of Warwick, Department of Chemistry, Library Road, Coventry, UK.
| |
Collapse
|
6
|
Zaquen N, Rubens M, Corrigan N, Xu J, Zetterlund PB, Boyer C, Junkers T. Polymer Synthesis in Continuous Flow Reactors. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101256] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Li Z, Wang D, Ramella D, Gao H, Cao H, Zhao Y, Miao Z, Yang Z, He W. Double-click synthesis of polysiloxane third-order nonlinear optical polymers with donor–acceptor chromophores. Polym Chem 2020. [DOI: 10.1039/c9py01771b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of third-order nonlinear polysiloxane polymer materials were prepared by thiol–ene click polymerization and [2 + 2] click chemistry. All the polymers exhibit good electron transfer capabilities and nonlinear optical properties.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Dong Wang
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | | | - Hong Gao
- China Academy of Space Technology
- Beijing 100094
- PR China
| | - Hui Cao
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Yuzhen Zhao
- Key Laboratory of Organic Polymer Photoelectric Materials
- School of Sciences
- Xijing University
- Xi'an
- China
| | - Zongcheng Miao
- Key Laboratory of Organic Polymer Photoelectric Materials
- School of Sciences
- Xijing University
- Xi'an
- China
| | - Zhou Yang
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Wanli He
- Department of Materials Physics and Chemistry
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| |
Collapse
|
8
|
Chowdhury S, Rakshit A, Acharjee A, Saha B. Novel Amphiphiles and Their Applications for Different Purposes with Special Emphasis on Polymeric Surfactants. ChemistrySelect 2019. [DOI: 10.1002/slct.201901160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suman Chowdhury
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Atanu Rakshit
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Animesh Acharjee
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Bidyut Saha
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| |
Collapse
|
9
|
El Achi N, Gelat F, Cheval NP, Mazzah A, Bakkour Y, Penhoat M, Chausset-Boissarie L, Rolando C. Sensitized [2 + 2] intramolecular photocycloaddition of unsaturated enones using UV LEDs in a continuous flow reactor: kinetic and preparative aspects. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00314a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photocatalysed cycloaddition by benzophenone derivatives under flow and UVA LED irradiation is described.
Collapse
Affiliation(s)
- Nassim El Achi
- USR 3290
- MSAP
- Miniaturisation pour la Synthèse l'Analyse et la Protéomique and FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Fabien Gelat
- USR 3290
- MSAP
- Miniaturisation pour la Synthèse l'Analyse et la Protéomique and FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Nicolas P. Cheval
- USR 3290
- MSAP
- Miniaturisation pour la Synthèse l'Analyse et la Protéomique and FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Ahmed Mazzah
- USR 3290
- MSAP
- Miniaturisation pour la Synthèse l'Analyse et la Protéomique and FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Youssef Bakkour
- Laboratory of Applied Chemistry
- Lebanese University
- Tripoli
- Lebanon
| | - Maël Penhoat
- USR 3290
- MSAP
- Miniaturisation pour la Synthèse l'Analyse et la Protéomique and FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Laëtitia Chausset-Boissarie
- USR 3290
- MSAP
- Miniaturisation pour la Synthèse l'Analyse et la Protéomique and FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Christian Rolando
- USR 3290
- MSAP
- Miniaturisation pour la Synthèse l'Analyse et la Protéomique and FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| |
Collapse
|
10
|
Williams JD, Nakano M, Gérardy R, Rincón JA, de Frutos Ó, Mateos C, Monbaliu JCM, Kappe CO. Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00375] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Momoe Nakano
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège (Sart
Tilman), Belgium
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, 28108 Alcobendas-Madrid, Spain
| | - Óscar de Frutos
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, 28108 Alcobendas-Madrid, Spain
| | - Carlos Mateos
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, 28108 Alcobendas-Madrid, Spain
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège (Sart
Tilman), Belgium
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
11
|
Czarnecki M, Wessig P. Scaling Up UV-Mediated Intramolecular Photodehydro-Diels–Alder Reactions Using a Homemade High-Performance Annular Continuous-Flow Reactor. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maciej Czarnecki
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Pablo Wessig
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Liu Z, Lv Y, Zhu A, An Z. One-Enzyme Triple Catalysis: Employing the Promiscuity of Horseradish Peroxidase for Synthesis and Functionalization of Well-Defined Polymers. ACS Macro Lett 2018; 7:1-6. [PMID: 35610931 DOI: 10.1021/acsmacrolett.7b00950] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We demonstrate a new concept in polymer chemistry that the promiscuity of enzymes, as represented by horseradish peroxidase, can be employed for RAFT polymerization and thiol-ene and Diels-Alder reactions to synthesize well-defined functional polymers, via three different catalytic reactions mediated by one single enzyme.
Collapse
Affiliation(s)
- Zhifen Liu
- Institute of Nanochemistry
and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yue Lv
- Institute of Nanochemistry
and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Anqi Zhu
- Institute of Nanochemistry
and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry
and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Matsukawa K, Masuda T, Kim YS, Akimoto AM, Yoshida R. Thermoresponsive Surface-Grafted Gels: Controlling the Bulk Volume Change Properties by Surface-Localized Polymer Grafting with Various Densities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13828-13833. [PMID: 29120183 DOI: 10.1021/acs.langmuir.7b03597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We prepared poly(N-isopropylacrylamide-r-N-3-(aminopropyl)methacrylamide) (poly(NIPAAm-r-NAPMAm)) gels with poly NIPAAm (PNIPAAm) grafted only in the surface region (so-called thermoresponsive surface-grafted gels) with various graft densities and investigated the effect of the graft density on the bulk volume change properties, shrinking and swelling, in response to temperature changes. Initiators for atom-transfer radical polymerization (ATRP) and structurally analogous compounds were introduced at certain ratios onto the surface regions of the gels, and a subsequent activator regeneration by electron transfer ATRP of NIPAAm was conducted in aqueous media. The graft densities and molecular weights of the grafted polymers were evaluated from the increment in the dry mass of the gels and the amount of introduced ATRP initiators, which was measured by elemental analyses. Three-dimensional measuring laser microscopy revealed that the prepared gels had graft-density-dependent fine wrinkle structures on their surfaces. The surface-grafted gels induced the formation of skin layers during the shrinking process in response to a temperature increase, and their permeability strongly depended on the graft density. The graft density also controlled the kinetics of the swelling behavior in response to a temperature decrease. These physical properties were discussed on the basis of Young's modulus of the surface determined by an atomic force microscopy force curve measurement and the homogeneity of the surface polymer network observed by cryo-scanning electron microscopy. This makes it possible to arbitrarily control the characteristics of gels as open or semiclosed systems, which was uniquely determined by the designs of the surface gel networks.
Collapse
Affiliation(s)
- Ko Matsukawa
- Department of Materials Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsukuru Masuda
- Department of Materials Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Youn Soo Kim
- Department of Materials Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Corrigan N, Almasri A, Taillades W, Xu J, Boyer C. Controlling Molecular Weight Distributions through Photoinduced Flow Polymerization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01890] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Abdulrahman Almasri
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Werner Taillades
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Blasco E, Sims MB, Goldmann AS, Sumerlin BS, Barner-Kowollik C. 50th Anniversary Perspective: Polymer Functionalization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00465] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Eva Blasco
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael B. Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anja S. Goldmann
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher Barner-Kowollik
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.06.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Seiffert S. Microfluidics and Macromolecules: Top-Down Analytics and Bottom-Up Engineering of Soft Matter at Small Scales. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastian Seiffert
- Johannes Gutenberg-Universität Mainz; Institute of Physical Chemistry; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
18
|
|
19
|
Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chem Rev 2016; 116:10276-341. [PMID: 26935706 DOI: 10.1021/acs.chemrev.5b00707] [Citation(s) in RCA: 900] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
Collapse
Affiliation(s)
- Dario Cambié
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Cecilia Bottecchia
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Natan J W Straathof
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands.,Department of Organic Chemistry, Ghent University , Krijgslaan 281 (S4), 9000 Ghent, Belgium
| |
Collapse
|
20
|
Abstract
Precision polymer design in continuous photoflow reactors is a young, yet rapidly growing research field. The potential of photopolymerization is demonstrated and future potential is discussed.
Collapse
Affiliation(s)
- T. Junkers
- Polymer Reaction Design Group
- Institute of Materials Research (IMO)
- Hasselt University
- BE-3500 Hasselt
- Belgium
| | - B. Wenn
- Polymer Reaction Design Group
- Institute of Materials Research (IMO)
- Hasselt University
- BE-3500 Hasselt
- Belgium
| |
Collapse
|
21
|
Sun P, Liu J, Zhang Z, Zhang K. Scalable preparation of cyclic polymers by the ring-closure method assisted by the continuous-flow technique. Polym Chem 2016. [DOI: 10.1039/c6py00165c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Scalable preparation of cyclic polymers by the ring-closure strategy was achieved for the first time by virtue of the combination of a light-induced ring-closure method and the continuous-flow technique.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jian'an Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhengbiao Zhang
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Ke Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
22
|
Conradi M, Ramakers G, Junkers T. UV‐Induced [2+2] Grafting‐To Reactions for Polymer Modification of Cellulose. Macromol Rapid Commun 2015; 37:174-80. [DOI: 10.1002/marc.201500484] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/30/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Matthias Conradi
- Polymer Reaction Design Group Institute for Materials Research (IMO) Universiteit Hasselt Martelarenlaan 42 3590 Diepenbeek Belgium
| | - Gijs Ramakers
- Polymer Reaction Design Group Institute for Materials Research (IMO) Universiteit Hasselt Martelarenlaan 42 3590 Diepenbeek Belgium
| | - Thomas Junkers
- Polymer Reaction Design Group Institute for Materials Research (IMO) Universiteit Hasselt Martelarenlaan 42 3590 Diepenbeek Belgium
- IMEC associated lab IMOMEC Wetenschapspark 1 3590 Diepenbeek Belgium
| |
Collapse
|
23
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
24
|
Abstract
Synthetic polymer chemistry has undergone two major developments in the last two decades. About 20 years ago, reversible-deactivation radical polymerization processes started to give access to a wide range of polymeric architectures made from an almost infinite reservoir of functional building blocks. A few years later, the concept of click chemistry revolutionized the way polymer chemists approached synthetic routes. Among the few reactions that could qualify as click, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) initially stood out. Soon, many old and new reactions, including cycloadditions, would further enrich the synthetic macromolecular chemistry toolbox. Whether click or not, cycloadditions are in any case powerful tools for designing polymeric materials in a modular fashion, with a high level of functionality and, sometimes, responsiveness. Here, we wish to describe cycloaddition methodologies that have been reported in the last 10 years in the context of macromolecular engineering, with a focus on those developed in our laboratories. The overarching structure of this Account is based on the three most commonly encountered cycloaddition subclasses in organic and macromolecular chemistry: 1,3-dipolar cycloadditions, (hetero-)Diels-Alder cycloadditions ((H)DAC), and [2+2] cycloadditions. Our goal is to briefly describe the relevant reaction conditions, the advantages and disadvantages, and the realized polymer applications. Furthermore, the orthogonality of most of these reactions is highlighted because it has proven highly beneficial for generating unique, multifunctional polymers in a one-pot reaction. The overview on 1,3-dipolar cycloadditions is mostly centered on the application of CuAAC as the most travelled route, by far. Besides illustrating the capacity of CuAAC to generate complex polymeric architectures, alternative 1,3-dipolar cycloadditions operating without the need for a catalyst are described. In the area of (H)DA cycloadditions, beyond the popular maleimide/furan couple, we present chemistries based on more reactive species, such as cyclopentadienyl or thiocarbonylthio moieties, particularly stressing the reversibility of these systems. In these two greater families, as well as in the last section on [2+2] cycloadditions, we highlight phototriggered chemistries as a powerful tool for spatially and temporally controlled materials synthesis. Clearly, cycloaddition chemistry already has and will continue to transform the field of polymer chemistry in the years to come. Applying this chemistry enables better control over polymer composition, the development of more complicated polymer architectures, the simplification of polymer library production, and the discovery of novel applications for all of these new polymers.
Collapse
Affiliation(s)
- Guillaume Delaittre
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nathalie K. Guimard
- INM − Leibniz
Institute for New Materials, Functional Surfaces Group, and Saarland
University, Campus D2 2, 66123 Saarbruecken, Germany
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
25
|
Arslan M, Yilmaz G, Yagci Y. Dibenzoyldiethylgermane as a visible light photo-reducing agent for CuAAC click reactions. Polym Chem 2015. [DOI: 10.1039/c5py01465d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A highly active, versatile and visible light-responsive system for CuAAC click reaction using the dibenzoyldiethylgermane photoinitiator with Cu(ii) has been developed.
Collapse
Affiliation(s)
- Mustafa Arslan
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Gorkem Yilmaz
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Yusuf Yagci
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| |
Collapse
|
26
|
Sequential Reactions for Post-polymerization Modifications. MULTI-COMPONENT AND SEQUENTIAL REACTIONS IN POLYMER SYNTHESIS 2015. [DOI: 10.1007/12_2015_312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
Kermagoret A, Wenn B, Debuigne A, Jérôme C, Junkers T, Detrembleur C. Improved photo-induced cobalt-mediated radical polymerization in continuous flow photoreactors. Polym Chem 2015. [DOI: 10.1039/c5py00299k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The implementation of cobalt-mediated radical polymerization (CMRP) for continuous microflow reactor synthesis is described.
Collapse
Affiliation(s)
- Anthony Kermagoret
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- 4000 Liège
- Belgium
| | - Benjamin Wenn
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- 4000 Liège
- Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- 4000 Liège
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- 4000 Liège
- Belgium
| |
Collapse
|
28
|
|