1
|
Steube M, Johann T, Plank M, Tjaberings S, Gröschel AH, Gallei M, Frey H, Müller AHE. Kinetics of Anionic Living Copolymerization of Isoprene and Styrene Using in Situ NIR Spectroscopy: Temperature Effects on Monomer Sequence and Morphology. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01790] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marvin Steube
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Johann
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Martina Plank
- Macromolecular Chemistry Department, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287 Darmstadt, Germany
| | - Stefanie Tjaberings
- Physical Chemistry, University of Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
| | - André H. Gröschel
- Physical Chemistry, University of Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Axel H. E. Müller
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
2
|
Steinhaus A, Srivastva D, Nikoubashman A, Gröschel AH. Janus Nanostructures from ABC/B Triblock Terpolymer Blends. Polymers (Basel) 2019; 11:E1107. [PMID: 31262010 PMCID: PMC6680841 DOI: 10.3390/polym11071107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/16/2019] [Accepted: 06/28/2019] [Indexed: 11/26/2022] Open
Abstract
Lamella-forming ABC triblock terpolymers are convenient building blocks for the synthesis of soft Janus nanoparticles (JNPs) by crosslinking the B domain that is "sandwiched" between A and C lamellae. Despite thorough synthetic variation of the B fraction to control the geometry of the sandwiched microphase, so far only Janus spheres, cylinders, and sheets have been obtained. In this combined theoretical and experimental work, we show that the blending of polybutadiene homopolymer (hPB) into lamella morphologies of polystyrene-block-polybutadiene-block-polymethylmethacrylate (SBM) triblock terpolymers allows the continuous tuning of the polybutadiene (PB) microphase. We systematically vary the volume fraction of hPB in the system, and we find in both experiments and simulations morphological transitions from PB-cylinders to perforated PB-lamellae and further to continuous PB-lamellae. Our simulations show that the hPB is distributed homogeneously in the PB microdomains. Through crosslinking of the PB domain and redispersion in a common solvent for all blocks, we separate the bulk morphologies into Janus cylinders, perforated Janus sheets, and Janus sheets. These studies suggest that more complex Janus nanostructures could be generated from ABC triblock terpolymers than previously expected.
Collapse
Affiliation(s)
- Andrea Steinhaus
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, 47057 Duisburg, Germany
| | - Deepika Srivastva
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
| | - André H Gröschel
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, 47057 Duisburg, Germany.
| |
Collapse
|
3
|
Hofman A, Terzic I, Stuart MCA, ten Brinke G, Loos K. Hierarchical Self-Assembly of Supramolecular Double-Comb Triblock Terpolymers. ACS Macro Lett 2018; 7:1168-1173. [PMID: 30356968 PMCID: PMC6195812 DOI: 10.1021/acsmacrolett.8b00570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of macromolecular architectures that are challenging to obtain through conventional all-covalent routes. In this work we present supramolecular double-comb triblock terpolymers in which both outer blocks are able to interact with a surfactant via hydrogen bonding and thereby form a comb-shaped architecture upon complexation. While the neat triblock terpolymer only formed a triple lamellar morphology, multiple hierarchical structures were observed in these supramolecular comb-coil-comb triblock terpolymers by simply adjusting the surfactant concentration. Structures included spheres on tetragonally packed cylinders-in-lamellae and spheres on double parallel lamellae-in-lamellae, as evidenced by electron microscopy and X-ray scattering. Incorporation of a middle coil block thus allowed an even higher macromolecular complexity than the previously reported double-comb diblock copolymers.
Collapse
Affiliation(s)
- Anton
H. Hofman
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivan Terzic
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Electron
Microscopy Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gerrit ten Brinke
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Cai J, Mineart KP, Li X, Spontak RJ, Manners I, Qiu H. Hierarchical Self-Assembly of Toroidal Micelles into Multidimensional Nanoporous Superstructures. ACS Macro Lett 2018; 7:1040-1045. [PMID: 35650958 DOI: 10.1021/acsmacrolett.8b00445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Materials with controlled porosity play a prominent role in industrial and domestic applications. Although a rich array of methods has been developed to tune the pore size over a broad range (from <1 nm to >1 μm), the fabrication of functional materials with a fully open porous structure with sub-100 nm pore size has remained a significant challenge. Herein, we report the hierarchical assembly of block copolymer toroidal micelles with an intrinsic cavity into multidimensional nanoporous superstructures (pore size 85-90 nm) by modulation of interparticle interactions. The toroids aggregate into oligo-supermicelles or 2D hexagonal arrays through van der Waals interactions upon drying on a substrate, while synergistic hydrogen bonding interactions further promote the formation of 3D nanoporous superstructures directly in solution. Thus, toroidal micelles can be manipulated as a type of distinctive building block to construct nanoporous materials.
Collapse
Affiliation(s)
- Jiandong Cai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiaoyu Li
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Huibin Qiu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Nehache S, Semsarilar M, Deratani A, Quemener D. Negatively Charged Porous Thin Film from ABA Triblock Copolymer Assembly. Polymers (Basel) 2018; 10:E733. [PMID: 30960658 PMCID: PMC6403756 DOI: 10.3390/polym10070733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
The preparation of well-arranged nano-porous thin films from an ABA triblock copolymer of polystyrene-block-poly(sodium 4-styrenesulfonate)-block-polystyrene (PS-PNaSS-PS) is reported. This copolymer was self-assembled in a N,N-dimethylformamide (DMF)/water mixture and the resulting micellar solution was used to prepare thin films via the compact packing of the flower-like micelles using spin coating method. The films were characterized by several microscopy techniques such as TEM, AFM, and SEM. Permeation test was performed to highlight the interconnected porous nature of the polymeric network obtained. Under applied water pressure, the micellar morphology was altered and a partial fusion of the micelles was observed that resulted in a change in the water permeability. Such hydrophilic nanoporous thin films with negatively charged interface could find applications in membrane filtration.
Collapse
Affiliation(s)
- Sabrina Nehache
- Institut Européen des Membranes-IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France.
| | - Mona Semsarilar
- Institut Européen des Membranes-IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France.
| | - André Deratani
- Institut Européen des Membranes-IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France.
| | - Damien Quemener
- Institut Européen des Membranes-IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France.
| |
Collapse
|
6
|
Nehache S, Semsarilar M, Deratani A, In M, Dieudonné-George P, Lai Kee Him J, Bron P, Quémener D. Nano-porous structuresviaself-assembly of amphiphilic triblock copolymers: influence of solvent and molecular weight. Polym Chem 2018. [DOI: 10.1039/c7py01853c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assembly of ABA triblock copolymer micelles into porous materials which are subsequently used as filtration membranes.
Collapse
Affiliation(s)
- S. Nehache
- Institut Européen des Membranes – IEM
- Univ Montpellier
- CNRS
- ENSCM
- Place Eugène Bataillon
| | - M. Semsarilar
- Institut Européen des Membranes – IEM
- Univ Montpellier
- CNRS
- ENSCM
- Place Eugène Bataillon
| | - A. Deratani
- Institut Européen des Membranes – IEM
- Univ Montpellier
- CNRS
- ENSCM
- Place Eugène Bataillon
| | - M. In
- Laboratoire Charles Coulomb Université Montpellier – Place Eugène Bataillon
- 34095 Montpellier Cedex 05
- France
| | - P. Dieudonné-George
- Laboratoire Charles Coulomb Université Montpellier – Place Eugène Bataillon
- 34095 Montpellier Cedex 05
- France
| | - J. Lai Kee Him
- Centre de Biochimie Structurale – CBS
- CNRS
- INSERM
- Université Montpellier
- 34090 Montpellier
| | - P. Bron
- Centre de Biochimie Structurale – CBS
- CNRS
- INSERM
- Université Montpellier
- 34090 Montpellier
| | - D. Quémener
- Institut Européen des Membranes – IEM
- Univ Montpellier
- CNRS
- ENSCM
- Place Eugène Bataillon
| |
Collapse
|
7
|
Hofman AH, ten Brinke G, Loos K. Asymmetric supramolecular double-comb diblock copolymers: From plasticization, to confined crystallization, to breakout. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Hiekkataipale P, Löbling TI, Poutanen M, Priimagi A, Abetz V, Ikkala O, Gröschel AH. Controlling the shape of Janus nanostructures through supramolecular modification of ABC terpolymer bulk morphologies. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.05.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Schmücker S, Kuckling D. Stimuli-responsive coil-rod-coil block copolymers synthesized by using a bis-alkoxyamine-functionalized poly(para-phenylene) macro initiator. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Löbling TI, Ikkala O, Gröschel AH, Müller AHE. Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification. ACS Macro Lett 2016; 5:1044-1048. [PMID: 35614643 DOI: 10.1021/acsmacrolett.6b00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution self-assembly of amphiphilic diblock copolymers into spheres, cylinders, and vesicles (polymersomes) has been intensely studied over the past two decades, and their morphological behavior is well understood. Linear ABC triblock terpolymers with two insoluble blocks A/B, on the other hand, display a richer and more complex morphological spectrum that has been recently explored by synthetic block length variations. Here, we describe facile postpolymerization routes to tailor ABC triblock terpolymer solution morphologies by altering block solubility (solvent mixtures), blending with homopolymers, and block-selective chemical reactions. The feasibility of these processes is demonstrated on polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (SBM) that assembles to patchy spherical micelles, which can be modified to evolve into double and triple helices or patchy and striped vesicles. These results demonstrate that postpolymerization treatments give access to a broad range of morphologies from single triblock terpolymers without the need for multiple polymer syntheses.
Collapse
Affiliation(s)
- Tina I. Löbling
- Macromolecular
Chemistry II, University of Bayreuth, D-95440 Bayreuth, Germany
- Department
of Applied Physics, Aalto University School of Science, FIN-02150 Espoo, Finland
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University School of Science, FIN-02150 Espoo, Finland
| | - André H. Gröschel
- Physical
Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45127 Essen, Germany
| | - Axel H. E. Müller
- Institut
für Organische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
11
|
Zhang Q, Hua W, Ren Q, Feng J. Regulation of Physical Networks and Mechanical Properties of Triblock Thermoplastic Elastomer through Introduction of Midblock Similar Crystalline Polymer with Multiblock Architecture. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qinglong Zhang
- State
Key Laboratory of Molecular Engineering of Polymers, Collaborative
Innovation Center of Polymers and Polymer Composite Materials, Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wenqiang Hua
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng
Road, Shanghai 201204, China
| | - Qilin Ren
- State
Key Laboratory of Molecular Engineering of Polymers, Collaborative
Innovation Center of Polymers and Polymer Composite Materials, Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiachun Feng
- State
Key Laboratory of Molecular Engineering of Polymers, Collaborative
Innovation Center of Polymers and Polymer Composite Materials, Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Bai W, Jiang Z, Ribbe AE, Thayumanavan S. Smart Organic Two-Dimensional Materials Based on a Rational Combination of Non-covalent Interactions. Angew Chem Int Ed Engl 2016; 55:10707-11. [PMID: 27490155 PMCID: PMC5154734 DOI: 10.1002/anie.201605050] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 01/24/2023]
Abstract
Rational design of organic 2D (O2D) materials has made some progress, but it is still in its infancy. A class of self-assembling small molecules is presented that form nano/microscale supramolecular 2D materials in aqueous media. A judicial combination of four different intermolecular interactions forms the basis for the robust formation of these ultrathin assemblies. These assemblies can be programmed to disassemble in response to a specific protein and release its non-covalently bound guest molecules.
Collapse
Affiliation(s)
- Wei Bai
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
13
|
Smart Organic Two-Dimensional Materials Based on a Rational Combination of Non-covalent Interactions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Rudolph T, Schacher FH. Selective crosslinking or addressing of individual domains within block copolymer nanostructures. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Yao D, Zhang K, Chen Y. Microphase separation of poly(tert-butyl methacrylate)-block-polystyrene diblock copolymers to form perforated lamellae. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Regulation of crystalline morphologies and mechanical properties of olefin multiblock copolymers by blending polymer with similar architecture of constituent blocks. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Nandan B, Horechyy A. Hairy Core-Shell Polymer Nano-objects from Self-Assembled Block Copolymer Structures. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12539-12558. [PMID: 25603397 DOI: 10.1021/am5075503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fabrication of core-shell polymer nano-objects with well-defined shape and hairy shell has been a subject of immense interest in polymer chemistry for more than two decades now. Different approaches such as those involving synthesis (grafting approaches) and block copolymer self-assembly (solution as well as bulk) have been used for the preparation of such nano-objects. Of these approaches that involving bulk self-assembled structures of block copolymers have been of special interest because of the simplicity and range of shape and structures possible. The present review focuses on the advances which have been made in this direction using diblock and triblock self-assembled structures. It will be shown that this approach allows to fabricate hairy nano-objects of not only simple shapes such as spheres, rods, and sheets but also those with more complex shape and morphology such as multicompartment micelles, which are not possible to obtain with synthetic or solution self-assembly approaches. Furthermore, interesting structures such as Janus nano-objects could also be fabricated using this approach. The review further highlights the use of such nano-objects for templating applications.
Collapse
Affiliation(s)
- Bhanu Nandan
- †Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Andriy Horechyy
- ‡Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| |
Collapse
|