1
|
Sugita H, Kamigawara T, Miyazaki S, Shimada R, Katoh T, Ohta Y, Yokozawa T. Intramolecular Palladium Catalyst Transfer on Benzoheterodiazoles as Acceptor Monomers and Discovery of Catalyst Transfer Inhibitors. Chemistry 2023; 29:e202301242. [PMID: 37302983 DOI: 10.1002/chem.202301242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Intramolecular catalyst transfer on benzoheterodiazoles was investigated in Suzuki-Miyaura coupling reactions and polymerization reactions with t Bu3 PPd precatalyst. In the coupling reactions of dibromobenzotriazole, dibromobenzoxazole, and dibromobenzothiadiazole with pinacol phenylboronate, the product ratios of monosubstituted product to disubstituted product were 0/100, 27/73, and 89/11, respectively, indicating that the Pd catalyst undergoes intramolecular catalyst transfer on dibromobenzotriazole, whereas intermolecular transfer occurs in part in the case of dibromobenzoxazole and is predominant for dibromobenzothiadiazole. The polycondensation of 1.3 equivalents of dibromobenzotriazole with 1.0 equivalent of para- and meta-phenylenediboronates afforded high-molecular-weight polymer and cyclic polymer, respectively. In the case of dibromobenzoxazole, however, para- and meta-phenylenediboronates afforded moderate-molecular-weight polymer with bromine at both ends and cyclic polymer, respectively. In the case of dibromobenzothiadiazole, they afforded low-molecular-weight polymers with bromine at both ends. Addition of benzothiadiazole derivatives interfered with catalyst transfer in the coupling reactions.
Collapse
Affiliation(s)
- Hajime Sugita
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Takeru Kamigawara
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Sou Miyazaki
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Ryusuke Shimada
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Takayoshi Katoh
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Yoshihiro Ohta
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| |
Collapse
|
2
|
Hannigan MD, Tami JL, Zimmerman PM, McNeil AJ. Rethinking Catalyst Trapping in Ni-Catalyzed Thieno[3,2- b]thiophene Polymerization. Macromolecules 2022; 55:10821-10830. [PMID: 37396500 PMCID: PMC10312364 DOI: 10.1021/acs.macromol.2c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalyst-transfer polymerization (CTP) is a chain-growth method used to synthesize conjugated polymers. Although CTP works well for most donor-type monomers, the polymerization stalls with thieno[3,2-b]thiophene when using Ni catalysts. Previous reports have rationalized this result by suggesting that the catalyst is trapped in a Ni0 π-complex with the highly electron-rich arene. In this study, evidence is provided that the catalyst trap is more likely a NiII complex that arises from oxidative insertion of Ni0 into the C-S bonds of thieno[3,2-b]thiophene. This result is consistent with the known reactivity of Ni0 complexes toward S-heteroarenes and is supported herein by 31P nuclear magnetic resonance spectra acquired in situ, as well as data collected from small-molecule model reactions and density-functional theory simulations of the polymerization. We propose that this C-S insertion pathway and related off-cycle reactions may be relevant to understanding or enabling the CTP of other monomers with fused thiophenes.
Collapse
Affiliation(s)
- Matthew D Hannigan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jessica L Tami
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J McNeil
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| |
Collapse
|
3
|
Li L, Zhan H, Chen S, Zhao Q, Peng J. Interrogating the Effect of Block Sequence on Cocrystallization, Microphase Separation, and Charge Transport in All-Conjugated Triblock Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lixin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hao Zhan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shuwen Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qingqing Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Lee J, Kim H, Park H, Kim T, Hwang SH, Seo D, Chung TD, Choi TL. Universal Suzuki-Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Strong Donor/Acceptor-Based Conjugated Polymers and Their Sequence Engineering. J Am Chem Soc 2021; 143:11180-11190. [PMID: 34264077 DOI: 10.1021/jacs.1c05080] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Catalyst-transfer polymerization has revolutionized the field of polymer synthesis due to its living character, but for a given catalyst system, the polymer scope is rather narrow. Herein we report a highly efficient Suzuki-Miyaura catalyst-transfer polymerization (SCTP) that covers a wide range of monomers from electron-rich (donor, D) to electron-deficient (acceptor, A) (hetero)arenes by rationally designing boronate monomers and using commercially available Buchwald RuPhos and SPhos Pd G3 precatalysts. Initially, we optimized the controlled polymerization of 3,4-propylenedioxythiophene (ProDOT), benzotriazole (BTz), quinoxaline (QX), and 2,3-diphenylquinoxaline (QXPh) by introducing new boronates, such as 4,4,8,8-tetramethyl-1,3,6,2-dioxazaborocane and its N-benzylated derivative, to modulate the reactivity and stability of the monomers. As a result, PProDOT, PBTz, PQX, and PQXPh were prepared with controlled molecular weight and narrow dispersity (Đ < 1.29) in excellent yield (>85%). A detailed investigation of the polymer structures using 1H NMR and MALDI-TOF spectrometry supported the chain-growth mechanism and the high initiation efficiency of the SCTP method. In addition, the use of RuPhos-Pd showing excellent catalyst-transfer ability on both D/A monomers led to unprecedented controlled D-A statistical copolymerization, thereby modulating the HOMO energy level (from -5.11 to -4.80 eV) and band gap energy (from 1.68 to 1.91 eV) of the resulting copolymers. Moreover, to demonstrate the living nature of SCTP, various combinations of D-A and A-A block copolymers (PBTz-b-PProDOT, PQX-b-PProDOT, and PQX-b-PBTz) were successfully prepared by the sequential addition method. Finally, simple but powerful one-shot D-A block copolymerization was achieved by maximizing the rate difference between a fast-propagating pinacol boronate donor and a slow-propagating acceptor to afford well-defined poly(3-hexylthiophene)-b-poly(benzotriazole).
Collapse
Affiliation(s)
- Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwangseok Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunwoo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Taehyun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Daye Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, 16229 Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Schraff S, Kreienborg NM, Trampert J, Sun Y, Orthaber A, Merten C, Pammer F. Asymmetric chain‐growth synthesis of polyisocyanide with chiral nickel
precatalysts. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandra Schraff
- Institute of Organic Chemistry II and Advanced MaterialsUniversity of Ulm Ulm Germany
| | - Nora M. Kreienborg
- Organic Chemistry II, Ruhr University BochumFaculty of Chemistry and Biochemistry Bochum Germany
| | - Jens Trampert
- Institute of Organic Chemistry II and Advanced MaterialsUniversity of Ulm Ulm Germany
| | - Yu Sun
- Fachbereich Chemie, Anorganische ChemieTechnische Universität Kaiserslautern Kaiserslautern Germany
| | - Andreas Orthaber
- Department of Chemistry—Ångström laboratoriesUppsala University Uppsala Sweden
| | - Christian Merten
- Organic Chemistry II, Ruhr University BochumFaculty of Chemistry and Biochemistry Bochum Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced MaterialsUniversity of Ulm Ulm Germany
| |
Collapse
|
6
|
Lu C, Ma Z, Jäger J, Budnyak TM, Dronskowski R, Rokicińska A, Kuśtrowski P, Pammer F, Slabon A. NiO/Poly(4-alkylthiazole) Hybrid Interface for Promoting Spatial Charge Separation in Photoelectrochemical Water Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29173-29180. [PMID: 32491825 PMCID: PMC7467539 DOI: 10.1021/acsami.0c03975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/03/2020] [Indexed: 05/26/2023]
Abstract
Conjugated polymers are emerging as alternatives to inorganic semiconductors for the photoelectrochemical water splitting. Herein, semi-transparent poly(4-alkylthiazole) layers with different trialkylsilyloxymethyl (R3SiOCH2-) side chains (PTzTNB, R = n-butyl; PTzTHX, R = n-hexyl) are applied to functionalize NiO thin films to build hybrid photocathodes. The hybrid interface allows for the effective spatial separation of the photoexcited carriers. Specifically, the PTzTHX-deposited composite photocathode increases the photocurrent density 6- and 2-fold at 0 V versus the reversible hydrogen electrode in comparison to the pristine NiO and PTzTHX photocathodes, respectively. This is also reflected in the substantial anodic shift of onset potential under simulated Air Mass 1.5 Global illumination, owing to the prolonged lifetime, augmented density, and alleviated recombination of photogenerated electrons. Additionally, coupling the inorganic and organic components also enhances the photoabsorption and amends the stability of the photocathode-driven system. This work demonstrates the feasibility of poly(4-alkylthiazole)s as an effective alternative to known inorganic semiconductor materials. We highlight the interface alignment for polymer-based photoelectrodes.
Collapse
Affiliation(s)
- Can Lu
- Institute of Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Zili Ma
- Institute of Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Jakob Jäger
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
- Carl Zeiss Jena GmbH, Zeiss Group, Carl-Zeiss-Straße 22, D-73447 Oberkochen, Germany
| | - Tetyana M. Budnyak
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Richard Dronskowski
- Institute of Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Liuxian Boulevard 7098, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| |
Collapse
|
7
|
Pollit AA, Ye S, Seferos DS. Elucidating the Role of Catalyst Steric and Electronic Effects in Controlling the Synthesis of π-Conjugated Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adam A. Pollit
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
8
|
Schraff S, Maity S, Schleeper L, Dong Y, Lucas S, Bakulin AA, von Hauff E, Pammer F. All-conjugated donor–acceptor block copolymers featuring a pentafulvenyl-polyisocyanide-acceptor. Polym Chem 2020. [DOI: 10.1039/c9py01879d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fulvenyl-functionalized polyisocyanide (PIC2) with a high electron mobility of μe = 10−2 cm2 V−1 s−1 has been incorporated into donor–acceptor block copolymers. Their self-assembly and bulk-morphology have been studied, and potential device applications have been explored.
Collapse
Affiliation(s)
- Sandra Schraff
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| | - Sudeshna Maity
- Department of Physics and Astronomy
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- Netherlands
| | - Laura Schleeper
- Department of Physics and Astronomy
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- Netherlands
- Department of Chemistry
| | - Yifan Dong
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| | - Sebastian Lucas
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| | | | - Elizabeth von Hauff
- Department of Physics and Astronomy
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- Netherlands
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| |
Collapse
|
9
|
Nayak S, Gaonkar SL. A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives. Mini Rev Med Chem 2019; 19:215-238. [PMID: 30112994 DOI: 10.2174/1389557518666180816112151] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
Thiazole is the most common heterocyclic compound in heterocyclic chemistry and in drug design. Presence of several reaction sites in the thiazole moiety extends their range of applications and leads to new solutions for challenges in synthetic and medicinal chemistry. Thiazole derivatives are widely used as bioactive agents, liquid crystals, sensors, catalysts, etc. The motivating molecular architecture of 1,3-thiazoles makes them suitable moieties for drug development. In this review, our aim is to corroborate the recent data available on various synthetic strategies and biological properties of 1,3- thiazole derivatives.
Collapse
Affiliation(s)
- Swarnagowri Nayak
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Santhosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
10
|
Kim JS, Choi JE, Park H, Kim Y, Kim HJ, Han J, Shin JM, Kim BJ. Synthesis and crystallization behavior of regioregular-block-regiorandom poly(3-hexylthiophene) copolymers. Polym Chem 2019. [DOI: 10.1039/c8py01545g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioregular–regiorandom poly(3-hexylthiophene) copolymers, synthesized by chain-transfer polycondensation, show strong crystallinity due to their one-sided distribution of regiodefects.
Collapse
Affiliation(s)
- Jin-Seong Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Jee-Eun Choi
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Hyeonjung Park
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Youngkwon Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Hyeong Jun Kim
- Department of Polymer Science and Engineering
- University of Massachusetts
- Amherst
- USA
| | - Junghun Han
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Jae Man Shin
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| |
Collapse
|
11
|
Caron E, Brown CM, Hean D, Wolf MO. Variable oxidation state sulfur-bridged bithiazole ligands tune the electronic properties of ruthenium(ii) and copper(i) complexes. Dalton Trans 2019; 48:1263-1274. [DOI: 10.1039/c8dt04588g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of homoleptic and heteroleptic ruthenium(ii) and copper(i) complexes containing sulfur-bridged bithiazole ligands of varying oxidation states are reported.
Collapse
Affiliation(s)
- Elise Caron
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | - Duane Hean
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Michael O. Wolf
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
12
|
Leone AK, Mueller EA, McNeil AJ. The History of Palladium-Catalyzed Cross-Couplings Should Inspire the Future of Catalyst-Transfer Polymerization. J Am Chem Soc 2018; 140:15126-15139. [DOI: 10.1021/jacs.8b09103] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amanda K. Leone
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Emily A. Mueller
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
13
|
Schraff S, Sun Y, Pammer F. Fulvenyl-Functionalized Polyisocyanides: Cross-Conjugated Electrochromic Polymers with Variable Optical and Electrochemical Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandra Schraff
- Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Yu Sun
- Technische
Universität
Kaiserslautern, Erwin-Schrödinger-Strasse 54, D-67663 Kaiserslautern, Germany
| | - Frank Pammer
- Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
14
|
Baker MA, Tsai C, Noonan KJT. Diversifying Cross‐Coupling Strategies, Catalysts and Monomers for the Controlled Synthesis of Conjugated Polymers. Chemistry 2018; 24:13078-13088. [DOI: 10.1002/chem.201706102] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Matthew A. Baker
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| | - Chia‐Hua Tsai
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| | - Kevin J. T. Noonan
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| |
Collapse
|
15
|
Leysen P, Mannaerts A, Koeckelberghs G. The Influence of Substituents in the 3-Position on the Polymerization of Metaphenylenes. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pieter Leysen
- Department of Chemistry KU Leuven; Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Astrid Mannaerts
- Department of Chemistry KU Leuven; Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Guy Koeckelberghs
- Department of Chemistry KU Leuven; Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
16
|
Jäger J, Schraff S, Pammer F. Synthesis, Properties, and Solar Cell Performance of Poly(4-(p
-alkoxystyryl)thiazole)s. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jakob Jäger
- Institute of Organic Chemistry II and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sandra Schraff
- Institute of Organic Chemistry II and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
17
|
Grandl M, Sun Y, Pammer F. Electronic and structural properties of N → B-ladder boranes with high electron affinity. Org Chem Front 2018. [DOI: 10.1039/c7qo00876g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of electronically and structurally diverse N → B-ladder boranes has been prepared by hydroboration.
Collapse
Affiliation(s)
| | - Yu Sun
- Fachbereich Chemie
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| |
Collapse
|
18
|
Aplan MP, Gomez ED. Recent Developments in Chain-Growth Polymerizations of Conjugated Polymers. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Melissa P. Aplan
- Department
of Chemical Engineering, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Enrique D. Gomez
- Department
of Chemical Engineering, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Su HL, Sredojevic DN, Bronstein H, Marks TJ, Schroeder BC, Al-Hashimi M. Bithiazole: An Intriguing Electron-Deficient Building for Plastic Electronic Applications. Macromol Rapid Commun 2017; 38. [PMID: 28251727 DOI: 10.1002/marc.201600610] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022]
Abstract
The heterocyclic thiazole unit has been extensively used as electron-deficient building block in π-conjugated materials over the last decade. Its incorporation into organic semiconducting materials is particularly interesting due to its structural resemblance to the more commonly used thiophene building block, thus allowing the optoelectronic properties of a material to be tuned without significantly perturbing its molecular structure. Here, we discuss the structural differences between thiazole- and thiophene-based organic semiconductors, and the effects on the physical properties of the materials. An overview of thiazole-based polymers is provided, which have emerged over the past decade for organic electronic applications and it is discussed how the incorporation of thiazole has affected the device performance of organic solar cells and organic field-effect transistors. Finally, in conclusion, an outlook is presented on how thiazole-based polymers can be incorporated into all-electron deficient polymers in order to obtain high-performance acceptor polymers for use in bulk-heterojunction solar cells and as organic field-effect transistors. Computational methods are used to discuss some newly designed acceptor building blocks that have the potential to be polymerized with a fused bithiazole moiety, hence propelling the advancement of air-stable n-type organic semiconductors.
Collapse
Affiliation(s)
- Haw-Lih Su
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Dusan N Sredojevic
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Hugo Bronstein
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Tobin J Marks
- Department of Chemistry, Materials Research Center, and Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Bob C Schroeder
- Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London, E1 4NS, UK
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| |
Collapse
|
20
|
Verheyen L, Leysen P, Van Den Eede MP, Ceunen W, Hardeman T, Koeckelberghs G. Advances in the controlled polymerization of conjugated polymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.09.085] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Smith ML, Leone AK, Zimmerman PM, McNeil AJ. Impact of Preferential π-Binding in Catalyst-Transfer Polycondensation of Thiazole Derivatives. ACS Macro Lett 2016; 5:1411-1415. [PMID: 35651203 DOI: 10.1021/acsmacrolett.6b00886] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymerizing electron-deficient arenes in a controlled, chain-growth fashion remains a significant challenge despite a decade of research on catalyst-transfer polycondensation. The prevailing hypothesis is that the chain-growth mechanism stalls at a strongly associated metal-polymer π-complex, preventing catalyst turnover. To evaluate this hypothesis, we performed mechanistic studies using thiazole derivatives and identified approaches to improve their chain-growth polymerization. These studies revealed a surprisingly high barrier for chain-walking toward the reactive C-X bond. In addition, a competitive pathway involving chain-transfer to monomer was identified. This pathway is facilitated by ancillary ligand dissociation and N-coordination to the incoming monomer. We found that this chain-transfer pathway can be attenuated by using a rigid ancillary ligand, leading to an improved polymerization. Combined, these studies provide mechanistic insight into the challenges associated with electron-deficient monomers as well as ways to improve their living, chain-growth polymerization. Our mechanistic studies also revealed an unexpected radical anion-mediated oligomerization in the absence of catalyst, as well as a surprising oxidative addition into the thiazole C-S bond in a model system.
Collapse
Affiliation(s)
- Mitchell L. Smith
- Department of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Amanda K. Leone
- Department of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Paul M. Zimmerman
- Department of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J. McNeil
- Department of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
22
|
Leone AK, McNeil AJ. Matchmaking in Catalyst-Transfer Polycondensation: Optimizing Catalysts based on Mechanistic Insight. Acc Chem Res 2016; 49:2822-2831. [PMID: 27936580 DOI: 10.1021/acs.accounts.6b00488] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catalyst-transfer polycondensation (CTP) has emerged as a useful living, chain-growth polymerization method for synthesizing conjugated (hetero)arene-based polymers with targetable molecular weights, narrow dispersities, and controllable copolymer sequences-all properties that significantly influence their performance in devices. Over the past decade, several phosphine- and carbene-ligated Ni- and Pd-based precatalysts have been shown to be effective in CTP. One current limitation is that these traditional CTP catalysts lead to nonliving, non-chain-growth behavior when complex monomer scaffolds are utilized. Because these monomers are often found in the highest-performing materials, there is a significant need to identify alternative CTP catalysts. Recent mechanistic insight into CTP has laid the foundation for designing new catalysts to expand the CTP monomer scope. Building off this insight, we have designed and implemented model systems to identify effective catalysts by understanding their underlying mechanistic behaviors and systematically modifying catalyst structures to improve their chain-growth behavior. In this Account, we describe how each catalyst parameter-the ancillary ligand(s), reactive ligand(s), and transition metal-influences CTP. As an example, ancillary ligands often dictate the turnover-limiting step of the catalytic cycle, and perhaps more importantly, they can be used to promote the formation of the key intermediate (a metal-arene associative complex) and its subsequent reactivity. The fidelity of this intermediate is central to the mechanism for the living, chain-growth polymerization. Reactive ligands, on the other hand, can be used to improve catalyst solubility and accelerate initiation. Additional advantages of the reactive ligand include providing access points for postpolymerization modification and synthesizing polymers directly off surfaces. While the most frequently used CTP catalysts contain nickel, palladium-based catalysts exhibit a higher functional group tolerance and broader substrate scope (e.g., monomers with boron, magnesium, tin, and gold transmetalating agents). Overall, we anticipate that applying the tools and lessons detailed in this Account to other monomers should facilitate a better "matchmaking" process that will lead to new catalyst-transfer polycondensations.
Collapse
Affiliation(s)
- Amanda K. Leone
- Department of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Anne J. McNeil
- Department of Chemistry and
Macromolecular Science and Engineering Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
23
|
Hardeman T, De Becker J, Koeckelberghs G. Influence of the halogen and organometallic function in a KCTP (Co)polymerization. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tine Hardeman
- Division of Polymer Chemistry & Materials; Laboratory for Polymer Synthesis; KU Leuven, Celestijnenlaan 200F Heverlee Leuven 3001 Belgium
| | - Jasmine De Becker
- Division of Polymer Chemistry & Materials; Laboratory for Polymer Synthesis; KU Leuven, Celestijnenlaan 200F Heverlee Leuven 3001 Belgium
| | - Guy Koeckelberghs
- Division of Polymer Chemistry & Materials; Laboratory for Polymer Synthesis; KU Leuven, Celestijnenlaan 200F Heverlee Leuven 3001 Belgium
| |
Collapse
|
24
|
|
25
|
Monnaie F, Verheyen L, De Winter J, Gerbaux P, Brullot W, Verbiest T, Koeckelberghs G. Influence of Structure of End-Group-Functionalized Poly(3-hexylthiophene) and Poly(3-octylselenophene) Anchored on Au Nanoparticles. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Frederic Monnaie
- Laboratory
for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, B-3001 Heverlee, Belgium
| | - Lize Verheyen
- Laboratory
for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, B-3001 Heverlee, Belgium
| | - Julien De Winter
- Organic
Synthesis and Mass Spectrometry Lab, Research Institute for Materials Science
and Engineering, University of Mons-UMONS, 23 Place de Parc, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic
Synthesis and Mass Spectrometry Lab, Research Institute for Materials Science
and Engineering, University of Mons-UMONS, 23 Place de Parc, B-7000 Mons, Belgium
| | - Ward Brullot
- Laboratory
for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan
200D - Box 2425, B-3001 Heverlee, Belgium
| | - Thierry Verbiest
- Laboratory
for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan
200D - Box 2425, B-3001 Heverlee, Belgium
| | - Guy Koeckelberghs
- Laboratory
for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, B-3001 Heverlee, Belgium
| |
Collapse
|
26
|
Yokozawa T, Ohta Y. Transformation of Step-Growth Polymerization into Living Chain-Growth Polymerization. Chem Rev 2015; 116:1950-68. [DOI: 10.1021/acs.chemrev.5b00393] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tsutomu Yokozawa
- Department
of Material and
Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshihiro Ohta
- Department
of Material and
Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
27
|
Grandl M, Pammer F. Preparation of Head-to-Tail Regioregular 6-(1-Alkenyl)-Functionalized Poly(pyridine-2,5-diyl) and its Post-Functionalization via Hydroboration. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Markus Grandl
- Institute of Organic Chemistry II and Advanced Materials; University of Ulm; 89081 Ulm Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials; University of Ulm; 89081 Ulm Germany
| |
Collapse
|
28
|
Grisorio R, Suranna GP. Intramolecular catalyst transfer polymerisation of conjugated monomers: from lessons learned to future challenges. Polym Chem 2015. [DOI: 10.1039/c5py01042j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eleven years after the first reports on intramolecular catalyst transfer polycondensations, this review aims to critically recap on the fundamental “lessons” that can be learned from the historic literature as well as from the fervid activity that has emerged in the last three years.
Collapse
Affiliation(s)
- Roberto Grisorio
- DICATECh – Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica
- Politecnico di Bari
| | - Gian Paolo Suranna
- DICATECh – Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica
- Politecnico di Bari
| |
Collapse
|
29
|
Monnaie F, Ceunen W, De Winter J, Gerbaux P, Cocchi V, Salatelli E, Koeckelberghs G. Synthesis and Transfer of Chirality in Supramolecular Hydrogen Bonded Conjugated Diblock Copolymers. Macromolecules 2014. [DOI: 10.1021/ma502357a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Frederic Monnaie
- Laboratory
for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| | - Ward Ceunen
- Laboratory
for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| | - Julien De Winter
- Organic
Synthesis and Mass Spectrometry Laboratory, Research Institute for
Science and Engineering of Materials, University of Mons-UMONS, 20 Place
de Parc, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic
Synthesis and Mass Spectrometry Laboratory, Research Institute for
Science and Engineering of Materials, University of Mons-UMONS, 20 Place
de Parc, B-7000 Mons, Belgium
| | - Valentina Cocchi
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Elisabetta Salatelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Guy Koeckelberghs
- Laboratory
for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| |
Collapse
|
30
|
Pollit AA, Bridges CR, Seferos DS. Evidence for the Chain-Growth Synthesis of Statistical π-Conjugated Donor-Acceptor Copolymers. Macromol Rapid Commun 2014; 36:65-70. [DOI: 10.1002/marc.201400482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/11/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Adam A. Pollit
- Lash Miller Chemical Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Colin R. Bridges
- Lash Miller Chemical Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Dwight S. Seferos
- Lash Miller Chemical Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|