1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Ma C, Wang H, Sun R, Liao X, Han H, Xie M. Polyacetylene-Based Asymmetric Bicyclic Polymer by Blocking-Cyclization Technique. Macromol Rapid Commun 2024; 45:e2300628. [PMID: 38227809 DOI: 10.1002/marc.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/31/2023] [Indexed: 01/18/2024]
Abstract
A rare asymmetric bicyclic polymer containing different length of conjugated polyacetylene segments is synthesized by metathesis cyclopolymerization-mediated blocking-cyclization technique. The size of each single ring differs from each other, and the unique cyclic polymer topology is controlled by adjusting the feed ratio of monofunctional monomer to catalyst. The topological difference between linear and bicyclic polymers is confirmed by several techniques, and the visualized morphology of asymmetric bicyclic polymer is directly observed without tedious post-modification process. The photoelectric and thermal properties of polymers are investigated. This work expands the pathway for the derivation of cyclic polymers, and such unique topological structure enriches the diversity of cyclic polymer classes.
Collapse
Affiliation(s)
- Cuihong Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hao Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Huijing Han
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Xie M, Zhang L, Quan Y, Wang H, Han H, Liao X, Sun R. Tandem metathesis depolymerization and cyclopolymerization toward flexible-rigid block copolymer with unique damping properties. Polym Chem 2022. [DOI: 10.1039/d2py00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metathesis depolymerization (MDP) of natural rubber (NR) was readily conducted to afford depolymerized NR (dNRx) bearing the living chain end, which can initiate metathesis cyclopolymerization (MCP) of 1,6-heptadiyne monomers to...
Collapse
|
4
|
Yang F, Zhang Z, Chen M, Zhang H, Zhang J, Sun JZ. Functional polydiynes prepared by metathesis cyclopolymerization of 1,7-dihalogen-1,6-heptadiyne derivatives. Polym Chem 2022. [DOI: 10.1039/d2py01145j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MCP route used for the polymerization of 1,6-heptadiynes was successfully applied to the polymerization of 1,7-dihalogen-1,6-heptadiynes, and the target polymers were obtained in high yield with high molecular weight and unique UCST behavior.
Collapse
Affiliation(s)
- Fulin Yang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiming Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Manyu Chen
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
5
|
Li H, Song W, Liao X, Sun R, Xie M. Ionic polyacetylene with a unique nanostructure and high stability by metathesis cyclopolymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d1py00603g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated ionic polyacetylene was synthesized by metathesis cyclopolymerization, and self-assembled into various nanostructures, which exhibited high thermal and oxidative stability.
Collapse
Affiliation(s)
- Hongfei Li
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
- Department of Polymer Science and Engineering
| | - Wei Song
- Department of Polymer and Composite Material
- School of Materials Engineering
- Yancheng Institute of Technology
- Yancheng
- 224051
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
6
|
Kang C, Jung K, Ahn S, Choi TL. Controlled Cyclopolymerization of 1,5-Hexadiynes to Give Narrow Band Gap Conjugated Polyacetylenes Containing Highly Strained Cyclobutenes. J Am Chem Soc 2020; 142:17140-17146. [PMID: 32915557 DOI: 10.1021/jacs.0c07666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For decades, cyclopolymerization of α,ω-diyne derivatives has been an effective method to synthesize various soluble polyacetylenes containing five- to seven-membered rings in the backbone. However, cyclopolymerization to form four-membered carbocycles was considered impossible due to their exceptionally high ring strain (∼30 kcal/mol). Herein, we demonstrate the successful cyclopolymerization of rationally designed 1,5-hexadiyne derivatives to afford various polyacetylenes containing highly strained cyclobutenes in each repeat unit. After screening, Ru catalysts containing bulky diisopropylphenyl groups promoted challenging four-membered ring cyclization efficiently from various monomers, enabling the synthesis of high molecular weight (up to 40 kDa) polyacetylenes in a controlled manner. Furthermore, living polymerization allowed for block copolymer synthesis by combining with ring-opening metathesis polymerization as well as block copolymerization of two different 1,5-hexadiyne monomers to give a fully conjugated polyacetylene. These new polymers unexpectedly showed much narrower band gaps than conventional substituted polyacetylenes by >0.2 eV. Interestingly, computational studies showed much smaller bond length alternation in the conjugated backbone containing cyclobutenes, resulting in highly delocalized π electrons along the polymer chain and lower band gaps.
Collapse
Affiliation(s)
- Cheol Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kijung Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sojeong Ahn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Liu X, Liu F, Liu W, Gu H. ROMP and MCP as Versatile and Forceful Tools to Fabricate Dendronized Polymers for Functional Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1723022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Fangfei Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Multifunctional conjugated 1,6-heptadiynes and its derivatives stimulated molecular electronics: Future moletronics. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Li H, Zhang H, Liao X, Sun R, Xie M. Incorporating trifunctional 1,6-heptadiyne moiety into polyacetylene ionomer for improving its physical and conductive properties. Polym Chem 2020. [DOI: 10.1039/d0py00109k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A trifunctional diyne comonomer can regulate the structure and optimize the physical state of polyacetylene ionomers, which exhibit a high ionic conductivity of 2.6 × 10−5–1.0 × 10−3 S cm−1 at 30 °C.
Collapse
Affiliation(s)
- Hongfei Li
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
- Department of Polymer Science and Engineering
| | - Hengchen Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
10
|
Poly(1,6-heptadiyne)/ABS functionalized microfibers for hydrophobic applications. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1981-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Jung K, Ahmed TS, Lee J, Sung JC, Keum H, Grubbs RH, Choi TL. Living β-selective cyclopolymerization using Ru dithiolate catalysts. Chem Sci 2019; 10:8955-8963. [PMID: 31762976 PMCID: PMC6855257 DOI: 10.1039/c9sc01326a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/22/2019] [Indexed: 11/21/2022] Open
Abstract
Cyclopolymerization (CP) of 1,6-heptadiyne derivatives is a powerful method for synthesizing conjugated polyenes containing five- or six-membered rings via α- or β-addition, respectively. Fifteen years of studies on CP have revealed that user-friendly Ru-based catalysts promoted only α-addition; however, we recently achieved β-selective regiocontrol to produce polyenes containing six-membered-rings, using a dithiolate-chelated Ru-based catalyst. Unfortunately, slow initiation and relatively low catalyst stability inevitably led to uncontrolled polymerization. Nevertheless, this investigation gave us some clues to how successful living polymerization could be achieved. Herein, we report living β-selective CP by rational engineering of the steric factor on monomer or catalyst structures. As a result, the molecular weight of the conjugated polymers from various monomers could be controlled with narrow dispersities, according to the catalyst loading. A mechanistic investigation by in situ kinetic studies using 1H NMR spectroscopy revealed that with appropriate pyridine additives, imposing a steric demand on either the monomer or the catalyst significantly improved the stability of the propagating carbene as well as the relative rates of initiation over propagation, thereby achieving living polymerization. Furthermore, we successfully prepared diblock and even triblock copolymers with a broad monomer scope.
Collapse
Affiliation(s)
- Kijung Jung
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea .
| | - Tonia S Ahmed
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA
| | - Jaeho Lee
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea .
| | - Jong-Chan Sung
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea .
| | - Hyeyun Keum
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea .
| | - Robert H Grubbs
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA
| | - Tae-Lim Choi
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea .
| |
Collapse
|
12
|
Ponkratov DO, Shaplov AS, Vygodskii YS. Metathesis Polymerization in Ionic Media. POLYMER SCIENCE SERIES C 2019. [DOI: 10.1134/s1811238219010144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Disubstituted pendant-functionalized insulating-conductive block copolymer with enhanced dielectric and energy storage performance. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Peterson GI, Yang S, Choi TL. Synthesis of Functional Polyacetylenes via Cyclopolymerization of Diyne Monomers with Grubbs-type Catalysts. Acc Chem Res 2019; 52:994-1005. [PMID: 30689346 DOI: 10.1021/acs.accounts.8b00594] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metathesis cyclopolymerization (CP) of α,ω-diynes is a powerful method to prepare functional polyacetylenes (PAs). PAs have long been studied due to their interesting electrical, optical, photonic, and magnetic properties which make them candidates for use in various advanced applications. Grubbs catalysts are widely used throughout synthetic chemistry, largely due to their accessibility, high reactivity, and tolerance to air, moisture, and many functional groups. Prior to our entrance into this field, only a few examples of CP using modified Grubbs catalysts existed. Inspired by these works, we saw an opportunity to expand the accessibility and utility of Grubbs-catalyzed CPs. We began by exploring CP with popular and commercially available Grubbs catalysts. We found Grubbs third-generation catalyst (G3) to be an excellent catalyst when we used strategies to stabilize the propagating Ru carbene, such as decreasing the polymerization temperature or using weakly coordinating solvent or ligands. Controlled living polymerizations were demonstrated using various 1,6-heptadiyne monomers and yielded polymers with exclusively 5-membered rings (via α-addition) in the polymer backbone. The strategy of stabilizing the Ru carbene was also critical to successful CP with Hoveyda-Grubbs second-generation (HG2) and Grubbs first-generation (G1) catalysts. We found that decomposed Ru species were catalyzing side reactions which could be completely shut down by decreasing the reaction temperature or using weakly coordinating ligands. While HG2 generally led to uncontrolled polymerizations, we found it to be an effective catalyst for monomers with very large side chains. G1 displayed broader functional group tolerance and thus broader monomer scope than G3. We next looked at our ability to change the regioselectivity of the polymerization by using Z-selective catalysts which favor β-addition and the formation of 6-membered rings in the polymer backbone. While modest β-selectivity could be obtained using Grubbs Z-selective catalyst at low temperatures, we found that by using one of Hoveyda and co-workers' catalysts with decreased carbene electrophilicity, we could achieve exclusive formation of 6-membered rings. We also pursued alternative routes to achieve 6+-membered rings in the polymer backbone by using diyne monomers with increased distance between alkynes. We found that optimizing the monomer structure for CP was an effective strategy to achieve controlled polymerizations. By using bulky substituents (maximizing the Thorpe-Ingold effect) and/or using heteroatoms (shorter bonds) to bring the alkynes closer together, controlled living CP could be achieved with various 1,7-octadiyne and 1,8-nonadiyne monomers. Finally, we took advantage of several inherent properties of controlled CP techniques to prepare polymers with advanced architectures and nanostructures. For instance, the living nature of the polymerization enabled production of block copolymers, the tolerance of very large substituents enabled production of dendronized and brush polymers, and the insolubility or crystallinity of some monomers was utilized for the spontaneous self-assembly of polymers into various one- and two-dimensional nanostructures. Overall, the strategies of stabilizing the propagating Ru carbene, modulating the selectivity and reactivity of the Ru carbene, and enhancing the inherent reactivity of monomers were key to improving the utility and performance of CP with Grubbs-type catalysts. The insight provided by these studies will be important for future developments of CP and other metathesis polymerizations utilizing ring-closing steps.
Collapse
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Hu Y, Guo S. Palladacycles bearing COOH-/ester-functionalized N-heterocyclic carbenes: Divergent syntheses and catalytic applications. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanyan Hu
- Department of Chemistry; Capital Normal University; Beijing People's Republic of China
| | - Shuai Guo
- Department of Chemistry; Capital Normal University; Beijing People's Republic of China
| |
Collapse
|
16
|
Chen J, Sun R, Liao X, Han H, Li Y, Xie M. Tandem Metathesis Polymerization-Induced Self-Assembly to Nanostructured Block Copolymer and the Controlled Triazolinedione Modification for Enhancing Dielectric Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01645] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Comparative Studies on Properties of Polymers with Bulky Side Groups Synthesized by Cyclopolymerization of α,ω-Dienes and α,ω-Diynes. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Pasini D, Takeuchi D. Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chem Rev 2018; 118:8983-9057. [PMID: 30146875 DOI: 10.1021/acs.chemrev.8b00286] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monomers possessing two functionalities suitable for polymerization are often designed and utilized in syntheses directed to the formation of cross-linked macromolecules. In this review, we give an account of recent developments related to the use of such monomers in cyclopolymerization processes, in order to form linear, soluble macromolecules. These processes can be activated by means of radical, ionic, or transition-metal mediated chain-growth polymerization mechanisms, to achieve cyclic moieties of variable ring size which are embedded within the polymer backbone, driving and tuning peculiar physical properties of the resulting macromolecules. The two functionalities are covalently linked by a "tether", which can be appropriately designed in order to "imprint" elements of chemical information into the polymer backbone during the synthesis and, in some cases, be removed by postpolymerization reactions. The two functionalities can possess identical or even very different reactivities toward the polymerization mechanism involved; in the latter case, consequences and outcomes related to the sequence-controlled, precision synthesis of macromolecules have been demonstrated. Recent advances in new initiating systems and polymerization catalysts enabled the precision syntheses of polymers with regulated cyclic structures by highly regio- and/or stereoselective cyclopolymerization. Cyclopolymerizations involving double cyclization, ring-opening, or isomerization have been also developed, generating unique repeating structures, which can hardly be obtained by conventional polymerization methods.
Collapse
Affiliation(s)
- Dario Pasini
- Department of Chemistry and INSTM Research Unit , University of Pavia , Viale Taramelli , 10-27100 Pavia , Italy
| | - Daisuke Takeuchi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , 3 Bunkyo-cho , Hirosaki , Aomori , 036-8561 , Japan
| |
Collapse
|
19
|
Li H, Wang J, Han H, Wu J, Xie M. Dual conductivity of ionic polyacetylene by the metathesis cyclopolymerization of dendronized triazolium-functionalized 1,6-heptadiyne. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Wang C, Li H, Zhang H, Sun R, Song W, Xie M. Enhanced Ionic and Electronic Conductivity of Polyacetylene with Dendritic 1,2,3-Triazolium-Oligo(ethylene glycol) Pendants. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cuifang Wang
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Hengchen Zhang
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Wei Song
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| |
Collapse
|
21
|
Braun DE, Lampl M, Wurst K, Kahlenberg V, Griesser UJ, Schottenberger H. Computational and analytical approaches for investigating hydrates: the neat and hydrated solid-state forms of 3-(3-methylimidazolium-1-yl)propanoate. CrystEngComm 2018. [DOI: 10.1039/c8ce01565a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interconversion pathways and stability ranges of OOCEMIM solid-state forms have been elucidated.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy
- University of Innsbruck
- 6020 Innsbruck
- Austria
| | - Martin Lampl
- Institute of General, Inorganic and Theoretical Chemistry
- University of Innsbruck
- 6020 Innsbruck
- Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry
- University of Innsbruck
- 6020 Innsbruck
- Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography
- University of Innsbruck
- 6020 Innsbruck
- Austria
| | | | - Herwig Schottenberger
- Institute of General, Inorganic and Theoretical Chemistry
- University of Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
22
|
Kang C, Kang EH, Choi TL. Successful Cyclopolymerization of 1,6-Heptadiynes Using First-Generation Grubbs Catalyst Twenty Years after Its Invention: Revealing a Comprehensive Picture of Cyclopolymerization Using Grubbs Catalysts. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Cheol Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eun-Hye Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Wu J, Li H, Zhou D, Liao X, Xie M, Sun R. Metathesis cyclopolymerization of substituted 1,6-heptadiyne and dual conductivity of doped polyacetylene bearing branched triazole pendants. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jianhua Wu
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Dandan Zhou
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| |
Collapse
|
24
|
Wu J, Wang C, Zhou D, Liao X, Xie M, Sun R. Branched 1,2,3-Triazolium-Functionalized Polyacetylene with Enhanced Conductivity. Macromol Rapid Commun 2016; 37:2017-2022. [DOI: 10.1002/marc.201600498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jianhua Wu
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Cuifang Wang
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Dandan Zhou
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| |
Collapse
|
25
|
Jung K, Kang EH, Sohn JH, Choi TL. Highly β-Selective Cyclopolymerization of 1,6-Heptadiynes and Ring-Closing Enyne Metathesis Reaction Using Grubbs Z-Selective Catalyst: Unprecedented Regioselectivity for Ru-Based Catalysts. J Am Chem Soc 2016; 138:11227-33. [DOI: 10.1021/jacs.6b05572] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kijung Jung
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Eun-Hye Kang
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Jeong-Hun Sohn
- Department
of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Tae-Lim Choi
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
26
|
Kang EH, Kang C, Yang S, Oks E, Choi TL. Mechanistic Investigations on the Competition between the Cyclopolymerization and [2 + 2 + 2] Cycloaddition of 1,6-Heptadiyne Derivatives Using Second-Generation Grubbs Catalysts. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eun-Hye Kang
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Cheol Kang
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Elina Oks
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Wang J, Li H, Liao X, Xie M, Sun R. Synthesis of triazole-dendronized polyacetylenes by metathesis cyclopolymerization and their conductivity. Polym Chem 2016. [DOI: 10.1039/c6py00724d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dendronized polyacetylenes with triazole-alkyl and triazole-oligo(ethylene glycol) pendants were synthesized, which had a higher ionic conductivity after doping with different ratios of LiTFSI than their intrinsic ones did.
Collapse
Affiliation(s)
- Junfang Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
29
|
Wu J, Chen J, Wang J, Liao X, Xie M, Sun R. Synthesis and conductivity of hyperbranched poly(triazolium)s with various end-capping groups. Polym Chem 2016. [DOI: 10.1039/c5py01735a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched poly(triazolium)s bearing different terminal groups were synthesized, and displayed an elevated conductivity upon the introduction of various flexible end-capped groups and the increase of temperature.
Collapse
Affiliation(s)
- Jianhua Wu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Jie Chen
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Junfang Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
30
|
|
31
|
Guo M, Sun R, Han H, Wu J, Xie M, Liao X. Metathesis Cyclopolymerization of 1,6-Heptadiyne Derivative toward Triphenylamine-Functionalized Polyacetylene with Excellent Optoelectronic Properties and Nanocylinder Morphology. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengfang Guo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Huijing Han
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jianhua Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|