1
|
Tesi L, Stemmler F, Winkler M, Liu SSY, Das S, Sun X, Zharnikov M, Ludwigs S, van Slageren J. Modular Approach to Creating Functionalized Surface Arrays of Molecular Qubits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208998. [PMID: 36609776 DOI: 10.1002/adma.202208998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The quest for developing quantum technologies is driven by the promise of exponentially faster computations, ultrahigh performance sensing, and achieving thorough understanding of many-particle quantum systems. Molecular spins are excellent qubit candidates because they feature long coherence times, are widely tunable through chemical synthesis, and can be interfaced with other quantum platforms such as superconducting qubits. A present challenge for molecular spin qubits is their integration in quantum devices, which requires arranging them in thin films or monolayers on surfaces. However, clear proof of the survival of quantum properties of molecular qubits on surfaces has not been reported so far. Furthermore, little is known about the change in spin dynamics of molecular qubits going from the bulk to monolayers. Here, a versatile bottom-up method is reported to arrange molecular qubits as functional groups of self-assembled monolayers (SAMs) on surfaces, combining molecular self-organization and click chemistry. Coherence times of up to 13 µs demonstrate that qubit properties are maintained or even enhanced in the monolayer.
Collapse
Affiliation(s)
- Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Friedrich Stemmler
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Mario Winkler
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sherri S Y Liu
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Saunak Das
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Xiuming Sun
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Wang Z, Lan Y, Liu P, Li X, Zhao Y. Rational design of a multi-in-one heterofunctional agent for versatile topological transformation of multisite multisegmented polystyrenes. Polym Chem 2022. [DOI: 10.1039/d2py00662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “seven-in-one” initiating, coupling and stimuli-labile agent is designed to achieve topological transformations with reduced, similar and enhanced molar masses.
Collapse
Affiliation(s)
- Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjia Lan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Wang Y, Sahu SP, Clay AJ, Gildersleeve AJ. Concurrent atom transfer radical polymerization and nitroxide radical coupling relay polymerization. Chem Commun (Camb) 2021; 57:3331-3334. [PMID: 33659969 DOI: 10.1039/d1cc00682g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous atom transfer radical polymerization (ATRP) and nitroxide radical coupling (NRC) seems impossible because the presence of nitroxide radicals would quench the radical polymerization immediately. However, by combining a nitroxide radical and an ATRP active halogen, a halogen group that can initiate one polymer chain by ATRP, into one functional reagent and adding this functional reagent to an ATRP system, concurrent ATRP-NRC relay polymerization was carried out successfully under proper reaction conditions. The key to success was the conjugate radical trapping and re-initiation took place repeatedly, resulting in polymers with inserted alkoxyamine linkages. This novel relay polymerization method provides numerous possibilities for macromolecular architecture/functionality tailoring by using of different functional reagents.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | | | | | | |
Collapse
|
4
|
Hoffmann JF, Roos AH, Schmitt FJ, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single-Chain Nanoparticles: Core-Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021; 60:7820-7827. [PMID: 33373475 PMCID: PMC8048794 DOI: 10.1002/anie.202015179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/13/2020] [Indexed: 12/20/2022]
Abstract
Single-chain nanoparticles (SCNPs) are highly versatile structures resembling proteins, able to function as catalysts or biomedical delivery systems. Based on their synthesis by single-chain collapse into nanoparticular systems, their internal structure is complex, resulting in nanosized domains preformed during the crosslinking process. In this study we present proof of such nanocompartments within SCNPs via a combination of electron paramagnetic resonance (EPR) and fluorescence spectroscopy. A novel strategy to encapsulate labels within these water dispersible SCNPs with hydrodynamic radii of ≈5 nm is presented, based on amphiphilic polymers with additional covalently bound labels, attached via the copper catalyzed azide/alkyne "click" reaction (CuAAC). A detailed profile of the interior of the SCNPs and the labels' microenvironment was obtained via electron paramagnetic resonance (EPR) experiments, followed by an assessment of their photophysical properties.
Collapse
Affiliation(s)
- Justus F Hoffmann
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Andreas H Roos
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Franz-Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Dariush Hinderberger
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| |
Collapse
|
5
|
Hoffmann JF, Roos AH, Schmitt F, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single‐Chain Nanoparticles: Core–Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus F. Hoffmann
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Andreas H. Roos
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Franz‐Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 3 06120 Halle Germany
| | - Dariush Hinderberger
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Wolfgang H. Binder
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| |
Collapse
|
6
|
Song W, Huang J, Liu C, Wang X, Wang G. Investigation on the atom transfer nitroxide radical polymerization (ATNRP) mechanism and its versatile applications for bimodal polymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Hurrle S, Goldmann AS, Gliemann H, Mutlu H, Barner-Kowollik C. Light-Induced Step-Growth Polymerization of AB-Type Photo-Monomers at Ambient Temperature. ACS Macro Lett 2018; 7:201-207. [PMID: 35610893 DOI: 10.1021/acsmacrolett.7b01001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We introduce two AB-type monomers able to undergo a facile catalyst-free photoinduced polycycloaddition of photocaged dienes, enabling rapid Diels-Alder ligations under UV-irradiation (λmax = 350 nm) at ambient temperature, closely adhering to Carother's equation established by a careful kinetic study (17800 g mol-1 < Mw < 24700 g mol-1). The resulting macromolecules were in-depth analyzed via size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Additionally, SEC hyphenated to high resolution-electrospray ionization-mass spectrometry (HR-ESI-MS) enabled the careful mapping of the end group structure of the generated polymers. Furthermore, we demonstrate that both monomer systems can be readily copolymerized. The study thus demonstrates that Diels-Alder ligation resting upon photocaged dienes is a powerful tool for accessing step-growth polymers.
Collapse
Affiliation(s)
- Silvana Hurrle
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
| | - Anja S. Goldmann
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
| | - Hartmut Gliemann
- Institut
für Funktionelle Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
| | - Hatice Mutlu
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Aiba M, Higashihara T, Ashizawa M, Otsuka H, Matsumoto H. Triggered Structural Control of Dynamic Covalent Aromatic Polyamides: Effects of Thermal Reorganization Behavior in Solution and Solid States. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b01778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Motohiro Aiba
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Tomoya Higashihara
- Department
of Polymer Science and Engineering, Faculty of Engineering, Yamagata University,
4-3-16 Jonan, Yonezawa City, Yamagata 992-8510, Japan
| | - Minoru Ashizawa
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Hideyuki Otsuka
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Hidetoshi Matsumoto
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
9
|
Huang Z, Chen J, Zhang L, Cheng Z, Zhu X. ICAR ATRP of Acrylonitrile under Ambient and High Pressure. Polymers (Basel) 2016; 8:E59. [PMID: 30979165 PMCID: PMC6432573 DOI: 10.3390/polym8030059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
It is well known that well-defined polyacrylonitrile (PAN) with high molecular weight (Mw > 106 g·mol-1) is an excellent precursor for high performance carbon fiber. In this work, a strategy for initiators for a continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) system for acrylonitrile (AN) was firstly established by using CuCl₂·2H₂O as the catalyst and 2,2'-azobis(2-methylpropionitrile) (AIBN) as the thermal initiator in the presence of ppm level catalyst under ambient and high pressure (5 kbar). The effect of catalyst concentration and polymerization temperature on the polymerization behaviors was investigated. It is important that PAN with ultrahigh viscosity and average molecular weight (Mη = 1,034,500 g·mol-1) could be synthesized within 2 h under high pressure.
Collapse
Affiliation(s)
- Zhicheng Huang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jing Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Su J, Huang H, Cui Y, Chen Y, Liu X. A photo-induced nitroxide trapping method to prepare α,ω-heterotelechelic polymers. Polym Chem 2016. [DOI: 10.1039/c6py00104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A facile and general strategy for the preparation of telechelic polymers is demonstrated via a photo-induced nitroxide radical trapping method.
Collapse
Affiliation(s)
- Jiahui Su
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- Department of Polymeric Material and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
| | - Hong Huang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- Department of Polymeric Material and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
| | - Yanyan Cui
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- Department of Polymeric Material and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
| | - Yingyin Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- Department of Polymeric Material and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
| | - Xiaoxuan Liu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- Department of Polymeric Material and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
| |
Collapse
|
11
|
Chen L, Zhang J, Liu Y, Zhang H, Wang G. Synthesis, characterization, micellization and application of novel multiblock copolymers with the same compositions but different linkages. Polym Chem 2015. [DOI: 10.1039/c5py01103e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several novel multiblock copolymers, (PEO-b-PS-b-PEO-Diyne)s, [PEO-b-PS-b-PEO-(OH)4]s and (PEO-b-PS-b-PEO-Acetal)s, with the same compositions but different linkages were constructed, and their micellization and application were studied.
Collapse
Affiliation(s)
- Lingdi Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Jiaxing Zhang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Yujie Liu
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| |
Collapse
|
12
|
Song W, Huang J, Hang C, Liu C, Wang X, Wang G. Synthesis of thermally cleavable multisegmented polystyrene by an atom transfer nitroxide radical polymerization (ATNRP) mechanism. Polym Chem 2015. [DOI: 10.1039/c5py01493j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on the common features of well-defined NRC reaction, ATRP and NMRP mechanisms, an atom transfer nitroxide radical polymerization (ATNRP) mechanism was presented, and further used to construct multisegmented PSm embedded with multiple alkoxyamine linkages.
Collapse
Affiliation(s)
- Wenguang Song
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Cent of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Jian Huang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Cent of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Cheng Hang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Cent of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Chenyan Liu
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Cent of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Xuepu Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Cent of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Cent of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| |
Collapse
|
13
|
Liu Y, Wang X, Song W, Wang G. Synthesis and characterization of silica nanoparticles functionalized with multiple TEMPO groups and investigation on their oxidation activity. Polym Chem 2015. [DOI: 10.1039/c5py01190f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of novel silica nanoparticles functionalized with multiple TEMPO groups were synthesized using a novel, efficient and versatile protocol, and the catalytic activity of SN-g-(PGMA-TEMPO) was evaluated by the oxidation of benzylic alcohols.
Collapse
Affiliation(s)
- Yujie Liu
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Xuepu Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Wenguang Song
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| |
Collapse
|