1
|
Martí-Rujas J, Famulari A. Polycatenanes Formed of Self-Assembled Metal-Organic Cages. Angew Chem Int Ed Engl 2024; 63:e202407626. [PMID: 38837637 DOI: 10.1002/anie.202407626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Poly-[n]-catenanes (PCs) self-assembled of three-dimensional (3D) metal organic cages (MOCs) (hereafter referred to as PCs-MOCs) are a relatively new class of mechanically interlocked molecules (MIMs) that combine the properties of MOCs and polymers. The synthesis of PCs-MOCs is challenging because of the difficulties associated with interlocking MOCs, the occurrence of multiple weak supramolecular electrostatic interactions between cages, and the importance of solvent templating effects. The high density of mechanical bonds interlocking the MOCs endows the MOCs with mechanical and physical properties such as enhanced stability, responsive dynamic behavior and low solubility, which can unlock new functional properties. In this Minireview, we highlight the benefit of interlocking MOCs in the formation of PCs-MOCs structures as well as the synthetic approaches exploited in their preparation, from thermodynamic to kinetic methods, both in the solution and solid-states. Examples of PCs-MOCs self-assembled from various types of nanosized cages (i.e., tetrahedral, trigonal prismatic, octahedral and icosahedral) are described in this article, providing an overview of the research carried out in this area. The focus is on the structure-property relationship with examples of functional applications such as electron conductivity, X-ray attenuation, gas adsorption and molecular sensing. We believe that the structural and functional aspects of the reviewed PCs-MOCs will attract chemists in this research field with great potential as new functional materials in nanotechnological disciplines such as gas adsorption, sensing and photophysical properties such as X-ray attenuation or electron conductivity.
Collapse
Affiliation(s)
- Javier Martí-Rujas
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy)
| | - Antonino Famulari
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy)
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, 50121, Florence, Italy
| |
Collapse
|
2
|
Capocasa G, Frateloreto F, Valentini M, Di Stefano S. Molecular entanglement can strongly increase basicity. Commun Chem 2024; 7:116. [PMID: 38806668 PMCID: PMC11133330 DOI: 10.1038/s42004-024-01205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Brønsted basicity is a fundamental chemical property featured by several kinds of inorganic and organic compounds. In this Review, we treat a particularly high basicity resulting from the mechanical entanglement involving two or more molecular subunits in catenanes and rotaxanes. Such entanglement allows a number of basic sites to be in close proximity with each other, highly increasing the proton affinity in comparison with the corresponding, non-entangled counterparts up to obtain superbases, properly defined as mechanically interlocked superbases. In the following pages, the development of this kind of superbases will be described with a historical perusal, starting from the initial, serendipitous findings up to the most recent reports where the strong basic property of entangled molecular units is the object of a rational design.
Collapse
Affiliation(s)
- Giorgio Capocasa
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Federico Frateloreto
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Matteo Valentini
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Stefano Di Stefano
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
3
|
Del Giudice D, Di Stefano S. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids. Acc Chem Res 2023; 56:889-899. [PMID: 36916734 PMCID: PMC10077594 DOI: 10.1021/acs.accounts.3c00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
ConspectusThe achievement of artificial systems capable of being maintained in out-of-equilibrium states featuring functional properties is a main goal of current chemical research. Absorption of electromagnetic radiation or consumption of a chemical species (a "chemical fuel") are the two strategies typically employed to reach such out-of-equilibrium states, which have to persist as long as one of the above stimuli is present. For this reason such systems are often referred to as "dissipative systems". In the simplest scheme, the dissipative system is initially found in a resting, equilibrium state. The addition of a chemical fuel causes the system to shift to an out-of-equilibrium state. When the fuel is exhausted, the system reverts to the initial, equilibrium state. Thus, from a mechanistic standpoint, the dissipative system turns out to be a catalyst for the fuel consumption. It has to be noted that, although very simple, this scheme implies the chance to temporally control the dissipative system. In principle, modulating the nature and/or the amount of the chemical fuel added, one can have full control of the time spent by the system in the out-of-equilibrium state.In 2016, we found that 2-cyano-2-phenylpropanoic acid (1a), whose decarboxylation proceeds smoothly under mild basic conditions, could be used as a chemical fuel to drive the back and forth motion of a catenane-based molecular switch. The acid donates a proton to the catenane that passes from the neutral state A to the transient protonated state B. Decarboxylation of the resulting carboxylate (1acb), generates a carbanion, which, being a strong base, retakes the proton from the protonated catenane that, consequently, returns to the initial state A. The larger the amount of the added fuel, the longer the time spent by the catenane in the transient, out-of-equilibrium state. Since then, acid 1a and other activated carboxylic acids (ACAs) have been used to drive the operation of a large number of dissipative systems based on the acid-base reaction, from molecular machines to host-guest systems, from catalysts to smart materials, and so on. This Account illustrates such systems with the purpose to show the wide applicability of ACAs as chemical fuels. This generality is due to the simplicity of the idea underlying the operation principle of ACAs, which always translates into simple experimental requirements.
Collapse
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Tranquilli MM, Rawe BW, Liu G, Rowan SJ. The effect of thread-like monomer structure on the synthesis of poly[ n]catenanes from metallosupramolecular polymers. Chem Sci 2023; 14:2596-2605. [PMID: 36908946 PMCID: PMC9993857 DOI: 10.1039/d2sc05542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The main-chain poly[n]catenane consists of a series of interlocked rings that resemble a macroscopic chain-link structure. Recently, the synthesis of such intriguing polymers was reported via a metallosupramolecular polymer (MSP) template that consists of alternating units of macrocyclic and linear thread-like monomers. Ring closure of the thread components has been shown to yield a mixture of cyclic, linear, and branched poly[n]catenanes. Reported herein are studies aimed at accessing new poly[n]catenanes via this approach and exploring the effect the thread-like monomer structure has on the poly[n]catenane synthesis. Specifically, the effect of the size of the aromatic linker and alkenyl chains of the thread-like monomer is investigated. Three new poly[n]catenanes (with different ring sizes) were prepared using the MSP approach and the results show that tailoring the structure of the thread-like monomer can allow the selective synthesis of branched poly[n]catenanes.
Collapse
Affiliation(s)
| | - Benjamin W Rawe
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL USA
| | - Guancen Liu
- Department of Chemistry, University of Chicago Chicago IL USA
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago Chicago IL USA
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL USA
- Chemical and Engineering Sciences, Argonne National Laboratory Lemont IL USA
| |
Collapse
|
5
|
David AHG, Goodwin RJ, White NG. Supramolecular chemistry of two new bis(1,2,3-triazolyl)pyridine macrocycles: metal complexation, self-assembly and anion binding. Dalton Trans 2023; 52:1902-1912. [PMID: 36722436 DOI: 10.1039/d2dt03985k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two new macrocycles containing the bis(1,2,3-triazolyl)pyridine (btp) motif were prepared in high yields from a btp diazide precursor (1). Solution 1H NMR studies show that this diazide undergoes self-assembly with divalent transition metal ions to form ML2 complexes with pendant azide groups, apparently suitable for conversion into metal-templated catenanes; however attempts to form these catenanes were unsuccessful. Instead a new macrocycle containing two btp motifs was prepared, which forms a nanotube structure in the solid state. Reduction of the azide groups to amines followed by amide bond formation was used to convert 1 into macrocycle 8 containing btp and isophthalamide functionalities. This macrocycle binds halide and oxalate anions in acetonitrile solely through the isophthalamide motif, and binds aromatic dicarboxylates very strongly through both the isophthalamide amide donors and the btp triazole donors. The macrocycle was complexed with Pd(II) and the resulting complexes were shown to bind strongly to halide anions. The solid state structures of [Pd·8·X]BF4 (X = Cl-, Br-, I-) were investigated by X-ray crystallography, which showed that [Pd·8·Br] forms an unusual "chain of dimers" structure assembled by metal complexation, N-H⋯Br- hydrogen bonding and short Pd⋯Pd contacts.
Collapse
Affiliation(s)
- Arthur H G David
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia. .,Institut des Sciences Chimiques de Rennes, Université de Rennes 1, 35042, Rennes, France
| | - Rosemary J Goodwin
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Colley N, Nosiglia MA, Tran SL, Harlan GH, Chang C, Li R, Delawder AO, Zhang Y, Barnes JC. Topologically Controlled Syntheses of Unimolecular Oligo[ n]catenanes. ACS CENTRAL SCIENCE 2022; 8:1672-1682. [PMID: 36589894 PMCID: PMC9801505 DOI: 10.1021/acscentsci.2c00697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 06/17/2023]
Abstract
Catenanes are a well-known class of mechanically interlocked molecules that possess chain-like architectures and have been investigated for decades as molecular machines and switches. However, the synthesis of higher-order catenanes with multiple, linearly interlocked molecular rings has been greatly impeded by the generation of unwanted oligomeric byproducts and figure-of-eight topologies that compete with productive ring closings. Here, we report two general strategies for the synthesis of oligo[n]catenanes that rely on a molecular "zip-tie" strategy, where the "zip-tie" is a central core macrocycle precursor bearing two phenanthroline (phen) ligands to make odd-numbered oligo[n]catenanes, or a preformed asymmetric iron(II) complex consisting of two macrocycle precursors bearing phen and terpyridine ligands to make even-numbered oligo[n]catenanes. In either case, preformed macrocycles or [2]catenanes are threaded onto the central "zip-tie" core using metal templation prior to ring-closing metathesis (RCM) reactions that generate several mechanical bonds in one pot. Using these synthetic strategies, a family of well-defined linear oligo[n]catenanes were synthesized, where n = 2, 3, 4, 5, or 6 interlocked molecular rings, and n = 6 represents the highest number of linearly interlocked rings reported to date for any isolated unimolecular oligo[n]catenane.
Collapse
|
7
|
Del Giudice D, Spatola E, Valentini M, Ercolani G, Di Stefano S. Dissipative Dynamic Libraries (DDLs) and Dissipative Dynamic Combinatorial Chemistry (DDCC). CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Emanuele Spatola
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Matteo Valentini
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Gianfranco Ercolani
- Dipartimento di Scienze e Tecnologie Chimiche Università di Roma Tor Vergata Via della Ricerca Scientifica 00133 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| |
Collapse
|
8
|
Nosiglia MA, Colley ND, Danielson MK, Palmquist MS, Delawder AO, Tran SL, Harlan GH, Barnes JC. Metalation/Demetalation as a Postgelation Strategy To Tune the Mechanical Properties of Catenane-Crosslinked Gels. J Am Chem Soc 2022; 144:9990-9996. [PMID: 35617307 DOI: 10.1021/jacs.2c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanically interlocked molecules (MIMs) possess unique architectures and nontraditional degrees of freedom that arise from well-defined topologies that are achieved through precise mechanical bonding. Incorporation of MIMs into materials can thus provide an avenue to discover new and emergent macroscale properties. Here, the synthesis of a phenanthroline-based [2]catenane crosslinker and its incorporation into polyacrylate organogels are described. Specifically, Cu(I) metalation and demetalation was used as a postgelation strategy to tune the mechanical properties of a gel by controlling the conformational motions of integrated MIMs. The organogels were prepared via thermally initiated free radical polymerization, and Cu(I) metal was added in MeOH to the pretreated, swollen gels. Demetalation of the gels was achieved by adding lithium cyanide and washing the gels. Changes in Young's and shear moduli, as well as tensile strength, were quantified through oscillatory shear rheology and tensile testing. The reported approach provides a general method for postgelation tuning of mechanical properties using metals and well-defined catenane topologies as part of a gel network architecture.
Collapse
Affiliation(s)
- Mark A Nosiglia
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Nathan D Colley
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Mary K Danielson
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Mark S Palmquist
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Abigail O Delawder
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Sheila L Tran
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Gray H Harlan
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jonathan C Barnes
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
9
|
Tranquilli MM, Wu Q, Rowan SJ. Effect of metallosupramolecular polymer concentration on the synthesis of poly[ n]catenanes. Chem Sci 2021; 12:8722-8730. [PMID: 34257871 PMCID: PMC8246094 DOI: 10.1039/d1sc02450g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022] Open
Abstract
Poly[n]catenanes are a class of polymers that are composed entirely of interlocked rings. One synthetic route to these polymers involves the formation of a metallosupramolecular polymer (MSP) that consists of alternating units of macrocyclic and linear thread components. Ring closure of the thread components has been shown to yield a mixture of cyclic, linear, and branched poly[n]catenanes. Reported herein are investigations into this synthetic methodology, with a focus on a more detailed understanding of the crude product distribution and how the concentration of the MSP during the ring closing reaction impacts the resulting poly[n]catenanes. In addition to a better understanding of the molecular products obtained in these reactions, the results show that the concentration of the reaction can be used to tune the size and type of poly[n]catenanes accessed. At low concentrations the interlocked product distribution is limited to primarily oligomeric and small cyclic catenanes . However, the same reaction at increased concentration can yield branched poly[n]catenanes with an ca. 21 kg mol-1, with evidence of structures containing as many as 640 interlocked rings (1000 kg mol-1).
Collapse
Affiliation(s)
| | - Qiong Wu
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL USA
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago Chicago IL USA
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL USA
- Chemical and Engineering Sciences, Argonne National Laboratory Lemont IL USA
| |
Collapse
|
10
|
|
11
|
Sharma AK, Malineni J, Box S, Ghiassinejad S, van Ruymbeke E, Fustin CA. Synthetic platform for mono-functionalised tridentate macrocycles as key precursors of mechanically-linked macromolecular systems. Org Chem Front 2021. [DOI: 10.1039/d1qo00245g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Macrocycles bearing a variety of functional groups give access to a wide range of synthetic methods for further derivatisation or preparation of more complex structures such as mechanically interlocked molecules or polymeric materials.
Collapse
Affiliation(s)
- Atul Kumar Sharma
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter Division (BSMA)
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
| | - Jagadeesh Malineni
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter Division (BSMA)
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
| | - Simon Box
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter Division (BSMA)
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
| | - Sina Ghiassinejad
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter Division (BSMA)
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
| | - Evelyne van Ruymbeke
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter Division (BSMA)
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter Division (BSMA)
- Université catholique de Louvain
- Louvain-la-Neuve
- Belgium
| |
Collapse
|
12
|
Li G, Wang L, Wu L, Guo Z, Zhao J, Liu Y, Bai R, Yan X. Woven Polymer Networks via the Topological Transformation of a [2]Catenane. J Am Chem Soc 2020; 142:14343-14349. [PMID: 32787257 DOI: 10.1021/jacs.0c06416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Weaving technology has been widely used to manufacture macroscopic fabrics to meet the artistic and practical needs of humanity for thousands of years. However, the fabrication of molecular fabrics with fascinating topologies and unique mechanical properties represents a significant challenge. Herein, we describe a topological transformation strategy to construct woven polymer networks (WPNs) at the molecular level via ring-opening metathesis polymerization (ROMP) of a zinc-template [2]catenane. The key feature of this approach is the exploitation of the pre-existing catenane crossing points that maintain the dense woven structure and the flexible alkyl chains on the [2]catenane that synergistically work with the crossing points to modulate the physicochemical and mechanical properties of the woven materials. As a result, the WPN possesses a certain degree of flexibility and stretchability, as well as high thermostability and mechanical robustness. Furthermore, we could remove the zinc ions to endow the WPN with more degrees of freedom and then enhance its mechanical behaviors by remetalation. This study not only provides a novel strategy toward woven materials with intriguing structural features and emergent mechanical adaptivities, but also highlights that mechanically interlocked molecules could offer unique opportunities for the construction of smart supramolecular materials with peculiar interlaced topologies at the molecular scale.
Collapse
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
13
|
Colley ND, Nosiglia MA, Li L, Amir F, Chang C, Greene AF, Fisher JM, Li R, Li X, Barnes JC. One-Pot Synthesis of a Linear [4]Catenate Using Orthogonal Metal Templation and Ring-Closing Metathesis. Inorg Chem 2020; 59:10450-10460. [DOI: 10.1021/acs.inorgchem.0c00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nathan D. Colley
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Mark A. Nosiglia
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lei Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Faheem Amir
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Christy Chang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Angelique F. Greene
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jeremy M. Fisher
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Ruihan Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Xuesong Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jonathan C. Barnes
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
14
|
Biagini C, Capocasa G, Del Giudice D, Cataldi V, Mandolini L, Di Stefano S. Controlling the liberation rate of the in situ release of a chemical fuel for the operationally autonomous motions of molecular machines. Org Biomol Chem 2020; 18:3867-3873. [PMID: 32373832 DOI: 10.1039/d0ob00669f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Second-order rate constants of the aminolysis of 2-cyano-2-phenylpropanoic anhydride 3 by a series of N-methylanilines differently substituted in the aromatic moiety (4a-d) were measured in dichloromethane. The common reaction product of aminolysis is 2-cyano-2-phenylpropanoic acid 1, which is known to be an effective fuel for acid-base driven molecular machines, but cannot be used in molar excess with respect to the machine. The motivation behind the kinetic study has been the prospect of using the aminolysis of 3 to supply the machine with fuel at a rate that is never so high as to overfeed the system, thus avoiding the malfunction of the machine with concomitant waste of fuel. Knowledge of the kinetic parameters dictated the choice of 4c as the best nucleophile in the lot for feeding acid 1 into a catenane-based molecular machine at a rate that ensured a correct operation.
Collapse
Affiliation(s)
- Chiara Biagini
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Valerio Cataldi
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Luigi Mandolini
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
15
|
Engler A, Kohl PA. Kinetic Investigation on the Cationic Polymerization of o-Phthalaldehyde: Understanding Ring-Expansion Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anthony Engler
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paul A. Kohl
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Biagini C, Capocasa G, Cataldi V, Del Giudice D, Mandolini L, Di Stefano S. The Hydrolysis of the Anhydride of 2‐Cyano‐2‐phenylpropanoic Acid Triggers the Repeated Back and Forth Motions of an Acid–Base Operated Molecular Switch. Chemistry 2019; 25:15205-15211. [DOI: 10.1002/chem.201904048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Chiara Biagini
- Dipartimento di ChimicaUniversità di Roma “La Sapienza” and Istituto, CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione P.le A. Moro 5 00185 Roma Italy
| | - Giorgio Capocasa
- Dipartimento di ChimicaUniversità di Roma “La Sapienza” and Istituto, CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione P.le A. Moro 5 00185 Roma Italy
| | - Valerio Cataldi
- Dipartimento di ChimicaUniversità di Roma “La Sapienza” and Istituto, CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione P.le A. Moro 5 00185 Roma Italy
| | - Daniele Del Giudice
- Dipartimento di ChimicaUniversità di Roma “La Sapienza” and Istituto, CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione P.le A. Moro 5 00185 Roma Italy
| | - Luigi Mandolini
- Dipartimento di ChimicaUniversità di Roma “La Sapienza” and Istituto, CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione P.le A. Moro 5 00185 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di ChimicaUniversità di Roma “La Sapienza” and Istituto, CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione P.le A. Moro 5 00185 Roma Italy
| |
Collapse
|
17
|
Di Stefano S, Mandolini L. The canonical behavior of the entropic component of thermodynamic effective molarity. An attempt at unifying covalent and noncovalent cyclizations. Phys Chem Chem Phys 2019; 21:955-987. [DOI: 10.1039/c8cp06344c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The statistically corrected entropic component of effective molarity (EMS*) complies with the “canonical” values expressed by the log plot of EMS* vs. the number n of single bonds in the ring product.
Collapse
Affiliation(s)
- Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC
- Sezione Meccanismi di Reazione c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
- 00185 Rome
- Italy
| | - Luigi Mandolini
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC
- Sezione Meccanismi di Reazione c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
- 00185 Rome
- Italy
| |
Collapse
|
18
|
Mena-Hernando S, Pérez EM. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem Soc Rev 2019; 48:5016-5032. [DOI: 10.1039/c8cs00888d] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An overview of the progress in mechanically interlocked materials is presented. In particular, we focus on polycatenanes, polyrotaxanes, metal–organic rotaxane frameworks (MORFs), and mechanically interlocked derivatives of carbon nanotubes (MINTs).
Collapse
|
19
|
Biagini C, Di Pietri F, Mandolini L, Lanzalunga O, Di Stefano S. Photoinduced Release of a Chemical Fuel for Acid-Base-Operated Molecular Machines. Chemistry 2018; 24:10122-10127. [PMID: 29697159 DOI: 10.1002/chem.201800474] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/24/2023]
Abstract
Back and forth motions of the acid-base-operated molecular switch 1 are photo-controlled by irradiation of a solution, which also contains the photolabile pre-fuel 4. The photo-stimulated deprotection of the pre-fuel produces controlled amounts of acid 2, the base-promoted decarboxylation of which fuels the back and forth motions of the Sauvage-type [2]-catenane-based molecular switch. Because switch 1 and pre-fuel 4 do not interact in the absence of irradiation, an excess of the latter with respect to 1 can be added to the solution from the beginning. In principle, photocontrol of the back and forth motions of any molecular machine, the operation of which is guided by protonation/deprotonation, could be attained by use of pre-fuel 4, or of any other protected acid that undergoes deprotection by irradiation with light at a proper wavelength, followed by decarboxylation under conveniently mild conditions.
Collapse
Affiliation(s)
- Chiara Biagini
- Dipartimento di Chimica, Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Flaminia Di Pietri
- Dipartimento di Chimica, Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Luigi Mandolini
- Dipartimento di Chimica, Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
20
|
Quaglio D, Zappia G, De Paolis E, Balducci S, Botta B, Ghirga F. Olefin metathesis reaction as a locking tool for macrocycle and mechanomolecule construction. Org Chem Front 2018. [DOI: 10.1039/c8qo00728d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present review deals with an updated visit to the olefin metathesis reaction as a powerful tool for the construction of sophisticated macromolecular architectures.
Collapse
Affiliation(s)
- Deborah Quaglio
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- 00185 Rome
- Italy
| | - Giovanni Zappia
- Dipartimento di Scienze Biomolecolari
- Università degli Studi di Urbino “Carlo Bo”
- 61029 Urbino
- Italy
| | - Elisa De Paolis
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- 00185 Rome
- Italy
- Center for Life Nano Science@Sapienza
| | - Silvia Balducci
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- 00185 Rome
- Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- 00185 Rome
- Italy
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza
- Istituto Italiano di Tecnologia
- 00161 Rome
- Italy
| |
Collapse
|
21
|
Wu Q, Rauscher PM, Lang X, Wojtecki RJ, de Pablo JJ, Hore MJA, Rowan SJ. Poly[ n]catenanes: Synthesis of molecular interlocked chains. Science 2017; 358:1434-1439. [PMID: 29192134 DOI: 10.1126/science.aap7675] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2.
Collapse
Affiliation(s)
- Qiong Wu
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Phillip M Rauscher
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Xiaolong Lang
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rudy J Wojtecki
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Materials Science Division and Institute for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Michael J A Hore
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stuart J Rowan
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.,Materials Science Division and Institute for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA.,Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Biagini C, Albano S, Caruso R, Mandolini L, Berrocal JA, Di Stefano S. Variations in the fuel structure control the rate of the back and forth motions of a chemically fuelled molecular switch. Chem Sci 2017; 9:181-188. [PMID: 29629086 PMCID: PMC5869305 DOI: 10.1039/c7sc04123c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022] Open
Abstract
Moderate variations in the fuel structure cause large changes in the rate of the back and forth motions experienced by a chemically fuelled catenane-based switch.
This work deals with the use of 2-cyano-2-arylpropanoic acids as chemical fuels for an acid–base operated molecular switch that consists of a Sauvage-type catenand composed of two identical macrocycles incorporating a phenanthroline unit. When used as a base promoter of the decarboxylation of propanoic acid derivatives, the switch undergoes large amplitude motion from the neutral catenand to a protonated catenate and back again to the neutral state. The rate of back proton transfer, which determines the rate of the overall process, was markedly affected by para-substituents in the order Cl > H > CH3 > OCH3 (ρ = +5.2). Thus, the time required to complete a full cycle was almost two days for the OCH3 derivative and dropped to a few minutes for the Cl derivative. These results show for the first time that the rate of operation of a molecular switch can be regulated by variations in the fuel structure.
Collapse
Affiliation(s)
- Chiara Biagini
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC , Sezione Meccanismi di Reazione c/o Dipartimento di Chimica , Università degli Studi di Roma "La Sapienza" , P.le A. Moro 5 , 00185 Rome , Italy .
| | - Simone Albano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC , Sezione Meccanismi di Reazione c/o Dipartimento di Chimica , Università degli Studi di Roma "La Sapienza" , P.le A. Moro 5 , 00185 Rome , Italy .
| | - Rachele Caruso
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC , Sezione Meccanismi di Reazione c/o Dipartimento di Chimica , Università degli Studi di Roma "La Sapienza" , P.le A. Moro 5 , 00185 Rome , Italy .
| | - Luigi Mandolini
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC , Sezione Meccanismi di Reazione c/o Dipartimento di Chimica , Università degli Studi di Roma "La Sapienza" , P.le A. Moro 5 , 00185 Rome , Italy .
| | - José Augusto Berrocal
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC , Sezione Meccanismi di Reazione c/o Dipartimento di Chimica , Università degli Studi di Roma "La Sapienza" , P.le A. Moro 5 , 00185 Rome , Italy .
| |
Collapse
|
23
|
Teunissen AJP, Berrocal JA, Corbet CHWA, Meijer EW. Supramolecular polymerization of a ureidopyrimidinone-based [2]catenane prepared via ring-closing metathesis. ACTA ACUST UNITED AC 2017; 55:2971-2976. [PMID: 28931969 PMCID: PMC5575501 DOI: 10.1002/pola.28694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/06/2017] [Indexed: 12/01/2022]
Abstract
The synthesis and supramolecular polymerization of a ureidopyrimidinone‐based Sauvage‐type [2]catenane is reported. The monomer synthesis explores many routes using the elegant metathesis catalysts of Bob Grubbs, yielding a catenane with one ureidopyrimidinone in each cycle. The supramolecular polymer obtained features both mechanical bonds and quadruple hydrogen bonding connections.
![]()
Collapse
Affiliation(s)
- Abraham J P Teunissen
- Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands.,Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands
| | - José Augusto Berrocal
- Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands.,Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands
| | - Christiaan H W A Corbet
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands.,Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands
| |
Collapse
|
24
|
Ahamed BN, Van Velthem P, Robeyns K, Fustin CA. Influence of a Single Catenane on the Solid-State Properties of Mechanically Linked Polymers. ACS Macro Lett 2017; 6:468-472. [PMID: 35610870 DOI: 10.1021/acsmacrolett.7b00204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on mechanically linked polymers containing a single catenane in the middle of the chain. These polymers were synthesized by a simple procedure consisting in "clicking" polymer chains onto a functionalized palladium-templated [2]catenane, allowing the preparation of a variety of mechanically linked polymers. The flexibility of the catenane junction was modulated by removing the Pd ion from the catenane to unlock the macrocycles and increase their mobility. We show that this mobility change has a strong impact on the solid-state properties of the polymers. This is illustrated by studying the glass transition temperature of polystyrene-based polymers and the crystallization behavior of poly(ethylene oxide)-based polymers. Our study proves that a change of flexibility of a single catenane inserted into a polymer chain drastically influences the polymer behavior in the solid state.
Collapse
Affiliation(s)
- B. Nisar Ahamed
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft
Matter Division (BSMA), and ‡Institute of Condensed Matter and Nanosciences (IMCN),
Molecules Structure and Reactivity Division (MOST), Université catholique de Louvain, Place Pasteur
1, 1348, Louvain-la-Neuve, Belgium
| | - Pascal Van Velthem
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft
Matter Division (BSMA), and ‡Institute of Condensed Matter and Nanosciences (IMCN),
Molecules Structure and Reactivity Division (MOST), Université catholique de Louvain, Place Pasteur
1, 1348, Louvain-la-Neuve, Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft
Matter Division (BSMA), and ‡Institute of Condensed Matter and Nanosciences (IMCN),
Molecules Structure and Reactivity Division (MOST), Université catholique de Louvain, Place Pasteur
1, 1348, Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft
Matter Division (BSMA), and ‡Institute of Condensed Matter and Nanosciences (IMCN),
Molecules Structure and Reactivity Division (MOST), Université catholique de Louvain, Place Pasteur
1, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
25
|
Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Berrocal JA, Biagini C, Mandolini L, Di Stefano S. Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch. Angew Chem Int Ed Engl 2016; 55:6997-7001. [PMID: 27145060 DOI: 10.1002/anie.201602594] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 11/06/2022]
Abstract
The decarboxylation of 2-cyano-2-phenylpropanoic acid is fast and quantitative when carried out in the presence of 1 molar equivalent of a [2]catenane composed of two identical macrocycles incorporating a 1,10-phenanthroline unit in their backbone. When decarboxylation is over, all of the catenane molecules have experienced large-amplitude motions from neutral to protonated catenane, and back again to the neutral form, so that they are ready to perform another cycle. This study provides the first example of the cyclic operation of a molecular switch at the sole expenses of the energy supplied by the substrate undergoing chemical transformation, without recourse to additional stimuli.
Collapse
Affiliation(s)
- José Augusto Berrocal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB Eindhoven, The Netherlands
| | - Chiara Biagini
- Dipartimento di Chimica, Università di Roma La Sapienza and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, P. le A. Moro 5, 00185, Roma, Italy
| | - Luigi Mandolini
- Dipartimento di Chimica, Università di Roma La Sapienza and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, P. le A. Moro 5, 00185, Roma, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma La Sapienza and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, P. le A. Moro 5, 00185, Roma, Italy.
| |
Collapse
|
28
|
Berrocal JA, Biagini C, Mandolini L, Di Stefano S. Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- José Augusto Berrocal
- Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Chiara Biagini
- Dipartimento di Chimica; Università di Roma La Sapienza and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione; P. le A. Moro 5 00185 Roma Italy
| | - Luigi Mandolini
- Dipartimento di Chimica; Università di Roma La Sapienza and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione; P. le A. Moro 5 00185 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica; Università di Roma La Sapienza and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione; P. le A. Moro 5 00185 Roma Italy
| |
Collapse
|
29
|
Equilibrium Effective Molarity As a Key Concept in Ring-Chain Equilibria, Dynamic Combinatorial Chemistry, Cooperativity and Self-assembly. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.apoc.2016.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
30
|
Berrocal JA, Albano S, Mandolini L, Di Stefano S. A CuI-Based Metallo-Supramolecular Gel-Like Material Built from a Library of Oligomeric Ligands Featuring Exotopic 1,10-Phenanthroline Units. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Di Stefano S, Ercolani G. Catenation Equilibria Between Ring Oligomers and Their Relation to Effective Molarities: Models From Theories and Simulations. MACROMOL THEOR SIMUL 2015. [DOI: 10.1002/mats.201500050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefano Di Stefano
- Dipartimento di Chimica, Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica; Università di Roma La Sapienza; P.le A. Moro 5 00185 Roma Italy
| | - Gianfranco Ercolani
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 00133 Roma Italy
| |
Collapse
|