1
|
Botticelli S, La Penna G, Nobili G, Rossi G, Stellato F, Morante S. Modelling Protein Plasticity: The Example of Frataxin and Its Variants. Molecules 2022; 27:1955. [PMID: 35335316 PMCID: PMC8950120 DOI: 10.3390/molecules27061955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Frataxin (FXN) is a protein involved in storage and delivery of iron in the mitochondria. Single-point mutations in the FXN gene lead to reduced production of functional frataxin, with the consequent dyshomeostasis of iron. FXN variants are at the basis of neurological impairment (the Friedreich's ataxia) and several types of cancer. By using altruistic metadynamics in conjunction with the maximal constrained entropy principle, we estimate the change of free energy in the protein unfolding of frataxin and of some of its pathological mutants. The sampled configurations highlight differences between the wild-type and mutated sequences in the stability of the folded state. In partial agreement with thermodynamic experiments, where most of the analyzed variants are characterized by lower thermal stability compared to wild type, the D104G variant is found with a stability comparable to the wild-type sequence and a lower water-accessible surface area. These observations, obtained with the new approach we propose in our work, point to a functional switch, affected by single-point mutations, of frataxin from iron storage to iron release. The method is suitable to investigate wide structural changes in proteins in general, after a proper tuning of the chosen collective variable used to perform the transition.
Collapse
Affiliation(s)
- Simone Botticelli
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| | - Giovanni La Penna
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Firenze, Italy
| | - Germano Nobili
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| | - Giancarlo Rossi
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, I-00184 Roma, Italy
| | - Francesco Stellato
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, I-00184 Roma, Italy
| | - Silvia Morante
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| |
Collapse
|
2
|
Yamauchi M, Okumura H. Dimerization of α-Synuclein Fragments Studied by Isothermal-Isobaric Replica-Permutation Molecular Dynamics Simulation. J Chem Inf Model 2021; 61:1307-1321. [PMID: 33625841 DOI: 10.1021/acs.jcim.0c01056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregates and fibrils of intrinsically disordered α-synuclein are associated with Parkinson's disease. Within a non-amyloid β component (NAC) spanning from the 61st to the 95th residue of α-synuclein, an 11-residue segment called NACore (68GAVVTGVTAVA78) is an essential region for both fibril formation and cytotoxicity. Although NACore peptides alone are known to form aggregates and amyloid fibrils, the mechanisms of aggregation and fibrillation remain unknown. This study investigated the dimerization process of NACore peptides as the initial stage of the aggregation and fibrillation processes. We performed an isothermal-isobaric replica-permutation molecular dynamics simulation, which is one of the efficient sampling methods, for the two NACore peptides in explicit water over 96 μs. The simulation succeeded in sampling a variety of dimer structures. An analysis of secondary structure revealed that most of the NACore dimers form intermolecular β-bridges. In particular, more antiparallel β-bridges were observed than parallel β-bridges. We also found that intramolecular secondary structures such as α-helix and antiparallel β-bridge are stabilized in the pre-dimer state. However, we identified that the intermolecular β-bridges tend to form directly between residues with no specific structure rather than via the intramolecular β-bridges. This is because the NACore peptides still have a low propensity to form the intramolecular secondary structures even though they are stabilized in the pre-dimer state.
Collapse
Affiliation(s)
- Masataka Yamauchi
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
3
|
Morante S, La Penna G, Rossi G, Stellato F. SARS-CoV-2 Virion Stabilization by Zn Binding. Front Mol Biosci 2020; 7:222. [PMID: 33195401 PMCID: PMC7533540 DOI: 10.3389/fmolb.2020.00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Zinc plays a crucial role in the process of virion maturation inside the host cell. The accessory Cys-rich proteins expressed in SARS-CoV-2 by genes ORF7a and ORF8 are likely involved in zinc binding and in interactions with cellular antigens activated by extensive disulfide bonds. In this report we provide a proof of concept for the feasibility of a structural study of orf7a and orf8 proteins. A conceivable hypothesis is that lack of cellular zinc, or substitution thereof, might lead to a significant slowing down of viral maturation.
Collapse
Affiliation(s)
- Silvia Morante
- Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy.,INFN, Sezione di Roma Tor Vergata, Rome, Italy
| | - Giovanni La Penna
- INFN, Sezione di Roma Tor Vergata, Rome, Italy.,CNR, Insitute of Chemistry of Organometallic Compounds, Firenze, Italy
| | - Giancarlo Rossi
- Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy.,INFN, Sezione di Roma Tor Vergata, Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Francesco Stellato
- Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy.,INFN, Sezione di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Furlan S, La Penna G, Appelhans D, Cangiotti M, Ottaviani MF, Danani A. Combined EPR and molecular modeling study of PPI dendrimers interacting with copper ions: effect of generation and maltose decoration. J Phys Chem B 2014; 118:12098-111. [PMID: 25247928 DOI: 10.1021/jp505420s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the early onset of neurodegeneration is crucial to deploy specific treatments for patients before the process becomes irreversible. Copper has been proposed as a biomarker for many neurodegenerative disorders, being the ion released by pathologically unfolded proteins involved in many biochemical pathways. Dendrimers are macromolecules that bind metal ions with a large ion/ligand ratio, thus, allowing a massive collection of copper. This work provides structural information, obtained via molecular modeling and EPR, for the binding sites of copper in polypropyleneimine (PPI) dendrimers, especially in the maltose decorated form that has potential applications in diagnosis and therapies for various types of neurodegenerations. The analysis of the EPR spectra showed that, at the lowest Cu concentrations, the results are well supported by the calculations. Moreover, EPR analysis at increasing Cu(II) concentration allowed us to follow the saturation behavior of the interacting sites identified by the modeling study.
Collapse
Affiliation(s)
- Sara Furlan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via Giorgieri 1, I-34127 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
5
|
La Penna G, Hureau C, Faller P. Learning chemistry with multiple first-principles simulations. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.927064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Furlan S, La Penna G. Metal ions and protons compete for ligand atoms in disordered peptides: Examples from computer simulations of copper binding to the prion tandem repeat. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Furlan S, La Penna G. Modeling of the Zn2+ binding in the 1–16 region of the amyloid β peptide involved in Alzheimer’s disease. Phys Chem Chem Phys 2009; 11:6468-81. [DOI: 10.1039/b822771c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|