1
|
Reda H, Chazirakis A, Behbahani AF, Savva N, Harmandaris V. Revealing the Role of Chain Conformations on the Origin of the Mechanical Reinforcement in Glassy Polymer Nanocomposites. NANO LETTERS 2024; 24:148-155. [PMID: 37983090 DOI: 10.1021/acs.nanolett.3c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Understanding the mechanism of mechanical reinforcement in glassy polymer nanocomposites is of paramount importance for their tailored design. Here, we present a detailed investigation, via atomistic simulation, of the coupling between density, structure, and conformations of polymer chains with respect to their role in mechanical reinforcement. Probing the properties at the molecular level reveals that the effective mass density as well as the rigidity of the matrix region changes with filler volume fraction, while that of the interphase remains constant. The origin of the mechanical reinforcement is attributed to the heterogeneous chain conformations in the vicinity of the nanoparticles, involving a 2-fold mechanism. In the low-loading regime, the reinforcement comes mainly from a thin, single-molecule, 2D-like layer of adsorbed polymer segments on the nanoparticle, whereas in the high-loading regime, the reinforcement is dominated by the coupling between train and bridge conformations; the latter involves segments connecting neighboring nanoparticles.
Collapse
Affiliation(s)
- Hilal Reda
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Anthony Chazirakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion GR 71110, Greece
| | - Alireza Foroozani Behbahani
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion GR 71110, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR 71110, Greece
| | - Nikos Savva
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Vagelis Harmandaris
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion GR 71110, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR 71110, Greece
| |
Collapse
|
2
|
White RP, Lipson JEG. Why Volume and Dynamics Decouple in Nanocomposite Matrices: Space that Cannot Be Accessed is Not Free. PHYSICAL REVIEW LETTERS 2023; 131:018101. [PMID: 37478446 DOI: 10.1103/physrevlett.131.018101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/31/2023] [Indexed: 07/23/2023]
Abstract
Polymer nanocomposites have important material applications and are an ongoing focus of many molecular level investigations, however, puzzling experimental results exist. For example, specific volumes for some polymer nanocomposite matrices are 2% to 4% higher than for the neat polymer; in a pure polymer melt this would correspond to a pressure change of 40 to 100 MPa, and a decrease in isothermal segmental relaxation times of 3 to 5 orders of magnitude. However, the nanocomposite segmental dynamics do not show any speed up. We can explain this apparent uncoupling of dynamics from specific volume, and the key is to consider the system expansivity, i.e., the temperature dependence of the volumetric data, together with the concept of limiting volume at close liquid packing. Using pressure, volume, temperature data as a path to both, we are able to predict the effect of nanoadditives on the accessible, i.e., free, space in the material, which is critical for facilitating molecular rearrangements in dense systems. Our analysis explains why an increase in specific volume in a material may not always lead to faster segmental dynamics.
Collapse
Affiliation(s)
- Ronald P White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jane E G Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
3
|
Power AJ, Papananou H, Rissanou AN, Labardi M, Chrissopoulou K, Harmandaris V, Anastasiadis SH. Dynamics of Polymer Chains in Poly(ethylene oxide)/Silica Nanocomposites via a Combined Computational and Experimental Approach. J Phys Chem B 2022; 126:7745-7760. [PMID: 36136347 DOI: 10.1021/acs.jpcb.2c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of polymer chains in poly(ethylene oxide)/silica (PEO/SiO2) nanoparticle nanohybrids have been investigated via a combined computational and experimental approach involving atomistic molecular dynamics simulations and dielectric relaxation spectroscopy (DRS) measurements. The complementarity of the approaches allows us to study systems with different polymer molecular weights, nanoparticle radii, and compositions across a broad range of temperatures. We study the effects of spatial confinement, which is induced by the nanoparticles, and chain adsorption on the polymer's structure and dynamics. The investigation of the static properties of the nanocomposites via detailed atomistic simulations revealed a heterogeneous polymer density layer at the vicinity of the PEO/SiO2 interface that exhibited an intense maximum close to the inorganic surface, whereas the bulk density was reached for distances ∼1-1.2 nm away from the nanoparticle. For small volume fractions of nanoparticles, the polymer dynamics, probed by the atomistic simulations of low-molecular-weight chains at high temperatures, are consistent with the presence of a thin adsorbed layer that exhibits slow dynamics, with the dynamics far away from the nanoparticle being similar to those in the bulk. However, for high volume fractions of nanoparticles (strong confinement), the dynamics of all polymer chains were predicted slower than that in the bulk. On the other hand, similar dynamics were found experimentally for both the local β-process and the segmental dynamics for high-molecular-weight systems measured at temperatures below the melting temperature of the polymer, which were probed by DRS. These differences can be attributed to various parameters, including systems of different molecular weights and nanoparticle states of dispersion, the different temperature range studied by the different methods, the potential presence of a reduced-mobility PEO/SiO2 interfacial layer that does not contribute to the dielectric spectrum, and the presence of amorphous-crystalline interfaces in the experimental samples that may lead to a different dynamical behaviors of the PEO chains.
Collapse
Affiliation(s)
- Albert J Power
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Hellen Papananou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Chemistry, University of Crete, P.O. Box 2208, Heraklion 71003, Greece
| | - Anastassia N Rissanou
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Massimiliano Labardi
- CNR-IPCF, c/o Physics Department, University of Pisa, Largo Pontecorvo 3, Pisa 56127, Italy
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Spiros H Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Chemistry, University of Crete, P.O. Box 2208, Heraklion 71003, Greece
| |
Collapse
|
4
|
Fujii H, Terabayashi I, Kobayashi K, Watanabe M. Modeling photoacoustic pressure generation in colloidal suspensions at different volume fractions based on a multi-scale approach. PHOTOACOUSTICS 2022; 27:100368. [PMID: 35646589 PMCID: PMC9130529 DOI: 10.1016/j.pacs.2022.100368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Further development of quantitative photoacoustic tomography requires understanding the photoacoustic pressure generation by modeling the generation process. This study modeled the initial photoacoustic pressure in colloidal suspensions, used as tissue phantoms, at different volume fractions on a multi-scale approach. We modeled the thermodynamic and light scattering properties on a microscopic scale with/without treating the hard-sphere interaction between colloidal particles. Meanwhile, we did the light energy density on a macroscopic scale. We showed that the hard-sphere interaction significantly influences the initial pressure and related quantities at a high volume fraction except for the thermodynamic properties. We also showed the initial pressure at the absorber inside the medium logarithmically decreases with increasing the volume fractions. This result is mainly due to the decay of the light energy density with light scattering. Our numerical results suggest that modeling light scattering and propagation is crucial over modeling thermal expansion.
Collapse
|
5
|
Rheological properties of crosslinked unentangled and entangled Poly(methyl acrylate) nanocomposite networks. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Drayer WF, Simmons DS. Sequence Effects on the Glass Transition of a Model Copolymer System. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William F. Drayer
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - David S. Simmons
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
7
|
C.S. JC, P.K. B, V.S R, Raman V, T.K BS, Sasi S, Antony JV. Bionanocomposites based on natural rubber and cellulose nanofibrils from arecanut husk: Rheological, mechanical and thermal characterizations. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Mirzahossein E, Grzelka M, Pan Z, Demirkurt B, Habibi M, Brouwer AM, Bonn D. Molecular rotors to probe the local viscosity of a polymer glass. J Chem Phys 2022; 156:174901. [DOI: 10.1063/5.0087572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate the local viscosity of a polymer glass around its glass transition temperature using environment-sensitive fluorescent molecular rotors embedded in the polymer matrix. The rotors' fluorescence depends on the local viscosity, and measuring the fluorescence intensity and lifetime of the probe therefore allows to measure the local free volume in the polymer glass when going through the glass transition. This also allows us to study the local viscosity and free volume when the polymer film is put under an external stress. We find that the film does not flow homogeneously, but undergoes shear banding that is visible as a spatially varying free volume and viscosity.
Collapse
Affiliation(s)
| | - Marion Grzelka
- University of Amsterdam Van der Waals-Zeeman Institute, Netherlands
| | - Zhongcheng Pan
- Institute of Physics, University of Amsterdam Van der Waals-Zeeman Institute, Netherlands
| | - Begüm Demirkurt
- University of Amsterdam Van 't Hoff Institute for Molecular Sciences, Netherlands
| | - Mehdi Habibi
- Laboratory of Physical Chemistry of Foods, Wageningen University, 6708WG Wageningen, Netherlands
| | - Albert M Brouwer
- University of Amsterdam Van 't Hoff Institute for Molecular Sciences, Netherlands
| | - Daniel Bonn
- Institute of Physics, University of Amsterdam, Netherlands
| |
Collapse
|
9
|
Liu Y, Cai L, Ma L, Li M, Yang J, Chen K, Yin P. Modulating Polymer Dynamics via Supramolecular Interaction with Ultrasmall Nanocages for Recyclable Gas Separation Membranes with Intrinsic Microporosity. NANO LETTERS 2021; 21:9021-9029. [PMID: 34714086 DOI: 10.1021/acs.nanolett.1c02379] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The engineering of mixed-matrix membranes is severely hindered by the trade-off between mechanical performance and effective utilization of inorganic fillers' microporosity. Herein, we report a feasible approach for optimal gas separation membranes through the fabrication of coordination nanocages with poly(4-vinylpyridine) (P4VP) via strong supramolecular interactions, enabling the homogeneous dispersion of nanocages in polymer matrixes with long-term structural stability. Meanwhile, suggested from dynamics studies, the strong attraction between P4VP and nanocages slows down polymer dynamics and rigidifies the polymer chains, leading to frustrated packing and lowered densities of the polymer matrix. This effect allows the micropores of nanocages to be accessible to external gas molecules, contributing to the intrinsic microporosity of the nanocomposites and the simultaneous enhancement of permselectivities. The facile strategy for supramolecular synthesis and polymer dynamics attenuation paves avenues to rational design of functional hybrid membranes for gas separation applications.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Litao Ma
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Mu Li
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Kun Chen
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
10
|
Li X, Li Z, Shen J, Zheng Z, Liu J. Role of a nanoparticle network in polymer mechanical reinforcement: insights from molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:21797-21807. [PMID: 34550123 DOI: 10.1039/d1cp03153h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fully understanding the mechanism by which nanoparticles (NPs) strengthen polymer matrices is crucial for fabricating high-performance polymer nanocomposites (PNCs). Herein, coarse-grained molecular dynamics simulations were adopted to explicitly investigate the reinforcing effect of a NP network. Our results revealed that increasing the NP-NP interactions induced the self-assembly of NPs into a three-dimensional (3D) network that reinforced the polymer matrix. The reinforcing mechanism of NP-NP interactions was quite different from that of NP-polymer interactions. The latter promoted the orientation of polymer chains to transfer the external stress, while the former distributed the stress throughout the NP network. This work revealed the mechanism by which the NP network reinforced the polymer matrix at the molecular level and also provided guidelines for developing high performance PNCs via interfacial modification.
Collapse
Affiliation(s)
- Xiu Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Ziwei Li
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jianxiang Shen
- Department of Polymer Materials and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zijian Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
11
|
Skountzos EN, Tsalikis DG, Stephanou PS, Mavrantzas VG. Individual Contributions of Adsorbed and Free Chains to Microscopic Dynamics of Unentangled poly(ethylene Glycol)/Silica Nanocomposite Melts and the Important Role of End Groups: Theory and Simulation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emmanuel N. Skountzos
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras, GR 26504, Greece
| | - Dimitrios G. Tsalikis
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras, GR 26504, Greece
| | - Pavlos S. Stephanou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras, GR 26504, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
12
|
Nardelli F, Martini F, Carignani E, Rossi E, Borsacchi S, Cettolin M, Susanna A, Arimondi M, Giannini L, Geppi M, Calucci L. Glassy and Polymer Dynamics of Elastomers by 1H-Field-Cycling NMR Relaxometry: Effects of Fillers. J Phys Chem B 2021; 125:4546-4554. [PMID: 33885314 PMCID: PMC8279540 DOI: 10.1021/acs.jpcb.1c00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Indexed: 11/30/2022]
Abstract
1H spin-lattice relaxation rate (R1) dispersions were acquired by field-cycling (FC) NMR relaxometry between 0.01 and 35 MHz over a wide temperature range on polyisoprene rubber (IR), either unfilled or filled with different amounts of carbon black, silica, or a combination of both, and sulfur cured. By exploiting the frequency-temperature superposition principle and constructing master curves for the total FC NMR susceptibility, χ″(ω) = ωR1(ω), the correlation times for glassy dynamics, τs, were determined. Moreover, the contribution of polymer dynamics, χpol″(ω), to χ″(ω) was singled out by subtracting the contribution of glassy dynamics, χglass″(ω), well represented by the Cole-Davidson spectral density. Glassy dynamics resulted moderately modified by the presence of fillers, τs values determined for the filled rubbers being slightly different from those of the unfilled one. Polymer dynamics was affected by the presence of fillers in the Rouse regime. A change in the frequency dependence of χpol″(ω) at low frequencies was observed for all filled rubbers, more pronounced for those reinforced with silica, which suggests that the presence of the filler particles can affect chain conformations, resulting in a different Rouse mode distribution, and/or interchain interactions modulated by translational motions.
Collapse
Affiliation(s)
- Francesca Nardelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Istituto
di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle
Ricerche, via G. Moruzzi
1, 56124 Pisa, Italy
| | - Francesca Martini
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Istituto
di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle
Ricerche, via G. Moruzzi
1, 56124 Pisa, Italy
- Centro
per l’Integrazione della Strumentazione Scientifica dell’Università
di Pisa (CISUP), Lungarno
Pacinotti 43, 56126 Pisa, Italy
| | - Elisa Carignani
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Istituto
di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle
Ricerche, via G. Moruzzi
1, 56124 Pisa, Italy
| | - Elena Rossi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Silvia Borsacchi
- Istituto
di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle
Ricerche, via G. Moruzzi
1, 56124 Pisa, Italy
- Centro
per l’Integrazione della Strumentazione Scientifica dell’Università
di Pisa (CISUP), Lungarno
Pacinotti 43, 56126 Pisa, Italy
| | | | | | | | - Luca Giannini
- Pirelli
Tyre SpA, Viale Sarca 222, 20126 Milano, Italy
| | - Marco Geppi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Istituto
di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle
Ricerche, via G. Moruzzi
1, 56124 Pisa, Italy
- Centro
per l’Integrazione della Strumentazione Scientifica dell’Università
di Pisa (CISUP), Lungarno
Pacinotti 43, 56126 Pisa, Italy
| | - Lucia Calucci
- Istituto
di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle
Ricerche, via G. Moruzzi
1, 56124 Pisa, Italy
- Centro
per l’Integrazione della Strumentazione Scientifica dell’Università
di Pisa (CISUP), Lungarno
Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
13
|
Abstract
The molecular structure of bound layers at attractive polymer-nanoparticle interfaces strongly influences the properties of nanocomposites. Thus, a unifying theoretical framework that can provide insights into the correlations between the molecular structure of the bound layers, their thermodynamics, and macroscopic properties is highly desirable. In this work, molecular dynamics simulations were used in combination with local fingerprint analysis of configurational entropy and interaction energy at the segmental scale, with the goal to establish such physical grounds. The thickness of bound polymer layers is found to be independent of the polymer chain length, as deduced from density oscillations at the surface of a nanotube. The local configurational entropy of layers is estimated from pair correlations in equilibrium structures. By plotting mean layer entropy vs internal energy on a phase diagram, a one-to-one equivalence is established between the local structures of layers and their thermodynamic properties. Moreover, a gradient in local dynamics of segments in bound layers under equilibrium is observed normal to the nanoparticle surface. The relaxation times of individual layers show correspondence to their phase diagram fingerprints, thus suggesting that a unified perspective can be envisioned for such materials built on the grounds of locally heterogeneous interfaces.
Collapse
Affiliation(s)
- Ali Gooneie
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
14
|
Zhang Y, Zhou H. Segmental relaxations and other insights into filler‐mediated interactions for carbon black‐filled polybutadiene rubber. J Appl Polym Sci 2020. [DOI: 10.1002/app.49244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuanhong Zhang
- Section of Fundamental Research, EVE Rubber Institute Co., Ltd. Qingdao China
| | - Hongbin Zhou
- Section of Fundamental Research, EVE Rubber Institute Co., Ltd. Qingdao China
| |
Collapse
|
15
|
|
16
|
Shen J, Lin X, Liu J, Li X. Revisiting stress-strain behavior and mechanical reinforcement of polymer nanocomposites from molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:16760-16771. [PMID: 32662467 DOI: 10.1039/d0cp02225j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Through coarse-grained molecular dynamics simulations, the effects of nanoparticle properties, polymer-nanoparticle interactions, chain crosslinks and temperature on the stress-strain behavior and mechanical reinforcement of polymer nanocomposites (PNCs) are comprehensively investigated. By regulating the filler-polymer interaction (miscibility) in a wide range, an optimal dispersion state of nanoparticles is found at moderate interaction strength, while the mechanical properties of PNCs are improved monotonically with the increase of the particle-polymer interaction due to the tele-bridge structures of nanoparticles via polymer chains. Although smaller-sized fillers more easily build interconnected structures, the elastic moduli of PNCs at the percolation threshold concentration where a three-dimensional filler network forms are almost independent of nanoparticle size. Compared with spherical nanoparticles, anisotropic rod-like ones, especially with larger aspect ratio and rod stiffness, contribute exceptional reinforcement towards polymer materials. In addition, the elastic modulus with the strain, derived from the stress-strain curve, shows an analogous nonlinear behavior to the amplitude-dependence of the storage modulus (Payne effect). Such a behavior originates essentially from the failure/breakup of the microstructures contributing to the mechanical reinforcement, such as bound polymer layers around nanoparticles or nanoparticle networking structures. The Young's modulus as a function of the nanoparticle volume fraction greatly exceeds that predicted by the Einstein-Smallwood model and Guth-Gold model, which arises primarily from the contribution of the local/global filler network. The temperature dependence of the Young's modulus is further examined by mode coupling theory (MCT) and the Vogel-Fulcher-Tammann (VFT) equation, and the results indicate that the time-temperature superposition principle holds modestly above the critical temperature on the short-time (small-length) scale of elastic response. This work is expected to provide some guidance on controlling and improving the mechanical properties and nonlinear behavior of PNCs.
Collapse
Affiliation(s)
- Jianxiang Shen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing 314001, P. R. China.
| | | | | | | |
Collapse
|
17
|
Zhao A, Shi XY, Sun SH, Zhang HM, Zuo M, Song YH, Zheng Q. Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2462-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Mapesa EU, Street DP, Heres MF, Kilbey SM, Sangoro J. Wetting and Chain Packing across Interfacial Zones Affect Distribution of Relaxations in Polymer and Polymer-Grafted Nanocomposites. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Emmanuel U. Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Dayton P. Street
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maximilian F. Heres
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - S. Michael Kilbey
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
19
|
Zhang X, Wei W, Jin X, Xiong H. Chain Dimension and Dynamics of Polymers in Well-Defined Non-sticky Nanocomposites of Molecular Nanoparticle Polyhedral Oligomeric Silsesquioxane/Poly(butylene oxide). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinlin Zhang
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Wei
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xin Jin
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huiming Xiong
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
20
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Azamian Jazi M, Ramezani S.A. A, Haddadi SA, Ghaderi S, Azamian F. In situ
emulsion polymerization and characterization of PVAc nanocomposites including colloidal silica nanoparticles for wood specimens bonding. J Appl Polym Sci 2020; 137:48570. [DOI: 10.1002/app.48570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/14/2019] [Indexed: 07/27/2023]
Affiliation(s)
- Mehrdad Azamian Jazi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| | - Ahmad Ramezani S.A.
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| | - Seyyed Arash Haddadi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
- School of Engineering, University of British Columbia Kelowna V1V 1V7 Canada
| | - Saeed Ghaderi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology P.O. Box: 11365‐9465 Tehran Iran
| | - Fariba Azamian
- Department of Materials Science and NanotechnologySharif University of Technology, International Campus‐Kish 794117‐76655 Kish Iran
| |
Collapse
|
22
|
Kempfer K, Devémy J, Dequidt A, Couty M, Malfreyt P. Multi-scale modeling of the polymer-filler interaction. SOFT MATTER 2020; 16:1538-1547. [PMID: 31939976 DOI: 10.1039/c9sm01959f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report mesoscopic simulations of the interaction between a silica nanoparticle and cis-1,4-polybutadiene chains with realistic coarse-(CG) grained models. The CG models are obtained with a bottom-up Bayesian method based on trajectory matching of atomistic configurations of the system. We then investigate the structural properties of the interfacial region as a function of the grafting density and polymer chain length. We take advantage of the realistic CG models to explore the dynamics of the nanoparticle over a period of 10 microseconds. We show that the dynamics of the nanoparticle is affected by the grafting density and the polymer chain length of the grafted chains.
Collapse
Affiliation(s)
- Kevin Kempfer
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | | | | | | | | |
Collapse
|
23
|
Boonsomwong K, Genix AC, Chauveau E, Fromental JM, Dieudonné-George P, Sirisinha C, Oberdisse J. Rejuvenating the structure and rheological properties of silica nanocomposites based on natural rubber. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Yang J, Melton M, Sun R, Yang W, Cheng S. Decoupling the Polymer Dynamics and the Nanoparticle Network Dynamics of Polymer Nanocomposites through Dielectric Spectroscopy and Rheology. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01584] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Matthew Melton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ruikun Sun
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
25
|
Yang S, Akcora P. Deformation of Chemically Heterogeneous Interfacial Layers of Polymer Nanocomposites. ACS Macro Lett 2019; 8:1635-1641. [PMID: 35619398 DOI: 10.1021/acsmacrolett.9b00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dynamics of entangled interfacial polymer layers around nanoparticles determine the linear rheological properties of polymer nanocomposites. In this study, the nonlinear elastic properties of nanocomposites are examined under large-amplitude oscillatory shear (LAOS) flow to reveal the effect of interfacial chemical heterogeneity on the deformation mechanism of polymer-grafted and polymer-adsorbed nanoparticle composites. Adsorbed-poly(methyl methacrylate) (PMMA) layers presented stronger interfacial stiffening and reinforcement than PMMA-grafted layers. Chemical heterogeneities of interfacial layers, provided by polymer-adsorbed and low graft density particles, deformed at smaller strains than the poly(ethylene oxide) (PEO) matrix. Interfaces of loosely bound PMMA and PEO exhibited stiffening at low strains due to the enhanced chain mixing and entanglements. These results demonstrate that chemical and dynamic heterogeneities in interfacial layers have significant importance in designing adaptive polymer nanocomposites for large shear deformation.
Collapse
Affiliation(s)
- Siyang Yang
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Pinar Akcora
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
26
|
|
27
|
Robles-Hernández B, Monnier X, Pomposo JA, Gonzalez-Burgos M, Cangialosi D, Alegría A. Glassy Dynamics of an All-Polymer Nanocomposite Based on Polystyrene Single-Chain Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Xavier Monnier
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Jose A. Pomposo
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Marina Gonzalez-Burgos
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Daniele Cangialosi
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Angel Alegría
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
28
|
Nanoparticle Dispersion and Glass Transition Behavior of Polyimide-grafted Silica Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2300-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Opposite Effects of SiO 2 Nanoparticles on the Local α and Larger-Scale α' Segmental Relaxation Dynamics of PMMA Nanocomposites. Polymers (Basel) 2019; 11:polym11060979. [PMID: 31163669 PMCID: PMC6630292 DOI: 10.3390/polym11060979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
The segmental relaxation dynamics of poly(methyl methacrylate)/silica (PMMA/SiO2) nanocomposites with different compositions (ϕSiO2) near and above the glass transition temperature were investigated by mechanical spectroscopy. At ϕSiO2 ≤ 0.5%, the α peak temperature hardly changes with ϕSiO2, but that of α’ relaxation composed of Rouse and sub-Rouse modes decreases by 15 °C due to the increase of free volume. At ϕSiO2 ≥ 0.7%, both α and α’ relaxations shift to high temperatures because of the steric hindrance introduced by nanoparticle agglomeration. On the other hand, with increasing ϕSiO2, the peak height for α relaxation increases at ϕSiO2 ≤ 0.5% and then decreases at ϕSiO2 ≥ 0.7%, but that for α’ relaxation shows an opposite behavior. This is because at low ϕSiO2, the short-chain segments related to α relaxation can easily bypass the particles, but the longer-chain segments related to α’ relaxation cannot. At high ϕSiO2, the polymer chains were bound to the nanoparticles due to the physical adsorption effect, leading to the decrease of relaxation unit concentration involved in α relaxation. However, the dissociation of those bonds with heating and the concentration heterogeneity of polymer chains result in the increase of peak height for α’ relaxation.
Collapse
|
30
|
Balwani A, Faraone A, Davis EM. Impact of Nanoparticles on the Segmental and Swelling Dynamics of Ionomer Nanocomposite Membranes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Apoorv Balwani
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Antonio Faraone
- National Institute
of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20878, United States
| | - Eric M. Davis
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
31
|
Smith SM, Simmons DS. Poisson ratio mismatch drives low-strain reinforcement in elastomeric nanocomposites. SOFT MATTER 2019; 15:656-670. [PMID: 30617354 DOI: 10.1039/c8sm02333f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Introduction of nanoparticulate additives can dramatically impact elastomer mechanical response, with large enhancements in modulus, toughness, and strength. Despite the societal importance of these effects, their mechanistic origin remains unsettled. Here, using a combination of theory and molecular dynamics simulation, we show that low-strain extensional reinforcement of elastomers is driven by a nanoparticulate-jamming-induced suppression in the composite Poisson ratio. This suppression forces an increase in rubber volume with extensional deformation, effectively converting a portion of the rubber's bulk modulus into an extensional modulus. A theory describing this effect is shown to interrelate the Poisson ratio and modulus across a matrix of simulated elastomeric nanocomposites of varying loading and nanoparticle structure. This model provides a design rule for structured nanoparticulates that maximizes elastomer mechanical response via suppression of the composite Poisson ratio. It also positions elastomeric nanocomposites as having a qualitatively different character than Poisson-ratio-matched plastic nanocomposites, where this mechanism is absent.
Collapse
Affiliation(s)
- Scott M Smith
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, USA
| | - David S Simmons
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, USA.
| |
Collapse
|
32
|
Holt AP, Roland CM. Segmental and secondary dynamics of nanoparticle-grafted oligomers. SOFT MATTER 2018; 14:8604-8611. [PMID: 30318533 DOI: 10.1039/c8sm01443d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The local segmental and secondary dynamics of tetramethylene oxide oligomer grafted to silica nanoparticles (NPs) were investigated as a function of grafting density and molecular weight. Grafting slows the segmental (α) dynamics, but gives rise to faster secondary (β) motions. Interestingly, the magnitude of these effects decreases with the extent of grafting (i.e., surface coverage), as well as with oligomer molecular weight. The disparity in dynamical effects reflects the decoupling of the segmental and more local β dynamics, the former is associated with stronger dynamic correlations that extend over a greater spatial range. This results in greater sensitivity to interactions, including tethering of the chains to the NP surface.
Collapse
Affiliation(s)
- Adam P Holt
- Chemistry Division, Naval Research Laboratory, Code 6105, Washington, DC 20375-5342, USA.
| | | |
Collapse
|
33
|
Yang S, Liu S, Narayanan S, Zhang C, Akcora P. Chemical heterogeneity in interfacial layers of polymer nanocomposites. SOFT MATTER 2018; 14:4784-4791. [PMID: 29808217 DOI: 10.1039/c8sm00663f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is well-known that particle-polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature.
Collapse
Affiliation(s)
- Siyang Yang
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | | | |
Collapse
|
34
|
Anas K, David S, Babu R, Selvakumar M, Chattopadhyay S. Energy dissipation characteristics of crosslinks in natural rubber: an assessment using low and high-frequency analyzer. JOURNAL OF POLYMER ENGINEERING 2018. [DOI: 10.1515/polyeng-2016-0425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The dynamic deformation of a viscoelastic material can cause heat generation. This heat generation is an aspect of energy dissipation. The present paper investigates the contribution of crosslink type and density on energy dissipation mechanism in natural rubber compounds. The influences of these elements are investigated using a very high frequency (VHF) analyzer (VHF 104) and a dynamical mechanical analyzer (DMA). The VHF 104 analyzer follows transmissibility and vibration isolation principle, whereas DMA works on dynamical mechanical the deformation principle. Higher crosslink density promotes lower heat generation in rubber compounds. Tan δ interpretation for energy dissipation characteristics of rubbery compounds should be done judiciously to avoid wrong interpretations. Polysulfidic linkages show higher damping ratios (ζ) than monosulfidic or disulfidic linkages due to their dissipative nature. The natural frequency (ω
n) of a system at a given mass is the function of its crosslink density.
Collapse
Affiliation(s)
- K. Anas
- Rubber Technology Centre , Indian Institute of Technology , Kharagpur 721 302 , India
- SRF Limited , Chennai , India
| | - Samson David
- Global R & D-CV, Apollo Tyres Ltd , Chennai , India
| | - R.R. Babu
- Global R & D-CV, Apollo Tyres Ltd , Chennai , India
| | - M. Selvakumar
- Rubber Technology Centre , Indian Institute of Technology , Kharagpur 721 302 , India
| | - S. Chattopadhyay
- Rubber Technology Centre , Indian Institute of Technology , Kharagpur 721 302 , India
| |
Collapse
|
35
|
Zuo B, Inutsuka M, Kawaguchi D, Wang X, Tanaka K. Conformational Relaxation of Poly(styrene-co-butadiene) Chains at Substrate Interface in Spin-Coated and Solvent-Cast Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02756] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Biao Zuo
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | | | | | - Xinping Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | | |
Collapse
|
36
|
Xu H, Song Y, Jia E, Zheng Q. Dynamics heterogeneity in silica-filled nitrile butadiene rubber. J Appl Polym Sci 2018. [DOI: 10.1002/app.46223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huilong Xu
- Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yihu Song
- Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Erwen Jia
- Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qiang Zheng
- Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
37
|
Chen Q, Zuo M, Song YH, Zheng Q. Molecular dynamics and phase behavior of polystyrene/poly(vinyl methyl ether) blend in the presence of nanosilica. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1980-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Sotta P, Albouy PA, Abou Taha M, Long DR, Grau P, Fayolle C, Papon A. Nonentropic Reinforcement in Elastomer Nanocomposites. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Paul Sotta
- Laboratoire
Polymères et Matériaux Avancés, UMR5268, CNRS/Solvay, 87 avenue des Frères Perret, 69192 Saint Fons Cedex, France
| | - Pierre-Antoine Albouy
- Laboratoire
de Physique des Solides, UMR8502, CNRS/Université Paris-Sud, 91405 Orsay Cedex, France
| | - Mohammad Abou Taha
- Laboratoire
Polymères et Matériaux Avancés, UMR5268, CNRS/Solvay, 87 avenue des Frères Perret, 69192 Saint Fons Cedex, France
| | - Didier R. Long
- Laboratoire
Polymères et Matériaux Avancés, UMR5268, CNRS/Solvay, 87 avenue des Frères Perret, 69192 Saint Fons Cedex, France
| | - Pauline Grau
- Solvay R&I Centre Lyon, 85 avenue des Frères Perret, 69192 Saint Fons Cedex, France
| | - Caroline Fayolle
- Solvay Silica, 15 rue Pierre Pays, 69660 Collonges au Mont dOr, France
| | - Aurélie Papon
- Solvay Silica, 15 rue Pierre Pays, 69660 Collonges au Mont dOr, France
| |
Collapse
|
39
|
Carroll B, Cheng S, Sokolov AP. Analyzing the Interfacial Layer Properties in Polymer Nanocomposites by Broadband Dielectric Spectroscopy. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00825] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Shiwang Cheng
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexei P. Sokolov
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
40
|
Burgos-Mármol JJ, Álvarez-Machancoses Ó, Patti A. Modeling the Effect of Polymer Chain Stiffness on the Behavior of Polymer Nanocomposites. J Phys Chem B 2017; 121:6245-6256. [PMID: 28537739 DOI: 10.1021/acs.jpcb.7b02502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to their central role in industrial formulations spanning from food packaging to smart coatings, polymer nanocomposites have been the object of remarkable attention over the last two decades. Incorporating nanoparticles (NPs) into a polymer matrix modifies the conformation and mobility of the polymer chains at the NP-polymer interface and can potentially provide materials with enhanced properties as compared to pristine polymers. To this end, it is crucial to predict and control the ability of NPs to diffuse and achieve a good dispersion in the polymer matrix. Understanding how to control the NPs' dispersion is a challenging task controlled by the delicate balance between enthalpic and entropic contributions, such as NP-polymer interaction, NP size and shape, and polymer chain conformation. By performing molecular dynamics (MD) simulations, we investigate the effect of polymer chains' stiffness on the mobility of spherical NPs that establish weak or strong interactions with the polymer. Our results show a sound dependence of the NPs' diffusivity on the long-range order of the polymer melt, which undergoes an isotropic-to-nematic phase transition upon increasing chain stiffness. This phase transition induces a dynamical anisotropy in the nematic phase, with the NPs preferentially diffusing along the nematic director rather than in the directions perpendicular to it. Not only does this tendency determine the NPs' mobility and degree of dispersion in the polymer matrix, but it also influences the resistance to flow of the polymer nanocomposite when a shear is applied. In particular, to assess the role of the chains' conformation on the macroscopic response of our model PNC, we employ reverse nonequilibrium MD to calculate the zero-shear viscosity in both the isotropic and nematic phases, and unveil a plasticizing effect at increasing chain stiffness when the shear is applied along the nematic axis.
Collapse
Affiliation(s)
- J Javier Burgos-Mármol
- School of Chemical Engineering and Analytical Science, The University of Manchester , Sackville Street, Manchester M13 9PL, U.K
| | - Óscar Álvarez-Machancoses
- School of Chemical Engineering and Analytical Science, The University of Manchester , Sackville Street, Manchester M13 9PL, U.K
| | - Alessandro Patti
- School of Chemical Engineering and Analytical Science, The University of Manchester , Sackville Street, Manchester M13 9PL, U.K
| |
Collapse
|
41
|
Smith SM, Simmons DS. HORIZONS FOR DESIGN OF FILLED RUBBER INFORMED BY MOLECULAR DYNAMICS SIMULATION. RUBBER CHEMISTRY AND TECHNOLOGY 2017. [DOI: 10.5254/rct.17.82668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Fillers such as carbon black provide a long-standing and essential strategy for the mechanical reinforcement of rubber in tires and other load-bearing applications. Despite their technological importance, however, the microscopic mechanism of this reinforcement remains a matter of considerable debate. A predictive understanding of filler-based reinforcement could catalyze the design of new rubber-filler composites with enhanced performance. Molecular dynamics simulations of rubber mechanical response in the presence of structured fillers offer a new strategy for resolving the origins of filler-based reinforcement and guiding filler design. Results of for ideal rubber-filler dispersions over a range of filler structures suggest that neither hydrodynamic effects nor non-deformable “bound rubber domains” are necessary to achieve high reinforcement. Moreover, simulations show that particle surface area is a poor predictor of reinforcement. Instead, simulated reinforcement correlates strongly with filler structure, with more rarified filler structure predicting much greater reinforcement at fixed loading. Simulation results are consistent with a scenario in which reinforcement at industrially relevant loadings is dominated by formation of a jammed network of filler particles, suggesting that reinforced rubber can be understood as a superposition of two materials: a rubbery solid, and a jammed granular solid. This perspective points to an opportunity to improve filler-reinforced rubber design by leveraging concepts and expertise developed over many decades in the fields of jamming and granular media.
Collapse
Affiliation(s)
- Scott M. Smith
- Department of Polymer Engineering, University of Akron, 250 South Forge Street, Akron, OH 44325
| | - David S. Simmons
- Department of Polymer Engineering, University of Akron, 250 South Forge Street, Akron, OH 44325
| |
Collapse
|
42
|
Cheng S, Carroll B, Bocharova V, Carrillo JM, Sumpter BG, Sokolov AP. Focus: Structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. J Chem Phys 2017; 146:203201. [DOI: 10.1063/1.4978504] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shiwang Cheng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby Carroll
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
43
|
Yin X, Weng P, Yang S, Han L, Du Z, Wang L, Tan Y. Preparation of viscoelastic gel-like halloysite hybrids and their application in halloysite/polystyrene composites. POLYM INT 2017. [DOI: 10.1002/pi.5383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xianze Yin
- College of Materials Science and Engineering; Hubei Key Laboratory of Advanced Textile Materials and Application, Wuhan Textile University; Wuhan PR China
| | - Puxin Weng
- College of Materials Science and Engineering; Hubei Key Laboratory of Advanced Textile Materials and Application, Wuhan Textile University; Wuhan PR China
| | - Shiwen Yang
- College of Materials Science and Engineering; Hubei Key Laboratory of Advanced Textile Materials and Application, Wuhan Textile University; Wuhan PR China
| | - Lu Han
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland USA
| | - Zhengliang Du
- School of Materials and Chemical Engineering; Ningbo University of Technology; Ningbo PR China
| | - Luoxin Wang
- College of Materials Science and Engineering; Hubei Key Laboratory of Advanced Textile Materials and Application, Wuhan Textile University; Wuhan PR China
| | - Yeqiang Tan
- Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province; Qingdao University; Qingdao PR China
| |
Collapse
|
44
|
Hao T, Zhou Z, Wang Y, Liu Y, Zhang D, Nie Y, Wei Y, Li S. Segmental dynamics in interfacial region of composite materials. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1917-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Lin Y, Liu L, Zhang D, Liu Y, Guan A, Wu G. Unexpected segmental dynamics in polystyrene-grafted silica nanocomposites. SOFT MATTER 2016; 12:8542-8553. [PMID: 27722506 DOI: 10.1039/c6sm01321j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Establishing the relationship between interfacial layer chain packing and dynamics remains a continuing challenge in polymer nanocomposites (PNCs). This issue is expected to be significant in our understanding of the mechanism of the dynamic response of such materials and the manner in which these parameters affect the macroscopic properties of PNCs. In this study, we report the dynamics of free polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrix chains, as well as those of polymer chains surrounding the spherical silica nanoparticles (NPs) where silica NPs are either bare or PS grafted, to discriminate the role of grafted chains and interfacial interactions between grafted NPs and the matrix. The α-relaxation dynamics of the PS matrix is unaffected by silica NP loadings, it slows down in PMMA nanocomposites because of polymer-NP interfacial interactions and steric hindrance. More interestingly, we probe the enhanced mobility of the interfacial layer (α'-relaxation) in PNCs filled with grafted NPs, and this phenomenon is further corroborated by the accelerated Maxwell-Wagner-Sillars polarization process in the presence of grafted silica NPs. Moreover, the α'-relaxation time in the vicinity of glass transition temperature of the polymer matrix unexpectedly increases with increasing temperature. Such an anomalous temperature-dependent behavior can be attributed to the influence exerted by slow α-relaxation dynamics. Considering these phenomena and the mechanical properties, we propose a three-layer model to explain the observed behavior of grafted silica NP-filled nanocomposites. These findings provide new insight into the mechanisms responsible for mechanical reinforcement and therefore provide guidance in designing PNCs with tunable macroscopic properties.
Collapse
Affiliation(s)
- Yu Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Langping Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongge Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanbiao Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Aiguo Guan
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guozhang Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
46
|
Affiliation(s)
- Chia-Chun Lin
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Emmabeth Parrish
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Russell J. Composto
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|
47
|
Serenko OA, Muzafarov AM. Polymer composites with surface modified SiO2 nanoparticles: Structures, properties, and promising applications. POLYMER SCIENCE SERIES C 2016. [DOI: 10.1134/s1811238216010112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Cheng S, Bocharova V, Belianinov A, Xiong S, Kisliuk A, Somnath S, Holt AP, Ovchinnikova OS, Jesse S, Martin H, Etampawala T, Dadmun M, Sokolov AP. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites. NANO LETTERS 2016; 16:3630-3637. [PMID: 27203453 DOI: 10.1021/acs.nanolett.6b00766] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.
Collapse
Affiliation(s)
| | | | | | - Shaomin Xiong
- Department of Mechanical Engineering, University of California Berkeley , Berkeley, California 94720, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- R. Casalini
- Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375-5342, United States
| | - C. M. Roland
- Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375-5342, United States
| |
Collapse
|
50
|
Gan S, Wu ZL, Xu H, Song Y, Zheng Q. Viscoelastic Behaviors of Carbon Black Gel Extracted from Highly Filled Natural Rubber Compounds: Insights into the Payne Effect. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02701] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shunchang Gan
- MOE Key
Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zi Liang Wu
- MOE Key
Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huilong Xu
- MOE Key
Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key
Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key
Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|