1
|
Avalos E, Teramoto T, Hirai Y, Yabu H, Nishiura Y. Controlling the Formation of Polyhedral Block Copolymer Nanoparticles: Insights from Process Variables and Dynamic Modeling. ACS OMEGA 2024; 9:17276-17288. [PMID: 38645350 PMCID: PMC11025090 DOI: 10.1021/acsomega.3c10302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/23/2024]
Abstract
This study delves into the formation of nanoscale polyhedral block copolymer particles (PBCPs) exhibiting cubic, octahedral, and variant geometries. These structures represent a pioneering class that has never been fabricated previously. PBCP features distinct variations in curvature on the outer surface, aligning with the edges and corners of polyhedral shapes. This characteristic sharply contrasts with previous block copolymers (BCPs), which displayed a smooth spherical surface. The emergence of these cornered morphologies presents an intriguing and counterintuitive phenomenon and is linked to process parameters, such as evaporation rates and initial concentration, while keeping other variables constant. Using a system of coupled Cahn-Hillard (CCH) equations, we uncover the mechanisms driving polyhedral particle formation, emphasizing the importance of controlling relaxation parameters for shape variable u and microphase separation v. This unconventional approach, differing from traditional steepest descent method, allows for precise control and diverse polyhedral particle generation. Accelerating the shape variable u proves crucial for expediting precipitation and aligns with experimental observations. Employing the above theoretical model, we achieve shape predictions for particles and the microphase separation within them, which overcomes the limitations of ab initio computations. Additionally, a numerical stability analysis discerns the transient nature versus local minimizer characteristics. Overall, our findings contribute to understanding the complex interplay between process variables and the morphology of polyhedral BCP nanoparticles.
Collapse
Affiliation(s)
- Edgar Avalos
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takashi Teramoto
- Faculty
of Data Science, Kyoto Women’s University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto 605-8501, Japan
| | - Yutaro Hirai
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroshi Yabu
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yasumasa Nishiura
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Research
Center of Mathematics for Social Creativity, Research Institute for
Electronic Science, Hokkaido University, N12W7, Kita-Ward, Mid-Campus Open
Laboratory Building No. 2, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Zhang L, Yang J, Li W. Emergence of Multi-strand Helices from the Self-Assembly of AB-Type Multiblock Copolymer under Cylindrical Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lixun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junying Yang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Synthesis and self-assembly of polystyrene block polyacrylic acid for sub 10 nm feature size. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Yang J, Dong Q, Liu M, Li W. Universality and Specificity in the Self-Assembly of Cylinder-Forming Block Copolymers under Cylindrical Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junying Yang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Meijiao Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Xu Z, Han Y, Yin J, Yu B, Nishiura Y, Zhang L. Solution landscapes of the diblock copolymer-homopolymer model under two-dimensional confinement. Phys Rev E 2021; 104:014505. [PMID: 34412273 DOI: 10.1103/physreve.104.014505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022]
Abstract
We investigate the solution landscapes of the confined diblock copolymer and homopolymer in two-dimensional domain by using the extended Ohta-Kawasaki model. The projection saddle dynamics method is developed to compute the saddle points with mass conservation and construct the solution landscape by coupling with downward and upward search algorithms. A variety of stationary solutions are identified and classified in the solution landscape, including Flower class, Mosaic class, Core-shell class, and Tai-chi class. The relationships between different stable states are shown by either transition pathways connected by index-1 saddle points or dynamical pathways connected by a high-index saddle point. The solution landscapes also demonstrate the symmetry-breaking phenomena, in which more solutions with high symmetry are found when the domain size increases.
Collapse
Affiliation(s)
- Zhen Xu
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
| | - Yucen Han
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Jianyuan Yin
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Bing Yu
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Yasumasa Nishiura
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, N12W7, Kita-Ward, Mid-Campus Open Laboratory Building No.2, Sapporo 060-0812, Japan
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Cui S, Chen L, Yu L, Ding J. Synergism among Polydispersed Amphiphilic Block Copolymers Leading to Spontaneous Physical Hydrogelation upon Heating. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01430] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Liang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, China
| |
Collapse
|
7
|
Yue X, Geng Z, Yan N, Jiang W. Hierarchical self-assembly of a PS-b-P4VP/PS-b-PNIPAM mixture into multicompartment micelles and their response to two-dimensional confinement. Phys Chem Chem Phys 2020; 22:1194-1203. [DOI: 10.1039/c9cp05180e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Finely tuned synergistic effects among different blocks could realize intriguing hierarchical self-assembly of block copolymers and such hierarchical self-assembly could be manipulated by cylindrical confinement to tune the structures of assemblies.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhen Geng
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
8
|
Sheng Y, Chen C, Xia Y, Gao C, Zhang X. Tunable morphologies from solution self-assembly of diblock copolymers under nanoscale confinement. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Jiang X, Spencer RK, Sun J, Ophus C, Zuckermann RN, Downing KH, Balsara NP. Resolving the Morphology of Peptoid Vesicles at the 1 nm Length Scale Using Cryogenic Electron Microscopy. J Phys Chem B 2019; 123:1195-1205. [DOI: 10.1021/acs.jpcb.8b11752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | | | | | | | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Liu M, Li W, Wang X. Order-order transitions of diblock copolymer melts under cylindrical confinement. J Chem Phys 2017; 147:114903. [PMID: 28938804 DOI: 10.1063/1.5004181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The self-assembly behavior of AB diblock copolymers under cylindrical confinement is investigated using the self-consistent field theory. We focus on the impact of the confinement on the order-order transitions of three-dimensional morphologies by constructing two types of phase diagrams with continuously varying block compositions. One type is with respect to the block composition and the immiscibility parameter for various pore sizes, in which the order-order transitions are shown to be strongly impacted by the pore curvature and thus largely different from the bulk ones. Note that the morphologies are categorized by the intrinsical geometry of their domains, i.e., that helical morphologies are regarded as one type of cylindrical phase. Another type of phase diagram is with respect to the block composition and the pore diameter, which exhibits a number of interesting order-order transitions, especially the transition sequence from a straight line of spheres, to one straight cylinder and stacked disks as the pore diameter increases. A critical point is observed at which the stability region of the straight cylinder vanishes and thereby the spheres transform into the stacked disks continuously. The mechanism of these phase transitions is rationalized in the context of the bulk factors as well as an additional factor, i.e., the competition between the spontaneous curvature of the copolymer and the imposed curvature by the nanopore.
Collapse
Affiliation(s)
- Meijiao Liu
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
12
|
Key aspects to yield low dispersity of PEO-b-PCL diblock copolymers and their mesoscale self-assembly. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Deng H, Qiang Y, Zhang T, Li W, Yang T. Chiral selection of single helix formed by diblock copolymers confined in nanopores. NANOSCALE 2016; 8:15961-15969. [PMID: 27536966 DOI: 10.1039/c6nr05043c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chiral selection has attracted tremendous attention from the scientific communities, especially from biologists, due to the mysterious origin of homochirality in life. The self-assembly of achiral block copolymers confined in nanopores offers a simple but useful model of forming helical structures, where the helical structures possess random chirality selection, i.e. equal probability of left-handedness and right-handedness. Based on this model, we study the stimulus-response of chiral selection to external conditions by introducing a designed chiral pattern onto the inner surface of a nanopore, aiming to obtain a defect-free helix with controllable homochirality. A cell dynamics simulation based on the time-dependent Ginzburg-Landau theory is carried out to demonstrate the tuning effect of the patterned surface on the chiral selection. Our results illustrate that the chirality of the helix can be successfully controlled to be consistent with that of the tailored surface patterns. This work provides a successful example for the stimulus response of the chiral selection of self-assembled morphologies from achiral macromolecules to external conditions, and hence sheds light on the understanding of the mechanism of the stimulus response.
Collapse
Affiliation(s)
- Hanlin Deng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
14
|
Avalos E, Higuchi T, Teramoto T, Yabu H, Nishiura Y. Frustrated phases under three-dimensional confinement simulated by a set of coupled Cahn-Hilliard equations. SOFT MATTER 2016; 12:5905-5914. [PMID: 27337660 DOI: 10.1039/c6sm00429f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We numerically study a set of coupled Cahn-Hilliard equations as a means to find morphologies of diblock copolymers in three-dimensional spherical confinement. This approach allows us to find a variety of energy minimizers including rings, tennis balls, Janus balls and multipods among several others. Phase diagrams of confined morphologies are presented. We modify the size of the interface between microphases to control the number of holes in multipod morphologies. Comparison to experimental observation by transmission electron microtomography of multipods in polystyrene-polyisoprene diblock copolymers is also presented.
Collapse
Affiliation(s)
- Edgar Avalos
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takeshi Higuchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takashi Teramoto
- Department of Mathematics, Asahikawa Medical University, 2-1-1-1, Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Hiroshi Yabu
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yasumasa Nishiura
- WPI-Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
15
|
Chang HY, Chen YF, Sheng YJ, Tsao HK. Blending-induced helical morphologies of confined linear triblock copolymers. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Moreno N, Nunes SP, Peinemann KV, Calo VM. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicolas Moreno
- Biological and Environmental Science and Engineering Division, ‡Center for Numerical Porous Media, §Advanced Membranes and Porous Material Center, and ∥Earth Science & Engineering and Applied Mathematics & Computational Science, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia 23955-6900
| | - Suzana P. Nunes
- Biological and Environmental Science and Engineering Division, ‡Center for Numerical Porous Media, §Advanced Membranes and Porous Material Center, and ∥Earth Science & Engineering and Applied Mathematics & Computational Science, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia 23955-6900
| | - Klaus-Viktor Peinemann
- Biological and Environmental Science and Engineering Division, ‡Center for Numerical Porous Media, §Advanced Membranes and Porous Material Center, and ∥Earth Science & Engineering and Applied Mathematics & Computational Science, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia 23955-6900
| | - Victor M. Calo
- Biological and Environmental Science and Engineering Division, ‡Center for Numerical Porous Media, §Advanced Membranes and Porous Material Center, and ∥Earth Science & Engineering and Applied Mathematics & Computational Science, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia 23955-6900
| |
Collapse
|
17
|
Xiao X, Zhao B, Ren Y. Effect of curvature on properties of diblock copolymers confined between two coaxial cylinders: 1. Layer thickness of a curved monolayer. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Zhang T, Deng H, Yang T, Li W. Defective morphologies kinetically formed in diblock copolymers under the cylindrical confinement. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
He X, Zou Z, Kan D, Liang H. Self-assembly of diblock copolymer confined in an array-structure space. J Chem Phys 2015; 142:101912. [PMID: 25770501 DOI: 10.1063/1.4907532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The combination of top-down and bottom-up technologies is an effective method to create the novel nanostructures with long range order in the field of advanced materials manufacture. In this work, we employed a polymeric self-consistent field theory to investigate the pattern formation of diblock copolymer in a 2D confinement system designed by filling pillar arrays with various 2D shapes such as squares, rectangles, and triangles. Our simulation shows that in such confinement system, the microphase structure of diblock copolymer strongly depends on the pitch, shape, size, and rotation of the pillar as well as the surface field of confinement. The array structures can not only induce the formation of new phase patterns but also control the location and orientation of pattern structures. Finally, several methods to tune the commensuration and frustration of array-structure confinement are proposed and examined.
Collapse
Affiliation(s)
- Xuehao He
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhixiang Zou
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Di Kan
- Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Jin Z, Fan H. Self-assembly of nanostructured block copolymer nanoparticles. SOFT MATTER 2014; 10:9212-9219. [PMID: 25341526 DOI: 10.1039/c4sm02064b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this highlight, we discuss the self-assembly of block copolymer (BCP) nanoparticles. We first review the state-of-art of hierarchical structural features of BCP nanoparticles due to 3D geometric confinement, both theory and experiments. Simultaneously, we highlight the applications based on these structural features: the generation of multifunctional hybrid nanoparticles, the fabrication of mesoporous BCP nanoparticles, and applications of using BCP nanoparticles as nanocontainers or nanocargos. Finally, we discuss the challenge in the fabrication and potential applications of nanostructured BCP nanoparticles.
Collapse
Affiliation(s)
- Zhaoxia Jin
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | | |
Collapse
|
21
|
Lee D, Kim MH, Bae D, Jeon G, Kim M, Kwak J, Park SJ, Kim JU, Kim JK. Arrangement of Lamellar Microdomains of Block Copolymer Confined in Hemispherical Cavities Having Two Controlled Interfaces. Macromolecules 2014. [DOI: 10.1021/ma500761e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dagam Lee
- National
Creative Research Initiative Center for Smart Block Copolymers, Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Myung-Hyun Kim
- School
of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Dusik Bae
- National
Creative Research Initiative Center for Smart Block Copolymers, Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Gumhye Jeon
- National
Creative Research Initiative Center for Smart Block Copolymers, Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Mooseong Kim
- National
Creative Research Initiative Center for Smart Block Copolymers, Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jongheon Kwak
- National
Creative Research Initiative Center for Smart Block Copolymers, Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - So Jung Park
- School
of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Jaeup U. Kim
- School
of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Jin Kon Kim
- National
Creative Research Initiative Center for Smart Block Copolymers, Department
of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| |
Collapse
|
22
|
Liu M, Li W, Qiu F. Segmented helical structures formed by ABC star copolymers in nanopores. J Chem Phys 2013; 138:104904. [PMID: 23514516 DOI: 10.1063/1.4794785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Self-assembly of ABC star triblock copolymers confined in cylindrical nanopores is studied using self-consistent mean-field theory. With an ABC terpolymer forming hexagonally-arranged cylinders, segmented into alternative B and C domains, in the bulk, we observe the formation in the nanopore of a segmented single circular and non-circular cylinder, a segmented single-helix, and a segmented double-helix as stable phases, and a metastable stacked-disk phase with fourfold symmetry. The phase sequence from single-cylinder, to single-helix, and then to double-helix, is similar as that in the cylindrically-confined diblock copolymers except for the absence of an equilibrium stacked-disk phase. It is revealed that the arrangement of the three-arm junctions plays a critical role for the structure formation. One of the most interesting features in the helical structures is that there are two periods: the period of the B/C domains in the helix and the helical period. We demonstrate that the period numbers of the B/C domains contained in each helical period can be tuned by varying the pore diameter. In addition, it is predicted that the period number of B/C domains can be any rational in real helical structures whose helical period can be tuned freely.
Collapse
Affiliation(s)
- Meijiao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
23
|
Soininen AJ, Rahikkala A, Korhonen JT, Kauppinen EI, Mezzenga R, Raula J, Ruokolainen J. Hierarchical Structures of Hydrogen-Bonded Liquid-Crystalline Side-Chain Diblock Copolymers in Nanoparticles. Macromolecules 2012. [DOI: 10.1021/ma301486p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Antti J. Soininen
- Department of Applied Physics, Aalto University School of Science, 02150 Espoo, Finland
| | - Antti Rahikkala
- Department of Applied Physics, Aalto University School of Science, 02150 Espoo, Finland
| | - Juuso T. Korhonen
- Department of Applied Physics, Aalto University School of Science, 02150 Espoo, Finland
| | - Esko I. Kauppinen
- Department of Applied Physics, Aalto University School of Science, 02150 Espoo, Finland
| | - Raffaele Mezzenga
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Janne Raula
- Department of Applied Physics, Aalto University School of Science, 02150 Espoo, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science, 02150 Espoo, Finland
| |
Collapse
|
24
|
Li S, Chen P, Zhang L, Liang H. Geometric frustration phases of diblock copolymers in nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5081-5089. [PMID: 21417241 DOI: 10.1021/la200379h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The geometric frustration phases are investigated for diblock copolymers in nanoparticles with neutral surfaces using real-space self-consistent field theory. First, a rich variety of geometric frustration phases with specific symmetries are observed in the polymer nanoparticles with invariable diameters by constructing the phase diagrams arranged as the volume fraction and Flory-Huggins interaction parameter. Most of the space in the phase diagram is filled with phases with strong symmetries, such as spherical or cubic symmetries, while a number of asymmetric or axisymmetric phases are located in a narrow space in the diagram. Then the geometric frustration phases are examined systematically for the diblock copolymers with special polymer parameters, and a rich variety of novel frustration phases with multilayered structures are observed by varying the diameters of the nanoparticles. Furthermore, the investigations on the free energies indicate that the transitions between these frustrated phases are first-order, and the formation mechanism of the frustration phases is reasonably elucidated.
Collapse
Affiliation(s)
- Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | | | | | | |
Collapse
|
25
|
|
26
|
Sushko ML, Liu J. Surfactant two-dimensional self-assembly under confinement. J Phys Chem B 2011; 115:4322-8. [PMID: 21443214 DOI: 10.1021/jp2003497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Confinement-induced structural rearrangements in supported self-assembled surfactant layers in aqueous salt solutions are investigated using classical density functional theory. The systematic study of the influence of the nature of electrolyte revealed that 2:1 electrolyte stabilizes the hemicylindrical configuration of ionic surfactant layers, while a confinement-induced transition to a tilted monolayer configuration was found in symmetric 1:1 and 2:2 electrolytes. On the basis of this study, we formulate a general model for the energetics of structural rearrangements in supported surfactant layers. This model provides a basis for directed self-assembly of surfactant templates with desired structure and stability for scalable synthesis of nanocomposite functional materials, templated crystal growth, and biomolecule adsorption.
Collapse
Affiliation(s)
- Maria L Sushko
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | |
Collapse
|
27
|
|
28
|
Molecular Thermodynamic Models for Fluids of Chain-Like Molecules, Applications in Phase Equilibria and Micro-Phase Separation in Bulk and at Interface. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-380985-8.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Petrus P, Lísal M, Brennan JK. Self-assembly of symmetric diblock copolymers in planar slits with and without nanopatterns: insight from dissipative particle dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3695-3709. [PMID: 19839566 DOI: 10.1021/la903200j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a dissipative particle dynamics simulation study on the formation of nanostructures of symmetric diblock copolymers confined between planar surfaces with and without nanopatterns. The nanopatterned surface is mimicked by alternating portions of the surface that interact differently with the diblock copolymers. The formation of the diblock-copolymer nanostructures confined between the planar surfaces is investigated and characterized by varying the separation width and the strength of the interaction between the surfaces and the diblock copolymers. For surfaces with nanopatterns, we also vary both the mutual area and location of the nanopatterns, where we consider nanopatterns on the opposing surfaces that are vertically (a) aligned, (b) staggered, and (c) partially staggered. In the case of planar slits without nanopatterns, we observe the formation of perpendicular and parallel lamellar phases with different numbers of lamellae. In addition, the symmetric diblock copolymers self-assemble into adsorbed layer and adsorbed layer-parallel lamellar phases and a mixed lamellar phase when the opposing surfaces of the planar slits are modeled by different types of wall beads. In the case of nanopatterned planar slits, we observe novel nanostructures and attempt to rationalize the diblock copolymer self-assembly on the basis of the behavior that we observed in the planar slits without nanopatterns. In particular, we investigate the applicability of predicting the structures formed in the nanopatterned slits by a superposition of the observed structures in slits without nanopatterns.
Collapse
Affiliation(s)
- Pavel Petrus
- Department of Physics, Faculty of Science, J. E. Purkinje University, Usti n. Lab., Czech Republic
| | | | | |
Collapse
|
30
|
|
31
|
Meuler AJ, Ellison CJ, Qin J, Evans CM, Hillmyer MA, Bates FS. Polydispersity effects in poly(isoprene-b-styrene-b-ethylene oxide) triblock terpolymers. J Chem Phys 2009; 130:234903. [DOI: 10.1063/1.3140205] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|