1
|
Mostafazadeh N, Peng Z. Microstructure-based nuclear lamina constitutive model. Cytoskeleton (Hoboken) 2024; 81:297-309. [PMID: 38345187 DOI: 10.1002/cm.21835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 08/20/2024]
Abstract
The nuclear lamina is widely recognized as the most crucial component in providing mechanical stability to the nucleus. However, it is still a significant challenge to model the mechanics of this multilayered protein network. We developed a constitutive model of the nuclear lamina network based on its microstructure, which accounts for the deformation phases at the dimer level, as well as the orientational arrangement and density of lamin filaments. Instead of relying on homology modeling in the previous studies, we conducted molecular simulations to predict the force-extension response of a highly accurate lamin dimer structure obtained through X-ray diffraction crystallography experimentation. Furthermore, we devised a semiflexible worm-like chain extension-force model of lamin dimer as a substitute, incorporating phases of initial stretching, uncoiling of the dimer coiled-coil, and transition of secondary structures. Subsequently, we developed a 2D network continuum model for the nuclear lamina by using our extension-force lamin dimer model and derived stress resultants. By comparing with experimentally measured lamina modulus, we found that the lamina network has sharp initial strain-hardening behavior. This also enabled us to carry out finite element simulations of the entire nucleus with an accurate microstructure-based nuclear lamina model. Finally, we conducted simulations of transendothelial transmigration of a nucleus and investigated the impact of varying network density and uncoiling constants on the critical force required for successful transmigration. The model allows us to incorporate the microstructure characteristics of the nuclear lamina into the nucleus model, thereby gaining insights into how laminopathies and mutations affect nuclear mechanics.
Collapse
Affiliation(s)
- Nima Mostafazadeh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Zhangli Peng
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Zhang C, Ji S. Sex Differences in Axonal Dynamic Responses Under Realistic Tension Using Finite Element Models. J Neurotrauma 2023; 40:2217-2232. [PMID: 37335051 DOI: 10.1089/neu.2022.0512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Existing axonal finite element models do not consider sex morphological differences or the fidelity in dynamic input. To facilitate a systematic investigation into the micromechanics of diffuse axonal injury, we develop a parameterized modeling approach for automatic and efficient generation of sex-specific axonal models according to specified geometrical parameters. Baseline female and male axonal models in the corpus callosum with random microtubule (MT) gap configurations are generated for model calibration and evaluation. They are then used to simulate a realistic tensile loading consisting of both a loading and a recovery phase (to return to an initial undeformed state) generated from dynamic corpus callosum fiber strain in a real-world head impact simulation. We find that MT gaps and the dynamic recovery phase are both critical to successfully reproduce MT undulation as observed experimentally, which has not been reported before. This strengthens confidence in model dynamic responses. A statistical approach is further employed to aggregate axonal responses from a large sample of random MT gap configurations for both female and male axonal models (n = 10,000 each). We find that peak strains in MTs and the Ranvier node and associated neurofilament failures in female axons are substantially higher than those in male axons because there are fewer MTs in the former and also because of the random nature of MT gap locations. Despite limitations in various model assumptions as a result of limited experimental data currently available, these findings highlight the need to systematically characterize MT gap configurations and to ensure a realistic model input for axonal dynamic simulations. Finally, this study may offer fresh and improved insight into the biomechanical basis of sex differences in brain injury, and sets the stage for more systematic investigations at the microscale in the future, both numerically and experimentally.
Collapse
Affiliation(s)
- Chaokai Zhang
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Songbai Ji
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
4
|
Liu N, Chavoshnejad P, Li S, Razavi MJ, Liu T, Pidaparti R, Wang X. Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study. Biophys J 2021; 120:3697-3708. [PMID: 34310941 DOI: 10.1016/j.bpj.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Axon bundles cross-linked by microtubule (MT) associate proteins and bounded by a shell skeleton are critical for normal function of neurons. Understanding effects of the complexly geometrical parameters on their mechanical properties can help gain a biomechanical perspective on the neurological functions of axons and thus brain disorders caused by the structural failure of axons. Here, the tensile mechanical properties of MT bundles cross-linked by tau proteins are investigated by systematically tuning MT length, axonal cross-section radius, and tau protein spacing in a bead-spring coarse-grained model. Our results indicate that the stress-strain curves of axons can be divided into two regimes, a nonlinear elastic regime dominated by rigid-body like inter-MT sliding, and a linear elastic regime dominated by affine deformation of both tau proteins and MTs. From the energetic analyses, first, the tau proteins dominate the mechanical performance of axons under tension. In the nonlinear regime, tau proteins undergo a rigid-body like rotating motion rather than elongating, whereas in the nonlinear elastic regime, tau proteins undergo a flexible elongating deformation along the MT axis. Second, as the average spacing between adjacent tau proteins along the MT axial direction increases from 25 to 125 nm, the Young's modulus of axon experiences a linear decrease whereas with the average space varying from 125 to 175 nm, and later reaches a plateau value with a stable fluctuation. Third, the increment of the cross-section radius of the MT bundle leads to a decrease in Young's modulus of axon, which is possibly attributed to the decrease in MT numbers per cross section. Overall, our research findings offer a new perspective into understanding the effects of geometrical parameters on the mechanics of MT bundles as well as serving as a theoretical basis for the development of artificial MT complexes potentially toward medical applications.
Collapse
Affiliation(s)
- Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia
| | - Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Shaoheng Li
- College of Engineering, University of Georgia, Athens, Georgia
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Tianming Liu
- Department of Computer Science, University of Georgia, Athens, Georgia
| | | | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia.
| |
Collapse
|
5
|
Everaers R, Becker NB, Rosa A. Single-molecule stretching experiments of flexible (wormlike) chain molecules in different ensembles: Theory and a potential application of finite chain length effects to nick-counting in DNA. J Chem Phys 2021; 154:024903. [PMID: 33445920 DOI: 10.1063/5.0028777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a formalism for deriving force-elongation and elongation-force relations for flexible chain molecules from analytical expressions for their radial distribution function, which provides insight into the factors controlling the asymptotic behavior and finite chain length corrections. In particular, we apply this formalism to our previously developed interpolation formula for the wormlike chain end-to-end distance distribution. The resulting expression for the asymptotic limit of infinite chain length is of similar quality to the numerical evaluation of Marko and Siggia's variational theory and considerably more precise than their interpolation formula. A comparison to numerical data suggests that our analytical finite chain length corrections achieve a comparable accuracy. As an application of our results, we discuss the possibility of inferring the time-dependent number of nicks in single-molecule stretching experiments on double-stranded DNA from the accompanying changes in the effective chain length.
Collapse
Affiliation(s)
- Ralf Everaers
- Université Lyon, ENS de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal, F-69342 Lyon, France
| | - Nils B Becker
- German Cancer Research Center, Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Angelo Rosa
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
6
|
Asgharzadeh P, Birkhold AI, Trivedi Z, Özdemir B, Reski R, Röhrle O. A NanoFE simulation-based surrogate machine learning model to predict mechanical functionality of protein networks from live confocal imaging. Comput Struct Biotechnol J 2020; 18:2774-2788. [PMID: 33101614 PMCID: PMC7559262 DOI: 10.1016/j.csbj.2020.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Sub-cellular mechanics plays a crucial role in a variety of biological functions and dysfunctions. Due to the strong structure-function relationship in cytoskeletal protein networks, light can be shed on their mechanical functionality by investigating their structures. Here, we present a data-driven approach employing a combination of confocal live imaging of fluorescent tagged protein networks, in silico mechanical experiments and machine learning to investigate this relationship. Our designed image processing and nanoFE mechanical simulation framework resolves the structure and mechanical behaviour of cytoskeletal networks and the developed gradient boosting surrogate models linking network structure to its functionality. In this study, for the first time, we perform mechanical simulations of Filamentous Temperature Sensitive Z (FtsZ) complex protein networks with realistic network geometry depicting its skeletal functionality inside organelles (here, chloroplasts) of the moss Physcomitrella patens. Training on synthetically produced simulation data enables predicting the mechanical characteristics of FtsZ network purely based on its structural features (R2⩾0.93), therefore allowing to extract structural principles enabling specific mechanical traits of FtsZ, such as load bearing and resistance to buckling failure in case of large network deformation.
Collapse
Affiliation(s)
- Pouyan Asgharzadeh
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Annette I Birkhold
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Zubin Trivedi
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| |
Collapse
|
7
|
Lopez-Menendez H. A mesoscopic theory to describe the flexibility regulation in F-actin networks: An approach of phase transitions with nonlinear elasticity. J Mech Behav Biomed Mater 2019; 101:103432. [PMID: 31542571 DOI: 10.1016/j.jmbbm.2019.103432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
The synthetic actin network arouses great interest as bio-material due to its soft and wet nature that mimics many biological scaffolding structures. Inside the cell, the actin network is regulated by tens of actin-binding proteins (ABP's), which make for a highly complex system with several emergent behaviors. In particular, calponin is an ABP that was identified as an actin stabiliser, but whose mechanism is still poorly understood. Recent experiments using an in vitro model system of cross-linked actin with calponin and large deformation bulk rheology, found that networks with exhibited a delayed onset and were able to withstand a higher maximal strain before softening. In this work, we show that at network scale the actin network with calponin furthermore the reduction of the persistence length allows: (i) The reduction in the network pre-strain. (ii) The increment of the crosslinks adhesion energy. We verify these effects theoretically using nonlinear continuum mechanics for the semiflexible and crosslinked network. In addition, the alterations over the microstructure are described by the definition of an interaction parameter Γ according the formalism of Landau for phase transitions. According to this model we demonstrates that the interaction parameter can describe the experimental observations following a scaling exponent as Γ~|c-ccr|1/2, where c is the ratio between concentration of calponin and actin. This result provides interesting feedback to improve our understanding of several mechano-biological pathways.
Collapse
|
8
|
Chaudhary G, Ghosh A, Bharadwaj NA, Kang JG, Braun PV, Schweizer KS, Ewoldt RH. Thermoresponsive Stiffening with Microgel Particles in a Semiflexible Fibrin Network. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | - Jin Gu Kang
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | | | | | | |
Collapse
|
9
|
Zhu PW, Chen L. Effects of cosolvent partitioning on conformational transitions and chain flexibility of thermoresponsive microgels. Phys Rev E 2019; 99:022501. [PMID: 30934277 DOI: 10.1103/physreve.99.022501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Indexed: 06/09/2023]
Abstract
The conformational collapse of polymers in mixtures of two individually good solvents is an intriguing yet puzzling phenomenon termed cononsolvency. In this paper, the concept of the preferential adsorption of the cosolvent is combined with mean-field approaches to elaborate the cononsolvency effect of dimethylformamide (DMF) on the thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgels in aqueous solutions. We give a quantitative description concerning the effects of DMF preferential adsorption and partitioning on the reentrant transition of PNIPAM microgels below the lower critical solution temperature (LCST) of PNIPAM. While the DMF cononsolvency incurs the conformational collapse, the affinity of DMF molecules to PNIPAM chains becomes increasingly stronger, which reveals that the conformational collapse is decoupled from the solvent quality of DMF-water mixtures. Considering the chain elasticity, spatial constraints, and surface charge of microgels, we explore the cononsolvency effect on the persistence length quantifying the PNIPAM flexibility. Our analysis elucidates that, depending on chain length and temperature, the DMF cononsolvency-induced collapse of PNIPAM microgels leads to a remarkable increase in the persistent length below LCST, which is comparable to the experimental data regarding suspension mechanical properties of PNIPAM microgels in water above LCST.
Collapse
Affiliation(s)
- Peng-Wei Zhu
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Luguang Chen
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Klinge S, Aygün S, Gilbert RP, Holzapfel GA. Multiscale FEM simulations of cross-linked actin network embedded in cytosol with the focus on the filament orientation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2993. [PMID: 29633544 DOI: 10.1002/cnm.2993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
The present contribution focuses on the application of the multiscale finite element method to the modeling of actin networks that are embedded in the cytosol. These cell components are of particular importance with regard to the cell response to external stimuli. The homogenization strategy chosen uses the Hill-Mandel macrohomogeneity condition for bridging 2 scales: the macroscopic scale that is related to the cell level and the microscopic scale related to the representative volume element. For the modeling of filaments, the Holzapfel-Ogden β-model is applied. It provides a relationship between the tensile force and the caused stretches, serves as the basis for the derivation of the stress and elasticity tensors, and enables a novel finite element implementation. The elements with the neo-Hookean constitutive law are applied for the simulation of the cytosol. The results presented corroborate the main advantage of the concept, namely, its flexibility with regard to the choice of the representative volume element as well as of macroscopic tests. The focus is particularly placed on the study of the filament orientation and of its influence on the effective behavior.
Collapse
Affiliation(s)
- S Klinge
- Institute of Mechanics, TU Dortmund University, Dortmund, 44227, Germany
| | - S Aygün
- Institute of Mechanics, TU Dortmund University, Dortmund, 44227, Germany
| | - R P Gilbert
- Department of Mathematical Sciences, University of Delaware, Newark, Delaware, 19716, USA
| | - G A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16-II, Graz, 8010, Austria
- Faculty of Engineering Science and Technology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| |
Collapse
|
11
|
Affiliation(s)
- Fanlong Meng
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, U.K
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Eugene M. Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
12
|
Weyer TJ, Denton AR. Concentration-dependent swelling and structure of ionic microgels: simulation and theory of a coarse-grained model. SOFT MATTER 2018; 14:4530-4540. [PMID: 29796467 DOI: 10.1039/c8sm00799c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We study swelling and structural properties of ionic microgel suspensions within a comprehensive coarse-grained model that combines the polymeric and colloidal natures of microgels as permeable, compressible, charged spheres governed by effective interparticle interactions. The model synthesizes the Flory-Rehner theory of cross-linked polymer gels, the Hertz continuum theory of effective elastic interactions, and a theory of density-dependent effective electrostatic interactions. Implementing the model using Monte Carlo simulation and thermodynamic perturbation theory, we compute equilibrium particle size distributions, swelling ratios, volume fractions, net valences, radial distribution functions, and static structure factors as functions of concentration. Trial Monte Carlo moves comprising particle displacements and size variations are accepted or rejected based on the total change in elastic and electrostatic energies. The theory combines first-order thermodynamic perturbation and variational free energy approximations. For illustrative system parameters, theory and simulation agree closely at concentrations ranging from dilute to beyond particle overlap. With increasing concentration, as microgels deswell, we predict a decrease in the net valence and an unusual saturation of pair correlations. Comparison with experimental data for deionized, aqueous suspensions of PNIPAM particles demonstrates the capacity of the coarse-grained model to predict and interpret measured swelling behavior.
Collapse
Affiliation(s)
- Tyler J Weyer
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA.
| | | |
Collapse
|
13
|
Jones CD, Steed JW. Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 2018; 45:6546-6596. [PMID: 27711667 DOI: 10.1039/c6cs00435k] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in the field of supramolecular chemistry have made it possible, in many situations, to reliably engineer soft materials to address a specific technological problem. Particularly exciting are "smart" gels that undergo reversible physical changes on exposure to remote, non-invasive environmental stimuli. This review explores the development of gels which are transformed by heat, light and ultrasound, as well as other mechanical inputs, applied voltages and magnetic fields. Focusing on small-molecule gelators, but with reference to organic polymers and metal-organic systems, we examine how the structures of gelator assemblies influence the physical and chemical mechanisms leading to thermo-, photo- and mechano-switchable behaviour. In addition, we evaluate how the unique and versatile properties of smart materials may be exploited in a wide range of applications, including catalysis, crystal growth, ion sensing, drug delivery, data storage and biomaterial replacement.
Collapse
Affiliation(s)
| | - Jonathan W Steed
- Department of Chemistry, Durham University, South Road, DH1 3LE, UK.
| |
Collapse
|
14
|
Kim WK, Moncho-Jordá A, Roa R, Kanduč M, Dzubiella J. Cosolute Partitioning in Polymer Networks: Effects of Flexibility and Volume Transitions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Won Kyu Kim
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Arturo Moncho-Jordá
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Avenida Fuente Nueva, 18071 Granada, Spain
- Instituto
Carlos I de Física Teórica y Computacional, Facultad
de Ciencias, Universidad de Granada, Avenida Fuente Nueva S/N, 18071 Granada, Spain
| | - Rafael Roa
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Matej Kanduč
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Joachim Dzubiella
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
| |
Collapse
|
15
|
Kurzthaler C, Franosch T. Exact solution for the force-extension relation of a semiflexible polymer under compression. Phys Rev E 2017; 95:052501. [PMID: 28618478 DOI: 10.1103/physreve.95.052501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 11/07/2022]
Abstract
Exact solutions for the elastic and thermodynamic properties for the wormlike chain model are elaborated in terms of Mathieu functions. The smearing of the classical Euler buckling instability for clamped polymers is analyzed for the force-extension relation. Interestingly, at strong compression forces the thermal fluctuations lead to larger elongations than for the elastic rod. The susceptibility defined as the derivative of the force-extension relation displays a prominent maximum at a force that approaches the critical Euler buckling force as the persistence length is increased. We also evaluate the excess entropy and heat capacity induced by the compression and find that they vary nonmonotonically with the load. These findings are corroborated by pseudo-Brownian simulations.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
16
|
Caroli C, Lemaître A. Effects of disorder and chain stiffening on the elasticity of flexible polymer networks. Phys Rev E 2017; 95:032501. [PMID: 28415259 DOI: 10.1103/physreve.95.032501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 11/07/2022]
Abstract
We examine how the distribution of contour lengths and the high-stretch stiffening of individual chain segments affect the macroscopic shear modulus of flexible polymer gels, using a two-dimensional numerical model in which polymer segments form a triangular network and disorder is introduced by varying their contour lengths. We show that, in the relevant parameter range: (i) the nonaffine contribution to the shear modulus is negligible, i.e., the Born approximation is satisfactory, and (ii) the shear modulus is dominated by the contribution originating from equilibrium chain tensions. Moreover, mechanical equilibration at the nodes induces specific correlations between the end-to-end distances and contour lengths of chain segments, which must be properly accounted for to construct reasonable estimates of chain pressure and shear modulus.
Collapse
Affiliation(s)
- Christiane Caroli
- INSP, Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7588, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Anaël Lemaître
- NAVIER, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE, 2 allée Képler, F-77420 Marne-la-Vallée, France
| |
Collapse
|
17
|
Meng F, Terentjev EM. Theory of Semiflexible Filaments and Networks. Polymers (Basel) 2017; 9:E52. [PMID: 30970730 PMCID: PMC6432424 DOI: 10.3390/polym9020052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 01/07/2023] Open
Abstract
We briefly review the recent developments in the theory of individual semiflexible filaments, and of a crosslinked network of such filaments, both permanent and transient. Starting from the free energy of an individual semiflexible chain, models on its force-extension relation and other mechanical properties such as Euler buckling are discussed. For a permanently crosslinked network of filaments, theories on how the network responds to deformation are provided, with a focus on continuum approaches. Characteristic features of filament networks, such as nonlinear stress-strain relation, negative normal stress, tensegrity, and marginal stability are discussed. In the new area of transient filament network, where the crosslinks can be dynamically broken and re-formed, we show some recent attempts for understanding the dynamics of the crosslinks, and the related rheological properties, such as stress relaxation, yield stress and plasticity.
Collapse
Affiliation(s)
- Fanlong Meng
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK.
| | | |
Collapse
|
18
|
Bell S, Terentjev EM. Non-exponential kinetics of unfolding under a constant force. J Chem Phys 2016; 145:185102. [DOI: 10.1063/1.4966922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Samuel Bell
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Eugene M. Terentjev
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
19
|
Eisenstecken T, Gompper G, Winkler RG. Conformational Properties of Active Semiflexible Polymers. Polymers (Basel) 2016; 8:E304. [PMID: 30974577 PMCID: PMC6431937 DOI: 10.3390/polym8080304] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
The conformational properties of flexible and semiflexible polymers exposed to active noise are studied theoretically. The noise may originate from the interaction of the polymer with surrounding active (Brownian) particles or from the inherent motion of the polymer itself, which may be composed of active Brownian particles. In the latter case, the respective monomers are independently propelled in directions changing diffusively. For the description of the polymer, we adopt the continuous Gaussian semiflexible polymer model. Specifically, the finite polymer extensibility is taken into account, which turns out to be essential for the polymer conformations. Our analytical calculations predict a strong dependence of the relaxation times on the activity. In particular, semiflexible polymers exhibit a crossover from a bending elasticity-dominated dynamics to the flexible polymer dynamics with increasing activity. This leads to a significant activity-induced polymer shrinkage over a large range of self-propulsion velocities. For large activities, the polymers swell and their extension becomes comparable to the contour length. The scaling properties of the mean square end-to-end distance with respect to the polymer length and monomer activity are discussed.
Collapse
Affiliation(s)
- Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
20
|
Meng F, Terentjev EM. Nonlinear elasticity of semiflexible filament networks. SOFT MATTER 2016; 12:6749-6756. [PMID: 27444846 DOI: 10.1039/c6sm01029f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We develop a continuum theory for equilibrium elasticity of a network of crosslinked semiflexible filaments, spanning the full range between flexible entropy-driven chains to stiff athermal rods. We choose the 3-chain constitutive model of network elasticity over several plausible candidates, and derive analytical expressions for the elastic energy at arbitrary strain, with the corresponding stress-strain relationship. The theory fits well to a wide range of experimental data on simple shear in different filament networks, quantitatively matching the differential shear modulus variation with stress, with only two adjustable parameters (which represent the filament stiffness and the pre-tension in the network, respectively). The general theory accurately describes the crossover between the positive and negative Poynting effect (normal stress on imposed shear) on increasing the stiffness of filaments forming the network. We discuss the network stability (the point of marginal rigidity) and the phenomenon of tensegrity, showing that filament pre-tension on crosslinking into the network determines the magnitude of linear modulus G0.
Collapse
Affiliation(s)
- Fanlong Meng
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| | | |
Collapse
|
21
|
Kulish O, Wright AD, Terentjev EM. F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft. Sci Rep 2016; 6:28180. [PMID: 27321713 PMCID: PMC4913325 DOI: 10.1038/srep28180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022] Open
Abstract
F1F0 ATP synthase (ATPase) either facilitates the synthesis of ATP in a process driven by the proton moving force (pmf), or uses the energy from ATP hydrolysis to pump protons against the concentration gradient across the membrane. ATPase is composed of two rotary motors, F0 and F1, which compete for control of their shared γ -shaft. We present a self-consistent physical model of F1 motor as a simplified two-state Brownian ratchet using the asymmetry of torsional elastic energy of the coiled-coil γ -shaft. This stochastic model unifies the physical concepts of linear and rotary motors, and explains the stepped unidirectional rotary motion. Substituting the model parameters, all independently known from recent experiments, our model quantitatively reproduces the ATPase operation, e.g. the ‘no-load’ angular velocity is ca. 400 rad/s anticlockwise at 4 mM ATP. Increasing the pmf torque exerted by F0 can slow, stop and overcome the torque generated by F1, switching from ATP hydrolysis to synthesis at a very low value of ‘stall torque’. We discuss the motor efficiency, which is very low if calculated from the useful mechanical work it produces - but is quite high when the ‘useful outcome’ is measured in the number of H+ pushed against the chemical gradient.
Collapse
Affiliation(s)
- O Kulish
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - A D Wright
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - E M Terentjev
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
22
|
Abstract
Axonal microtubule (MT) bundles crosslinked by microtubule-associated protein (MAP) tau are responsible for vital biological functions such as maintaining mechanical integrity and shape of the axon as well as facilitating axonal transport. Breaking and twisting of MTs have been previously observed in damaged undulated axons. Such breaking and twisting of MTs is suggested to cause axonal swellings that lead to axonal degeneration, which is known as "diffuse axonal injury". In particular, overstretching and torsion of axons can potentially damage the axonal cytoskeleton. Following our previous studies on mechanical response of axonal MT bundles under uniaxial tension and compression, this work seeks to characterize the mechanical behavior of MT bundles under pure torsion as well as a combination of torsional and tensile loads using a coarse-grained computational model. In the case of pure torsion, a competition between MAP tau tensile and MT bending energies is observed. After three turns, a transition occurs in the mechanical behavior of the bundle that is characterized by its diameter shrinkage. Furthermore, crosslink spacing is shown to considerably influence the mechanical response, with larger MAP tau spacing resulting in a higher rate of turns. Therefore, MAP tau crosslinking of MT filaments protects the bundle from excessive deformation. Simultaneous application of torsion and tension on MT bundles is shown to accelerate bundle failure, compared to pure tension experiments. MAP tau proteins fail in clusters of 10-100 elements located at the discontinuities or the ends of MT filaments. This failure occurs in a stepwise fashion, implying gradual accumulation of elastic tensile energy in crosslinks followed by rupture. Failure of large groups of interconnecting MAP tau proteins leads to detachment of MT filaments from the bundle near discontinuities. This study highlights the importance of torsional loading in axonal damage after traumatic brain injury.
Collapse
Affiliation(s)
- Carole Lazarus
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California.
| |
Collapse
|
23
|
Bell S, Terentjev EM. Unfolding of globular polymers by external force. J Chem Phys 2015; 143:184902. [DOI: 10.1063/1.4935393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Samuel Bell
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Eugene M. Terentjev
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
24
|
Mansel BW, Chu CY, Leis A, Hemar Y, Chen HL, Lundin L, Williams MAK. Zooming in: Structural Investigations of Rheologically Characterized Hydrogen-Bonded Low-Methoxyl Pectin Networks. Biomacromolecules 2015; 16:3209-16. [DOI: 10.1021/acs.biomac.5b00870] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley W. Mansel
- Institute
of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
- The Macdiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Che-Yi Chu
- National Tsing-Hua
University, Hsin-Chu 30013, Taiwan
- National Synchrotron
Radiation Research Centre, Hsin-Chu 30076, Taiwan
| | - Andrew Leis
- CSIRO, Australian Animal Health Laboratory, Geelong 3220, Australia
| | - Yacine Hemar
- The University
of Auckland, Auckland 1010, New Zealand
| | | | - Leif Lundin
- CSIRO Food and Nutrition, Werribee 3030, Australia
| | - Martin A. K. Williams
- Institute
of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
- The Macdiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
25
|
Banerjee N, Park J. Modeling and simulation of biopolymer networks: Classification of the cytoskeleton models according to multiple scales. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0071-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Massucci FA, Pérez Castillo I, Pérez Vicente CJ. Cavity approach for modeling and fitting polymer stretching. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052708. [PMID: 25493817 DOI: 10.1103/physreve.90.052708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 06/04/2023]
Abstract
The mechanical properties of molecules are today captured by single molecule manipulation experiments, so that polymer features are tested at a nanometric scale. Yet devising mathematical models to get further insight beyond the commonly studied force-elongation relation is typically hard. Here we draw from techniques developed in the context of disordered systems to solve models for single and double-stranded DNA stretching in the limit of a long polymeric chain. Since we directly derive the marginals for the molecule local orientation, our approach allows us to readily calculate the experimental elongation as well as other observables at wish. As an example, we evaluate the correlation length as a function of the stretching force. Furthermore, we are able to fit successfully our solution to real experimental data. Although the model is admittedly phenomenological, our findings are very sound. For single-stranded DNA our solution yields the correct (monomer) scale and yet, more importantly, the right persistence length of the molecule. In the double-stranded case, our model reproduces the well-known overstretching transition and correctly captures the ratio between native DNA and overstretched DNA. Also in this case the model yields a persistence length in good agreement with consensus, and it gives interesting insights into the bending stiffness of the native and overstretched molecule, respectively.
Collapse
Affiliation(s)
| | - Isaac Pérez Castillo
- Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom and Instituto de Física, Universidad Nacional Autónoma de México, P.O. Box 20-364, México DF 01000, México
| | | |
Collapse
|
27
|
Unterberger MJ, Holzapfel GA. Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales. Biomech Model Mechanobiol 2014; 13:1155-74. [PMID: 24700235 DOI: 10.1007/s10237-014-0578-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.
Collapse
Affiliation(s)
- Michael J Unterberger
- Institute of Biomechanics, Graz University of Technology, Kronesgasse 5-I, 8010 , Graz, Austria
| | | |
Collapse
|
28
|
Pritchard RH, Huang YYS, Terentjev EM. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. SOFT MATTER 2014; 10:1864-84. [PMID: 24652375 DOI: 10.1039/c3sm52769g] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
From the cell cytoskeleton to connective tissues, fibrous networks are ubiquitous in metazoan life as the key promoters of mechanical strength, support and integrity. In recent decades, the application of physics to biological systems has made substantial strides in elucidating the striking mechanical phenomena observed in such networks, explaining strain stiffening, power law rheology and cytoskeletal fluidisation - all key to the biological function of individual cells and tissues. In this review we focus on the current progress in the field, with a primer into the basic physics of individual filaments and the networks they form. This is followed by a discussion of biological networks in the context of a broad spread of recent in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Robyn H Pritchard
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| | | | | |
Collapse
|
29
|
Müller P, Kierfeld J. Wrinkling of random and regular semiflexible polymer networks. PHYSICAL REVIEW LETTERS 2014; 112:094303. [PMID: 24655259 DOI: 10.1103/physrevlett.112.094303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Indexed: 06/03/2023]
Abstract
We investigate wrinkling of two-dimensional random and triangular semiflexible polymer networks under shear. Both types of semiflexible networks exhibit wrinkling above a small critical shear angle, which scales with an exponent of the bending modulus between 1.9 and 2.0. Random networks exhibit hysteresis at the wrinkling threshold. Wrinkling lowers the total elastic energy by up to 20% and strongly affects the elastic properties of all semiflexible networks such as the crossover between bending and stretching dominated behavior. In random networks, we also find evidence for metastable wrinkled configurations. While the disordered microstructure of random networks affects the scaling behavior of wrinkle amplitudes, it has little effect on wrinkle wavelength. Therefore, wrinkles represent a robust, microstructure-independent assay of shear strain or elastic properties.
Collapse
Affiliation(s)
- Pascal Müller
- Physics Department, TU Dortmund University, 44221 Dortmund, Germany
| | - Jan Kierfeld
- Physics Department, TU Dortmund University, 44221 Dortmund, Germany
| |
Collapse
|
30
|
Unterberger MJ, Schmoller KM, Wurm C, Bausch AR, Holzapfel GA. Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis. Acta Biomater 2013; 9:7343-53. [PMID: 23523535 DOI: 10.1016/j.actbio.2013.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/07/2023]
Abstract
Filamentous actin is one of the main constituents of the eukaryotic cytoskeleton. The actin cortex, a densely cross-linked network, resides underneath the lipid bilayer. In the present work we propose a continuum mechanical formulation for describing the viscoelastic properties of in vitro actin networks, which serve as model systems for the cortex, by including the microstructure, i.e. the behavior of a single filament and its spatial arrangement. The modeling of the viscoelastic response in terms of physically interpretable parameters is conducted using a multiscale approach consisting of two steps: modeling of the single filament response of F-actin by a worm-like chain model including the extensibility of the filament, and assembling the three-dimensional biopolymer network by using the microsphere model which accounts for filaments equally distributed in space. The viscoelastic effects of the network are taken into account using a generalized Maxwell model. The Cauchy stress and elasticity tensors are obtained within a continuum mechanics framework and implemented into a finite-element program. The model is validated on the network level using large strain experiments on reconstituted actin gels. Comparisons of the proposed model with rheological experiments recover reasonable values for the material parameters. Finite-element simulations of the indentation of a sphere on a network slab and the aspiration of a droplet in a micropipette allow for further insights of the viscoelastic behavior of actin networks.
Collapse
|
31
|
Holzapfel GA, Ogden RW. Elasticity of biopolymer filaments. Acta Biomater 2013; 9:7320-5. [PMID: 23501788 DOI: 10.1016/j.actbio.2013.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 11/27/2022]
Abstract
Within the general one-dimensional theory of nonlinear elasticity we analyze the elasticity of biopolymer filaments. The approach adopted is purely mechanical but is reconciled with statistical physics approaches and allows for a proper formulation of boundary-value problems. By specializing the general framework we obtain force-extension relations for inextensible filaments and show how previous work on the biophysics of filaments fits within the framework. On the other hand, within the same framework, the theory of extensible filaments, which is appropriate for semi-flexible filaments such as F-actin, enables us to fit representative F-actin data. The specific formulas derived are relatively simple and the parameters involved have direct mechanical interpretations and are immediately related to the filament properties, including the initial end-to-end length, contour length and persistence length.
Collapse
|
32
|
Yang Y, Bai M, Klug WS, Levine AJ, Valentine MT. Microrheology of highly crosslinked microtubule networks is dominated by force-induced crosslinker unbinding. SOFT MATTER 2013; 9:383-393. [PMID: 23577042 PMCID: PMC3618965 DOI: 10.1039/c2sm26934a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results.
Collapse
Affiliation(s)
- Yali Yang
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA. Fax: +805-893-8651; Tel: +805-893-2594
| | - Mo Bai
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - William S. Klug
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Alex J. Levine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA. Fax: +805-893-8651; Tel: +805-893-2594
| |
Collapse
|
33
|
Unterberger MJ, Schmoller KM, Bausch AR, Holzapfel GA. A new approach to model cross-linked actin networks: multi-scale continuum formulation and computational analysis. J Mech Behav Biomed Mater 2012; 22:95-114. [PMID: 23601624 DOI: 10.1016/j.jmbbm.2012.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 01/07/2023]
Abstract
The mechanical properties of a cell are defined mainly by the cytoskeleton. One contributor within this three-dimensional structure is the actin cortex which is located underneath the lipid bilayer. It forms a nearly isotropic and densely cross-linked protein network. We present a continuum mechanical formulation for describing the mechanical properties of in vitro model systems based on their micro-structure, i.e. the behavior of a single filament and its spatial arrangement. The network is considered elastic, viscous effects being neglected. Filamentous actin is a biopolymer with a highly nonlinear force-stretch relationship. This can be well described by a worm-like chain model that includes extensibility of the filament, which we call the β-model. A comparison with experimental data shows good agreement with values for the physically interpretable parameters. To make these properties applicable to three dimensions we used a non-affine micro-sphere network, which accounts for filaments, equally distributed in space. The assembled model results in a strain-energy density which is a function of the deformation gradient, and it is validated with experimental data from rheological experiments of in vitro reconstituted actin networks. The Cauchy stress and elasticity tensors are obtained within the continuum mechanics framework and implemented into a finite element program to solve boundary-value problems.
Collapse
Affiliation(s)
- Michael J Unterberger
- Institute of Biomechanics, Center of Biomedical Engineering, Graz University of Technology, Kronesgasse 5-I, 8010 Graz, Austria
| | | | | | | |
Collapse
|
34
|
Ivanov VA, Klushin LI, Skvortsov AM. How to understand the ensemble equivalence during stretching of a single macromolecule. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12070012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Schuster E, Lundin L, Williams MAK. Investigating the Relationship between Network Mechanics and Single-Chain Extension Using Biomimetic Polysaccharide Gels. Macromolecules 2012. [DOI: 10.1021/ma300724n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erich Schuster
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Leif Lundin
- Food Future Flagship and Division
of Food and Nutritional Sciences, CSIRO, Werribee, Australia
| | - Martin A. K. Williams
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Food Future Flagship and Division
of Food and Nutritional Sciences, CSIRO, Werribee, Australia
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
- The Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
36
|
Peter SJ, Mofrad MRK. Computational modeling of axonal microtubule bundles under tension. Biophys J 2012; 102:749-57. [PMID: 22385845 DOI: 10.1016/j.bpj.2011.11.4024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 11/04/2011] [Accepted: 11/22/2011] [Indexed: 01/29/2023] Open
Abstract
Microtubule bundles cross-linked by tau protein serve a variety of neurological functions including maintaining mechanical integrity of the axon, promoting axonal growth, and facilitating cargo transport. It has been observed that axonal damage in traumatic brain injury leads to bundle disorientation, loss of axonal viability, and cognitive impairment. This study investigates the initial mechanical response of axonal microtubule bundles under uniaxial tension using a discrete bead-spring representation. Mechanisms of failure due to traumatic stretch loading and their impact on the mechanical response and stability are also characterized. This study indicates that cross-linked axonal microtubule bundles in tension display stiffening behavior similar to a power-law relationship from nonaffine network deformations. Stretching of cross-links and microtubule bending were the primary deformation modes at low stresses. Microtubule stretch was negligible up to tensile stresses of ∼1 MPa. Bundle failure occurred by failure of cross-links leading to pull-out of microtubules and loss of bundle integrity. This may explain the elongation, undulation, and delayed elasticity of axons following traumatic stretch loading. More extensively cross-linked bundles withstood higher tensile stresses before failing. The bundle mechanical behavior uncovered by these computational techniques should guide future experiments on stretch-injured axons.
Collapse
Affiliation(s)
- Stephen J Peter
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, USA
| | | |
Collapse
|
37
|
Wen Q, Janmey PA. Polymer physics of the cytoskeleton. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2011; 15:177-182. [PMID: 22081758 PMCID: PMC3210450 DOI: 10.1016/j.cossms.2011.05.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cytoskeleton is generally visualized by light or electron microscopy as a meshwork of protein filaments that spans the space between the nuclear envelope and the plasma membrane. In most cell types, this meshwork is formed by a three dimensional composite network of actin filaments, microtubules (MT), and intermediate filaments (IF) together with the host of proteins that bind to the sides or ends of these linear polymers. Cytoskeletal binding proteins regulate filament length, crosslink filaments to each other, and apply forces to the filaments. One approach to modeling the mechanical properties of the cytoskeleton and of cell in general is to consider the elements of the cytoskeleton as polymers, using experimental methods and theoretical models developed for traditional polymers but modified for the much larger, stiffer, and fragile biopolymers comprising the cytoskeleton. The presence of motor proteins that move actin filaments and microtubules also creates a new class of active materials that are out of thermodynamic equilibrium, and unconstrained by limitations of the fluctuation-dissipation theorem. These active materials create rich opportunities for experimental design and theoretical developments. The degree to which the mechanics of live cells can usefully be modeled as highly complex polymer networks is by no means certain, and this article will discuss recent progress in quantitatively measuring cytoskeletal polymer systems and relating them to the properties of the cell.
Collapse
Affiliation(s)
- Qi Wen
- Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104
| | | |
Collapse
|
38
|
Blundell JR, Terentjev EM. The influence of disorder on deformations in semiflexible networks. Proc Math Phys Eng Sci 2011. [DOI: 10.1098/rspa.2010.0600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a model that assesses the different elastic responses of a semiflexible network, which either (i) is constrained to deform in an affine way or (ii) is permitted to thermally fluctuate and deviate from affine response. The thermal, non-affine response of the network is achieved using a Metropolis Monte Carlo algorithm with dynamic step size. We find that non-affine deformations soften the network dramatically at low strains and make the eventual nonlinear strain stiffening far more pronounced. We show that the effect of these non-affine deformations are very sensitive to the degree variation in the lengths of filaments connecting cross-links. Where there is high variation, non-affine deformations allow internal stresses to relax, giving rise to a smaller range of tensile forces in filaments and a dramatic reduction of network stiffness. This highlights that non-affine deformations are crucial in small strain response of stiff polymer networks.
Collapse
|
39
|
Benetatos P, Terentjev EM. Stretching weakly bending filaments with spontaneous curvature in two dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031802. [PMID: 20365760 DOI: 10.1103/physreve.81.031802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Indexed: 05/29/2023]
Abstract
Some important biomolecules (for instance, bacterial FtsZ and eukaryotic DNA) are known to posses spontaneous (intrinsic) curvature. Using a simple extension of the wormlike chain model, we study the response of a weakly bending filament in two dimensions to a pulling force applied at its ends (a configuration common in classical in-vitro experiments and relevant to several in-vivo cell cases). The spontaneous curvature of such a chain or filament can in general be arc-length dependent and we study a case of sinusoidal variation, from which an arbitrary case can be reconstructed via Fourier transformation. We obtain analytic results for the force-extension relationship and the width of transverse fluctuations. We show that spontaneous-curvature undulations can affect the force-extension behavior even in relatively flexible filaments with a persistence length smaller than the contour length.
Collapse
Affiliation(s)
- Panayotis Benetatos
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | | |
Collapse
|
40
|
Carrillo JMY, Dobrynin AV. Effect of the Electrostatic Interactions on Stretching of Semiflexible and Biological Polyelectrolytes. Macromolecules 2010. [DOI: 10.1021/ma902304x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jan-Michael Y. Carrillo
- Polymer Program, Institute of Materials Science and Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3136
| | - Andrey V. Dobrynin
- Polymer Program, Institute of Materials Science and Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3136
| |
Collapse
|
41
|
Affiliation(s)
- Nermin Orakdogen
- Department of Chemistry, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey
| | - Oguz Okay
- Department of Chemistry, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|