1
|
Jiang MC, Fang ZL, Zhang JY, Ma W, Liao LF, Yu CY, Wei H. A fully biodegradable spherical nucleic acid nanoplatform for self-codelivery of doxorubicin and miR122 for innate and adaptive immunity activation. Acta Biomater 2024; 180:407-422. [PMID: 38614414 DOI: 10.1016/j.actbio.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Facile construction of a fully biodegradable spherical nucleic acid (SNA) nanoplatform is highly desirable for clinical translations but remains rarely explored. We developed herein the first polycarbonate-based biodegradable SNA nanoplatform for self-codelivery of a chemotherapeutic drug, doxorubicin (DOX), and a human liver-specific miR122 for synergistic chemo-gene therapy of hepatocellular carcinoma (HCC). Ring-opening polymerization (ROP) of a carbonate monomer leads to a well-defined polycarbonate backbone for subsequent DOX conjugation to the pendant side chains via acidic pH-cleavage Schiff base links and miR122 incorporation to the chain termini via click coupling, affording an amphiphilic polycarbonate-DOX-miR122 conjugate, PBis-Mpa30-DOX-miR122 that can self-assemble into stabilized SNA. Besides the desired biodegradability, another notable merit of this nanoplatform is the use of miR122 not only for gene therapy but also for enhanced innate immune response. Together with the ICD-triggering effect of DOX, PBis-Mpa30-DOX-miR122 SNA-mediated DOX and miR122 codelivery leads to synergistic immunogenicity enhancement, resulting in tumor growth inhibition value (TGI) of 98.1 % significantly higher than those of the groups treated with only drug or gene in a Hepa1-6-tumor-bearing mice model. Overall, this study develops a useful strategy toward biodegradable SNA construction, and presents a drug and gene-based self-codelivery SNA with synergistic immunogenicity enhancement for efficient HCC therapy. STATEMENT OF SIGNIFICANCE: Facile construction of a fully biodegradable SNA nanoplatform is useful for in vivo applications but remains relatively unexplored likely due to the synthetic challenge. We report herein construction of a polycarbonate-based SNA nanoplatform for co-delivering a chemotherapeutic drug, DOX, and a human liver-specific miR-122 for synergistic HCC treatment. In addition to the desired biodegradability properties, this SNA nanoplatform integrates DOX-triggered ICD and miR-122-enhanced innate immunity for simultaneously activating adaptive and innate immunities, which leads to potent antitumor efficiency with a TGI value of 98.1 % in a Hepa1-6-tumor-bearing mice model.
Collapse
Affiliation(s)
- Ming-Chao Jiang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhou-Long Fang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jin-Yan Zhang
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Wei Ma
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Luan-Feng Liao
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine Hunan, Academy of Chinese Medicine, Changsha 410013, China; Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hengyang Medical School, School of Resources Environment and Safety Engineering, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Liu Z, Li J, Zhang Z, Liu J, Wu C, Yu Y. Incorporating Self-Healing Capability in Temperature-Sensitive Hydrogels by Non-Covalent Chitosan Crosslinkers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Saraei M, Sarvari R, Fakhri E, Fariyan S. Antibacterial polymeric micelles based on kojic acid/acrylic acid/chitosan. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2131786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mahnaz Saraei
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Sarvaran Shimi Pishro(S.Sh.P) Co, Tabriz, Iran
| | - Elaheh Fakhri
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Fariyan
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
4
|
Multicyclic Topology-Enhanced Micelle Stability and pH-Sensitivity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Linn JD, Liberman L, Neal CAP, Calabrese MA. Role of chain architecture in the solution phase assembly and thermoreversibility of aqueous PNIPAM/silyl methacrylate copolymers. Polym Chem 2022; 13:3840-3855. [PMID: 37193094 PMCID: PMC10181847 DOI: 10.1039/d2py00254j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive polymers functionalized with reactive inorganic groups enable creation of macromolecular structures such as hydrogels, micelles, and coatings that demonstrate smart behavior. Prior studies using poly(N-isopropyl acrylamide-co-3-(trimethoxysilyl)propyl methacrylate) (P(NIPAM-co-TMA)) have stabilized micelles and produced functional nanoscale coatings; however, such systems show limited responsiveness over multiple thermal cycles. Here, polymer architecture and TMA content are connected to the aqueous self-assembly, optical response, and thermo-reversibility of two distinct types of PNIPAM/TMA copolymers: random P(NIPAM-co-TMA), and a 'blocky-functionalized' copolymer where TMA is localized to one portion of the chain, P(NIPAM-b-NIPAM-co-TMA). Aqueous solution behavior characterized via cloud point testing (CPT), dynamic light scattering (DLS), and variable-temperature nuclear magnetic resonance spectroscopy (NMR) demonstrates that thermoresponsiveness and thermoreversibility over multiple cycles is a strong function of polymer configuration and TMA content. Despite low TMA content (≤2% mol), blocky-functionalized copolymers assemble into small, well-ordered structures above the cloud point that lead to distinct transmittance behaviors and stimuli-responsiveness over multiple cycles. Conversely, random copolymers form disordered aggregates at elevated temperatures, and only exhibit thermoreversibility at negligible TMA fractions (0.5% mol); higher TMA content leads to irreversible structure formation. This understanding of the architectural and assembly effects on the thermal cyclability of aqueous PNIPAM-co-TMA can be used to improve the scalability of responsive polymer applications requiring thermoreversible behavior, including sensing, separations, and functional coatings.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Lucy Liberman
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Christopher A P Neal
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Multicyclic topology-enhanced anticancer drug delivery. J Control Release 2022; 345:278-291. [DOI: 10.1016/j.jconrel.2022.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
7
|
Beyou E, Bourgeat-Lami E. Organic–inorganic hybrid functional materials by nitroxide-mediated polymerization. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Biswas G, Jena BC, Samanta P, Mandal M, Dhara D. Synthesis, self-assembly and drug release study of a new dual-responsive biocompatible block copolymer containing phenylalanine derivative. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1947748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gargi Biswas
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Pousali Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
9
|
Shi Z, Huang H, Chiu YH, Zhang B, Zhang C. Linkage analysis of water resources, wastewater pollution, and health for regional sustainable development-using undesirable three-stage dynamic data envelopment analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19325-19350. [PMID: 33394403 DOI: 10.1007/s11356-020-12067-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
With the development of China's economy, pollution has made serious impact on environment and human health. However, environmental protection and residents' health are becoming more and more important along with the country's social and economic transformation. Most existing studies have analyzed the path of economic impact on the environment and the production, pollution, and health in isolation. This research takes panel data of 30 provinces in China (including autonomous regions and municipalities, excluding Tibet, Hong Kong, Macau, and Taiwan) spanning 2014 to 2017 as an example, builds an evaluation indicator system on the basis of the three stages of economic production, wastewater treatment, and human health, and uses the undesirable three-stage dynamic data envelopment analysis model to empirically evaluate the total efficiency, stage efficiency, and the efficiency of various indicators. The research results show the average efficiency of the three stages in most provinces in four years is below 0.5, indicating the poor coordination of each stage; the efficiency gaps among the eastern, central, and western regions are very large because of the resource endowments, geographical environment, industrial structure, strategic adjustment, and other infactors. The total efficiency of the three stages of production input, wastewater treatment, and health output in the eastern region are higher than that of the central region and the western region. From the perspective of stage efficiency, most of the 30 provinces exhibit production efficiency < health efficiency < wastewater treatment efficiency. For the three-phase input and output indicators, the efficiency values and development trends of different provinces vary. The efficiencies of input variables in the wastewater treatment stage and health stage are low in most provinces. This means that the provinces should implement accurate policies according to their own evaluation results and improve the relevance and coordination among the three stages through reasonable allocation of medical input and arrangement of urban employment.
Collapse
Affiliation(s)
- Zhen Shi
- Business School, Hohai University, Changzhou, 213022, China
| | - Huinan Huang
- Business School, Hohai University, Changzhou, 213022, China
| | - Yung-Ho Chiu
- Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei, 10048, Taiwan.
| | - Binxia Zhang
- Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou, China
| | - Chenjun Zhang
- Business School, Hohai University, Changzhou, 213022, China
| |
Collapse
|
10
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
11
|
|
12
|
Shahnazi A, Nabid MR, Sedghi R, Heidari B. A thermosensitive molecularly imprinted poly-NIPAM coated MWCNTs/TiO2 photocatalyst for the preferential removal of pendimethalin pesticide from wastewater. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Jiang T, Aseyev V, Niskanen J, Hietala S, Zhang Q, Tenhu H. Polyzwitterions with LCST Side Chains: Tunable Self-Assembly. Macromolecules 2020; 53:8267-8275. [PMID: 33122865 PMCID: PMC7586405 DOI: 10.1021/acs.macromol.0c01708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/05/2020] [Indexed: 12/20/2022]
Abstract
![]()
Manipulation
of self-assembly behavior of copolymers via environmental
change is attractive in the fabrication of smart polymeric materials.
We present tunable self-assembly behavior of graft copolymers, poly(sulfobetaine
methacrylate)-graft-poly[oligo(ethylene glycol) methyl
ether methacrylate)-co-di(ethylene glycol) methyl
ether methacrylate] (PSBM-g-P(OEGMA-co-DEGMA)). Upon heating the aqueous solutions, the graft copolymers
undergo a transition from micelles with PSBM cores to unimers (i.e.,
individual macromolecules) and then to reversed micelles with P(OEGMA-co-DEGMA) cores, thus demonstrating the tunability of the
self-assembling through temperature change. In the presence of salt
the temperature response of PSBM is eliminated, and the structure
of the micelles with the P(OEGMA-co-DEGMA) core changes.
Moreover, for the graft copolymer with long side chains, micelles
with aggregation number ∼ 2 were formed with
a PSBM core at low temperature, which is ascribed to the steric effect
of the P(OEGMA-co-DEGMA) shell.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Jukka Niskanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.,Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Qilu Zhang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
14
|
Preparation of Responsive Zwitterionic Diblock Copolymers Containing Phosphate and Phosphonate Groups. Macromol Res 2020. [DOI: 10.1007/s13233-020-8148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Forero Ramirez LM, Boudier A, Gaucher C, Babin J, Durand A, Six JL, Nouvel C. Dextran-covered pH-sensitive oily core nanocapsules produced by interfacial Reversible Addition-Fragmentation chain transfer miniemulsion polymerization. J Colloid Interface Sci 2020; 569:57-67. [DOI: 10.1016/j.jcis.2020.02.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 01/06/2023]
|
16
|
Zhang M, Liu Y, Peng J, Liu Y, Liu F, Ma W, Ma L, Yu CY, Wei H. Facile construction of stabilized, pH-sensitive micelles based on cyclic statistical copolymers of poly(oligo(ethylene glycol)methyl ether methacrylate- st-N, N-dimethylaminoethyl methacrylate) for in vitro anticancer drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py01076f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study developed a facile approach to improve the colloidal stability of a cyclic polycation as well as presented a pH-sensitive cyclic copolymer-based nanoplatform with great potential for anticancer drug delivery.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology
- University of South China
- Hengyang
- China
| | - Jinlei Peng
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Yuping Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Wei Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology
- University of South China
- Hengyang
- China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| |
Collapse
|
17
|
Shahriari M, Torchilin VP, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems. Biomater Sci 2020; 8:5787-5803. [DOI: 10.1039/d0bm01283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the current review, we summarized the polymer and peptide-based schizophrenic copolymers which could form micellar and vesicular (polymersome) systems providing novel structures with beneficial applications.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine
- Northeastern University
- Boston
- USA
- Department of Oncology
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
18
|
Mahmoodzadeh F, Hosseinzadeh M, Jannat B, Ghorbani M. Fabrication and characterization of gold nanospheres‐cored pH‐sensitive thiol‐ended triblock copolymer: A smart drug delivery system for cancer therapy. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Farideh Mahmoodzadeh
- Halal Research Center of Islamic Republic of IranFood and Drug Administration Tehran Iran
| | - Mehdi Hosseinzadeh
- Marand Faculty of Technical and EngineeringUniversity of Tabriz Tabriz Iran
| | - Behrooz Jannat
- Halal Research Center of Islamic Republic of IranFood and Drug Administration Tehran Iran
| | - Marjan Ghorbani
- Stem Cell Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
19
|
Si Z, Yu P, Dong Y, Lu Y, Tan Z, Yu X, Zhao R, Yan Y. Thermo-Responsive Molecularly Imprinted Hydrogels for Selective Adsorption and Controlled Release of Phenol From Aqueous Solution. Front Chem 2019; 6:674. [PMID: 30740393 PMCID: PMC6357936 DOI: 10.3389/fchem.2018.00674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/24/2018] [Indexed: 11/24/2022] Open
Abstract
In this study, thermo-responsive molecularly imprinted hydrogels (T-MIHs) were developed as an effective potential adsorbent for selectively adsorption phenol from wastewater. During the process, N-isopropyl acrylamide (NIPAm) was used as thermal responsive monomer. The obtained materials were characterized in detail by fourier transform infrared (FT-IR) spectrometer, scanning electron microscope (SEM), and thermo gravimetric analysis (TGA). A series of static adsorption studies were performed to investigate the kinetics, specific adsorption equilibrium, and selective recognition ability of phenol. Reversible adsorption and release of phenol were realized by changing temperatures. Three type of phenols, namely 3-chlorophenols (3-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) were selected as model analytes to evaluate the selective recognition performance of T-MIHs. The T-MIHs have good selectivity, temperature response, and reusability, making them ideal in applying in the controlled separation and release of phenol pollutants.
Collapse
Affiliation(s)
- Zhenhui Si
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Ping Yu
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Yanying Dong
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Yang Lu
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Zhenjiang Tan
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Xiaopeng Yu
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Rui Zhao
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Zhang X, Liu F, Li X, Tian Y, Ma L, Yu C, Wei H. The fabrication of hybrid micelles with enhanced permeability for drug delivery via a diethoxymethylsilyl-based crosslinking strategy. Polym Chem 2019. [DOI: 10.1039/c9py00810a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel reducible silica monomer, DESSPMA with diethoxysilyl groups for in situ crosslinking to give a lower crosslinking density and greater permeability than the triethoxysilyl-based TESSPMA was developed to realize enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Xianshuo Zhang
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- China
- State Key Laboratory of Applied Organic Chemistry
| | - Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Xiaochen Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Yunfei Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology
- University of South China
- Hengyang
- China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| |
Collapse
|
21
|
Liu Z, Huang Y, Zhang X, Tu X, Wang M, Ma L, Wang B, He J, Ni P, Wei H. Fabrication of Cyclic Brush Copolymers with Heterogeneous Amphiphilic Polymer Brushes for Controlled Drug Release. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00950] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yupeng Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaolong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoyan Tu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingqi Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoyan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
22
|
Tu XY, Meng C, Zhang XL, Jin MG, Zhang XS, Zhao XZ, Wang YF, Ma LW, Wang BY, Liu MZ, Wei H. Fabrication of Reduction-Sensitive Amphiphilic Cyclic Brush Copolymer for Controlled Drug Release. Macromol Biosci 2018; 18:e1800022. [DOI: 10.1002/mabi.201800022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Yan Tu
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Chao Meng
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Xiao-Long Zhang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Miao-Ge Jin
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Xian-Shuo Zhang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Xue-Zhi Zhao
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Yun-Fei Wang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Li-Wei Ma
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Bao-Yan Wang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Ming-Zhu Liu
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 Gansu China
| |
Collapse
|
23
|
Sofla SFI, Abbasian M, Mirzaei M. Synthesis and micellar characterization of novel pH-sensitive thiol-ended triblock copolymer via combination of RAFT and ROP processes. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1445630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Mortaza Mirzaei
- Department of Chemistry (Organic chemistry), Miyaneh branch, Islamic Azad University, Miyaneh, Iran
| |
Collapse
|
24
|
Zhang C, Zhou H, Li Y, Zhang Y, Yu C, Li H, Chen Y, Hamley IW, Jiang S. Investigations on the micellization of amphiphilic dendritic copolymers: From unimers to micelles. J Colloid Interface Sci 2018; 514:609-614. [PMID: 29306191 DOI: 10.1016/j.jcis.2017.12.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
Abstract
Since the micellization kinetics is influenced by polymer structure, the spherical three-dimensional topology of amphiphilic dendritic copolymers (ADPs) which hinders the phase separation during micellization is assumed to make the micellization kinetics different. In the literatures, most of the attention has been paid to the morphology transition or the morphology at equilibrium and the micellization kinetics of ADPs is rarely reported. In this study, the micellization processes of amphiphilic dendritic copolymers from unimers to the final equilibrium micelles were monitored by laser light scattering. Based on the closed association mechanism, the thermodynamics of micellization was analysed. The negative thermodynamic quantities indicate that the micellization of ADPs is driven by enthalpy. Based on the change of scattering intensity and hydrodynamic radius (Rh) with time, the detailed micellization kinetics was analysed, which contains two steps. By controlling the temperature and type of solvent, a system in which the concentration has little influence on Rh is obtained. The relaxation times of the two steps decrease with concentration, indicating that at higher concentration the rate of micellization is quicker. With the increasing mass fraction of the hydrophobic part, the relaxation times decrease and the driving force of micellization increases.
Collapse
Affiliation(s)
- Cuiyun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China; Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huipeng Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yongxin Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yunyi Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Science, Beijing 100049, PR China.
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Science, Beijing 100049, PR China.
| | - Yu Chen
- Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, PR China.
| | - Ian W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom.
| | - Shichun Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
25
|
Czarnecki S, Bertin A. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science. Chemistry 2018; 24:3354-3373. [PMID: 29218744 DOI: 10.1002/chem.201705286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 11/11/2022]
Abstract
Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science.
Collapse
Affiliation(s)
- Sebastian Czarnecki
- German Federal Institute for Materials Research and Testing (BAM), Dpt. 6. Materials Protection and Surface Technology, Unter den Eichen 87, 12205, Berlin, Germany
| | - Annabelle Bertin
- German Federal Institute for Materials Research and Testing (BAM), Dpt. 6. Materials Protection and Surface Technology, Unter den Eichen 87, 12205, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry-Organic Chemistry, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
26
|
Tu XY, Meng C, Wang YF, Ma LW, Wang BY, He JL, Ni PH, Ji XL, Liu MZ, Wei H. Fabrication of Thermosensitive Cyclic Brush Copolymer with Enhanced Therapeutic Efficacy for Anticancer Drug Delivery. Macromol Rapid Commun 2018; 39. [PMID: 29314488 DOI: 10.1002/marc.201700744] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/25/2017] [Indexed: 11/07/2022]
Abstract
Adaptation of cyclic brush polymer for drug delivery applications remains largely unexplored. Herein, cyclic brush copolymer of poly(2-hydroxyethyl methacrylate-g-poly(N-isopropylacrylamide-st-N-hydroxyethylacrylamide)) (cb-P(HEMA-g-P(NIPAAm-st-HEAAm))), comprising a cyclic core of PHEMA and thermosensitive brushes of statistical copolymer of P(NIPAAm-st-HEAAm), is designed and synthesized successfully via a graft-from approach using atom transfer free radical polymerization from a cyclic multimacroinitiator. The composition of the brush is optimized to endow the resulting cyclic brush copolymer with a lower critical solution temperature (LCST) slightly above the physiological temperature, but lower than the localized temperature of tumor tissue, which is suitable for the hyperthermia-triggered anticancer drug delivery. Critical aggregation concentration determination reveals better stability for the unimolecular nanoparticle formed by the cyclic brush copolymer than that formed by the bottlebrush analogue. The dramatically increased size with elevated temperatures from below to above the LCST confirms hyperthermia-induced aggregation for both formulations. Such structural destabilization promotes significantly the drug release at 40 °C. Most importantly, the drug-loaded cyclic brush copolymer shows enhanced in vitro cytotoxicity against HeLa cells than the bottlebrush counterpart. The better stability and higher therapeutic efficacy demonstrates that the thermosensitive cyclic brush copolymer is a better formulation than bottle brush copolymer for controlled drug release applications.
Collapse
Affiliation(s)
- Xiao-Yan Tu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Chao Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yun-Fei Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li-Wei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Bao-Yan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jin-Lin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, China
| | - Pei-Hong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, China
| | - Xiang-Ling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ming-Zhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
27
|
Canning S, Neal TJ, Armes SP. pH-Responsive Schizophrenic Diblock Copolymers Prepared by Polymerization-Induced Self-Assembly. Macromolecules 2017; 50:6108-6116. [PMID: 28867829 PMCID: PMC5577634 DOI: 10.1021/acs.macromol.7b01005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Indexed: 01/28/2023]
Abstract
Polymerization-induced self-assembly (PISA) is used for the highly convenient and efficient preparation of ampholytic diblock copolymer nanoparticles directly in acidic aqueous solution. Cationic nanoparticles comprising a protonated polyamine stabilizer block and a hydrophobic polyacid core-forming block are formed at pH 2. Micelle inversion occurs at pH 10 to produce anionic nanoparticles with an ionized polyacid stabilizer block and a hydrophobic polyamine core-forming block. Macroscopic precipitation occurs at around pH 6-7, which lies close to the isoelectric point of this ampholytic diblock copolymer. Incorporation of fluorescein and rhodamine dye labels into the acid and amine blocks, respectively, leads to dual-color bifluorescent self-reporting pH-responsive nanoparticles.
Collapse
Affiliation(s)
- Sarah
L. Canning
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Thomas J. Neal
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
28
|
Mahmoodzadeh F, Abbasian M, Jaymand M, Amirshaghaghi A. A novel dual stimuli-responsive thiol-end-capped ABC triblock copolymer: synthesis via reversible addition-fragmentation chain transfer technique, and investigation of its self-assembly behavior. POLYM INT 2017. [DOI: 10.1002/pi.5428] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Ahmad Amirshaghaghi
- Department of Bioengineering; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
29
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
30
|
Osváth Z, Tóth T, Iván B. Synthesis, characterization, LCST-type behavior and unprecedented heating-cooling hysteresis of poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate) copolymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Davaran S, Ghamkhari A, Alizadeh E, Massoumi B, Jaymand M. Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis, "schizophrenic" micellization, and its performance as an anticancer drug delivery nanosystem. J Colloid Interface Sci 2016; 488:282-293. [PMID: 27837719 DOI: 10.1016/j.jcis.2016.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022]
Abstract
A novel pH- and thermo-responsive ABC triblock copolymer {poly[(2-succinyloxyethyl methacrylate)-b-(N-isopropylacrylamide)-b-[(N-4-vinylbenzyl),N,N-diethylamine]]} [P(SEMA-b-NIPAAm-b-VEA)] was successfully synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization technique. The molecular weights of PHEMA, PNIPAAm, and PVEA segments in the synthesized triblock copolymer were calculated to be 10,670, 6140, and 9060gmol-1, respectively, from proton nuclear magnetic resonance (1H NMR) spectroscopy. The "schizophrenic" self-assembly behavior of the synthesized P(SEMA-b-NIPAAm-b-VEA) triblock copolymer under pH and thermal stimulus were investigated by means of 1H NMR and ultraviolet-visible (UV-vis) spectroscopies as well as dynamic light scattering (DLS) and zeta potential (ξ) measurements. The doxorubicin hydrochloride (DOX)-loading capacity, and stimuli-responsive drug release ability of the synthesized triblock copolymer were also investigated. The biocompatibility of the synthesized triblock copolymer was confirmed through the assessing survival rate of breast cancer cell line (MCF7) using MTT assay. In contrast, DOX-loaded triblock copolymer exhibited an efficient anticancer performance in comparison with free DOX verified by MTT and DAPI staining assays. As the results, we envision that the synthesized P(SEMA-b-NIPAAm-b-VEA) triblock copolymer can be applied as an enhanced anticancer drug delivery nanosystem, mainly due to its smart physicochemical and biocompatibility properties.
Collapse
Affiliation(s)
- Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. Box: 51664-14766, Tabriz, Iran
| | - Aliyeh Ghamkhari
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, P.O. Box: 51548-53431, Tabriz, Iran
| | - Bakhshali Massoumi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran.
| | - Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|
32
|
Kocak G, Solmaz G, Bütün V. A New Approach for the Synthesis of pH-Responsive Cross-Linked Micelles from a Poly(glycidyl methacrylate)-Based Functional Copolymer. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gökhan Kocak
- Department of Chemistry; Eskisehir Osmangazi University; 26480 Eskisehir Turkey
| | - Gökhan Solmaz
- Department of Polymer Science and Technology; Eskisehir Osmangazi University; 26480 Eskisehir Turkey
| | - Vural Bütün
- Department of Chemistry; Eskisehir Osmangazi University; 26480 Eskisehir Turkey
- Department of Polymer Science and Technology; Eskisehir Osmangazi University; 26480 Eskisehir Turkey
| |
Collapse
|
33
|
Core–shell thermal-responsive and magnetic molecularly imprinted polymers based on mag-yeast for selective adsorption and controlled release of tetracycline. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0971-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Yuan H, Chi H, Yuan W. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition: Opposite self-assembly behavior, hydrophilic-hydrophobic surface and tunable crystalline morphologies. Carbohydr Polym 2016; 147:261-271. [DOI: 10.1016/j.carbpol.2016.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
|
35
|
Wang Z, Yang L, Chen B, Yang Y, Yong P, Chen J. Coloading of Magnetic Particles and an Anionic Drug into pH-sensitive Triblock Polymeric Nanocarriers. CHEM LETT 2016. [DOI: 10.1246/cl.160166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhiyong Wang
- School of Environmental and Chemical Engineering, Shanghai University
| | - Liming Yang
- School of Environmental and Chemical Engineering, Shanghai University
| | - Bin Chen
- School of Environmental and Chemical Engineering, Shanghai University
| | - Yuejiao Yang
- School of Environmental and Chemical Engineering, Shanghai University
| | - Ping Yong
- School of Environmental and Chemical Engineering, Shanghai University
| | - Jie Chen
- School of Environmental and Chemical Engineering, Shanghai University
| |
Collapse
|
36
|
Panja S, Dey G, Bharti R, Kumari K, Maiti TK, Mandal M, Chattopadhyay S. Tailor-Made Temperature-Sensitive Micelle for Targeted and On-Demand Release of Anticancer Drugs. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12063-12074. [PMID: 27128684 DOI: 10.1021/acsami.6b03820] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design of nanomedicines from the tuned architecture polymer is a leading object of immense research in recent years. Here, smart thermoresponsive micelles were prepared from novel architecture four-arm star block copolymers, namely, pentaerythritol polycaprolactone-b-poly(N-isopropylacrylamide) and pentaerythritol polycaprolactone-b-poly(N-vinylcaprolactam). The polymers were synthesized and tagged with folic acid (FA) to render them as efficient cancer cell targeting cargos. FA-conjugated block copolymers were self-assembled to a nearly spherical (ranging from 15 to 170 nm) polymeric micelle (FA-PM) with a sufficiently lower range of critical micelle concentration (0.59 × 10(-2) to 1.52 × 10(-2) mg/mL) suitable for performing as an efficient drug carrier. The blocks show lower critical solution temperature (LCST) ranging from 30 to 39 °C with high DOX-loading content (24.3%, w/w) as compared to that reported for a linear polymer in the contemporary literature. The temperature-induced reduction in size (57%) of the FA-PM enables a high rate of DOX release (78.57% after 24 h) at a temperature above LCST. The DOX release rate has also been tuned by on-demand administration of temperature. The in vitro biocompatibilities of the blank and DOX-loaded FA-PMs have been studied by the MTT assay. The cellular uptake study proves selective internalization of the FA-PM into cancerous cells (C6 glioma) compared that into normal cells (HaCaT). In vivo administration of the DOX-loaded FA-PMs into the C6 glioma rat tumor model resulted in significant accumulation in tumor sites, which drastically inhibited the tumor volume by ∼83.9% with respect to control without any significant systemic toxicity.
Collapse
Affiliation(s)
- S Panja
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - G Dey
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - R Bharti
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - K Kumari
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - T K Maiti
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - M Mandal
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - S Chattopadhyay
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| |
Collapse
|
37
|
Chung JJ, Jones JR, Georgiou TK. Toward Hybrid Materials: Group Transfer Polymerization of 3‐(Trimethoxysilyl)propyl Methacrylate. Macromol Rapid Commun 2015; 36:1806-9. [DOI: 10.1002/marc.201500356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/07/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Justin J. Chung
- Department of MaterialsRoyal School of Mines Exhibition Road, Imperial College London SW7 2AZ London UK
| | - Julian R. Jones
- Department of MaterialsRoyal School of Mines Exhibition Road, Imperial College London SW7 2AZ London UK
| | - Theoni K. Georgiou
- Department of MaterialsRoyal School of Mines Exhibition Road, Imperial College London SW7 2AZ London UK
| |
Collapse
|
38
|
Pan J, Yin Y, Zhang Y, Wu R, Dai X, Yan Y. Thermoresponsive and magnetic molecularly imprinted polymers based on iron oxide encapsulated carbon nanotubes as a matrix for the selective adsorption and controlled release of 2,4,5-trichlorophenol. J Appl Polym Sci 2015. [DOI: 10.1002/app.42087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jianming Pan
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Yijie Yin
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Yunlei Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Runrun Wu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xiaohui Dai
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
39
|
Chen X, Sun JT, Pan CY, Hong CY. A facile synthesis of thermo-responsive Au–polymer hybrid microgels through temperature-induced co-aggregation and self-crosslinking. Polym Chem 2015. [DOI: 10.1039/c5py00774g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile temperature-induced co-aggregation and self-crosslinking (TICASC) method was developed for preparing thermo-responsive Au–polymer hybrid microgels.
Collapse
Affiliation(s)
- Xiang Chen
- CAS Key Lab of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jiao-Tong Sun
- CAS Key Lab of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Cai-Yuan Pan
- CAS Key Lab of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chun-Yan Hong
- CAS Key Lab of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
40
|
Chang C, Dan H, Zhang LP, Chang MX, Sheng YF, Zheng GH, Zhang XZ. Fabrication of thermoresponsive, core-crosslinked micelles based on poly[N-isopropyl acrylamide-co-3-(trimethoxysilyl)propylmethacrylate]-b-poly{N-[3-(dimethylamino)propyl]methacrylamide} for the codelivery of doxorubicin and nucleic acid. J Appl Polym Sci 2014. [DOI: 10.1002/app.41752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cong Chang
- Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education; Hubei University of Chinese Medicine; Wuhan 430065 People's Republic of China
| | - Hong Dan
- Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education; Hubei University of Chinese Medicine; Wuhan 430065 People's Republic of China
| | - Li-Ping Zhang
- Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education; Hubei University of Chinese Medicine; Wuhan 430065 People's Republic of China
| | - Ming-Xiang Chang
- Affiliated Hospital; Hubei University of Chinese Medicine; Wuhan 430061 People's Republic of China
| | - Yin-Feng Sheng
- Affiliated Hospital; Hubei University of Chinese Medicine; Wuhan 430061 People's Republic of China
| | - Guo-Hua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education; Hubei University of Chinese Medicine; Wuhan 430065 People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
41
|
Montes JÁ, Ortega A, Burillo G. Dual-stimuli responsive copolymers based on N-vinylcaprolactam/chitosan. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3805-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Ke X, Ng VWL, Ono RJ, Chan JM, Krishnamurthy S, Wang Y, Hedrick JL, Yang YY. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J Control Release 2014; 193:9-26. [DOI: 10.1016/j.jconrel.2014.06.061] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/10/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
43
|
Preparation and evaluation of chiral selective cation-exchange PMMA–PNIPAm thermal-sensitive membranes. IRANIAN POLYMER JOURNAL 2014. [DOI: 10.1007/s13726-014-0262-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Li Y, Xiao K, Zhu W, Deng W, Lam KS. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev 2014; 66:58-73. [PMID: 24060922 DOI: 10.1016/j.addr.2013.09.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/27/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Stimuli-responsive cross-linked micelles (SCMs) represent an ideal nanocarrier system for drug delivery against cancers. SCMs exhibit superior structural stability compared to their non-cross-linked counterpart. Therefore, these nanocarriers are able to minimize the premature drug release during blood circulation. The introduction of environmentally sensitive cross-linkers or assembly units makes SCMs responsive to single or multiple stimuli present in tumor local microenvironment or exogenously applied stimuli. In these instances, the payload drug is released almost exclusively in cancerous tissue or cancer cells upon accumulation via enhanced permeability and retention effect or receptor mediated endocytosis. In this review, we highlight recent advances in the development of SCMs for cancer therapy. We also introduce the latest biophysical techniques, such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence resonance energy transfer (FRET), for the characterization of the interactions between SCMs and blood proteins.
Collapse
Affiliation(s)
- Yuanpei Li
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| | - Kai Xiao
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Wei Zhu
- Department of Cardiology, the First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wenbin Deng
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
45
|
Wang W, Lu Y, Yue Z, Liu W, Cao Z. Ultrastable core–shell structured nanoparticles directly made from zwitterionic polymers. Chem Commun (Camb) 2014; 50:15030-3. [DOI: 10.1039/c4cc06558a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A one-step method to create ultra-stable core–shell nanoparticles directly from zwitterionic polymers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering and Material Science
- Wayne State University
- Detroit, USA
| | - Yang Lu
- Department of Chemical Engineering and Material Science
- Wayne State University
- Detroit, USA
| | - Zhanguo Yue
- Department of Chemical Engineering and Material Science
- Wayne State University
- Detroit, USA
| | - Wenguang Liu
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300072, PR China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Material Science
- Wayne State University
- Detroit, USA
| |
Collapse
|
46
|
Li S, Huo F, Li Q, Gao C, Su Y, Zhang W. Synthesis of a doubly thermo-responsive schizophrenic diblock copolymer based on poly[N-(4-vinylbenzyl)-N,N-diethylamine] and its temperature-sensitive flip-flop micellization. Polym Chem 2014. [DOI: 10.1039/c4py00077c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A doubly thermo-responsive schizophrenic diblock copolymer, poly(tert-butyl methacrylate)-block-poly[N-(4-vinylbenzyl)-N,N-diethylamine], was synthesized and its flip-flop micellization was demonstrated.
Collapse
Affiliation(s)
- Shentong Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Fei Huo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Quanlong Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Yang Su
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| |
Collapse
|
47
|
Mabire AB, Robin MP, Willcock H, Pitto-Barry A, Kirby N, O'Reilly RK. Dual effect of thiol addition on fluorescent polymeric micelles: ON-to-OFF emissive switch and morphology transition. Chem Commun (Camb) 2014; 50:11492-5. [DOI: 10.1039/c4cc04713c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reaction with a thiol causes solution-state self-assembled block copolymer nanoparticles to undergo a simultaneous morphology transition from micelles to vesicles coupled to an ON-to-OFF switch in particle fluorescence.
Collapse
Affiliation(s)
- Anne B. Mabire
- Department of Chemistry
- University of Warwick
- Coventry, UK
| | | | - Helen Willcock
- Department of Chemistry
- University of Warwick
- Coventry, UK
| | | | | | | |
Collapse
|
48
|
Jin Q, Liu G, Ji J. Supramolecular Micelles and Reverse Micelles Based on Cyclodextrin Polyrotaxanes. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Wang HF, Jia HZ, Chu YF, Feng J, Zhang XZ, Zhuo RX. Acidity-Promoted Cellular Uptake and Drug Release Mediated by Amine-Functionalized Block Polycarbonates Prepared via One-Shot Ring-Opening Copolymerization. Macromol Biosci 2013; 14:526-36. [DOI: 10.1002/mabi.201300414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/08/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Hua-Fen Wang
- Key Laboratory of Biomedical Polymers (The Ministry of Education), Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers (The Ministry of Education), Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Yan-Feng Chu
- Key Laboratory of Biomedical Polymers (The Ministry of Education), Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers (The Ministry of Education), Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers (The Ministry of Education), Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers (The Ministry of Education), Department of Chemistry; Wuhan University; Wuhan 430072 China
| |
Collapse
|
50
|
Lunn DJ, Boott CE, Bass KE, Shuttleworth TA, McCreanor NG, Papadouli S, Manners I. Controlled Thiol-Ene Functionalization of Polyferrocenylsilane-block-Polyvinylsiloxane Copolymers. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David J. Lunn
- School of Chemistry; University of Bristol; Bristol BS8 1TS United Kingdom
| | - Charlotte E. Boott
- School of Chemistry; University of Bristol; Bristol BS8 1TS United Kingdom
| | - Kelly E. Bass
- School of Chemistry; University of Bristol; Bristol BS8 1TS United Kingdom
| | | | - Niall G. McCreanor
- School of Chemistry; University of Bristol; Bristol BS8 1TS United Kingdom
| | - Sofia Papadouli
- School of Chemistry; University of Bristol; Bristol BS8 1TS United Kingdom
| | - Ian Manners
- School of Chemistry; University of Bristol; Bristol BS8 1TS United Kingdom
| |
Collapse
|