Abstract
The synthesis of functional aromatic bis(sulfonyl chlorides) containing an acetophenone and two sulfonyl chloride groups, i.e., 3,5-bis[4-(chlorosulfonyl)phenyl]-1-acetophenone (16), 3,5-bis(chlorosulfonyl)-1-acetophenone (17), and 3,5-bis(4-(chlorosulfonyl)phenyloxy)-1-acetophenone (18) via a sequence of reactions, involving in the last step the quantitative oxidative chlorination of S-(aryl)- N,N'-diethylthiocarbamate, alkyl- or benzyl thiophenyl groups as masked nonreactive precursors to sulfonyl chlorides is described. A related sequence of reactions was used for the synthesis of the aromatic trisulfonyl chloride 1,1,1-tris(4-chlorosulfonylphenyl)ethane (24). 4-(Chlorosulfonyl)phenoxyacetic acid, 2,2-bis[[[4-(chlorosulfonyl)phenoxyacetyl]oxy]methyl]-1,3-propanediyl ester (27), 5,11,17,23-tetrakis(chlorosulfonyl)-25,26,27,28-tetrakis(ethoxycarbonylmethoxy)calix[4]arene (38), 5,11,17,23,29,35-hexakis(chlorosulfonyl)-37,38,39,40,41,42-hexakis(ethoxycarbonylmethoxy)calix[6]arene (39), 5,11,17,23,29,35,41,47-octakis(chlorosulfonyl)-49,50,51,52,53,54,55,56-octakis(ethoxycarbonylmethoxy)calix[8]arene (40), 5,11,17,23-tetrakis(tert-butyl)-25,26,27,28-tetrakis(chlorosulfonyl phenoxyacetoxy)calix[4]arene (44), 5,11,17,23,29,35-hexakis(tert-butyl)-37,38,39,40,41,42-hexakis(chlorosulfonylphenoxyacetoxy)calix[6]arene (45), and 5,11,17,23,29,35,41,47-octakis(tert-butyl)-49,40,51,52,53,54,55,56-octakis(chlorosulfonylphenoxyacetoxy)calix[8]arene (46) were synthesized by two different multistep reaction procedures, the last step of both methods consisting of the chlorosulfonation of compounds containing suitable activated aromatic positions. 2,4,6-Tris(chlorosulfonyl)aniline (47) was obtained by the chlorosulfonation of aniline. The conformation of two series of multisulfonyl chlorides i.e., 38, 39, 40 and 44, 45, 46, was investigated by (1)H NMR spectroscopy. The masked nonreactive precursor states of the functional aromatic multisulfonyl chlorides and the aromatic multisulfonyl chlorides reported here represent the main starting building blocks required in a new synthetic strategy elaborated for the preparation of dendritic and other complex organic molecules.
Collapse