1
|
Koštrun S, Fajdetić A, Pešić D, Brajša K, Bencetić Mihaljević V, Jelić D, Petrinić Grba A, Elenkov I, Rupčić R, Kapić S, Ozimec Landek I, Butković K, Grgičević A, Žiher D, Čikoš A, Padovan J, Saxty G, Dack K, Bladh H, Skak-Nielsen T, Feldbaek Nielsen S, Lambert M, Stahlhut M. Macrolide Inspired Macrocycles as Modulators of the IL-17A/IL-17RA Interaction. J Med Chem 2021; 64:8354-8383. [PMID: 34100601 DOI: 10.1021/acs.jmedchem.1c00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin 17 (IL-17) cytokines promote inflammatory pathophysiology in many autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Such broad involvement of IL-17 in various autoimmune diseases makes it an ideal target for drug discovery. Psoriasis is a chronic inflammatory disease characterized by numerous defective components of the immune system. Significantly higher levels of IL-17A have been noticed in lesions of psoriatic patients, if compared to non-lesion parts. Therefore, this paper is focused on the macrolide inspired macrocycles as potential IL-17A/IL-17RA modulators and covers the molecular design, synthesis, and in vitro profiling. Macrocycles are designed to diversify and enrich chemical space through different ring sizes and a variety of three-dimensional shapes. Inhibitors in the nM range were identified in both target-based and phenotypic assays. In vitro ADME as well as in vivo PK properties are reported.
Collapse
Affiliation(s)
- Sanja Koštrun
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Andrea Fajdetić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Dijana Pešić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Karmen Brajša
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | - Dubravko Jelić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | - Ivaylo Elenkov
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Renata Rupčić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Samra Kapić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | | | - Ana Grgičević
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Dinko Žiher
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Ana Čikoš
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Jasna Padovan
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Gordon Saxty
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Kevin Dack
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Haakan Bladh
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | | | | | - Maja Lambert
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | | |
Collapse
|
2
|
Qin Y, Song D, Teng Y, Liu X, Zhang P, Zhang N, Zhang N, Chen W, Ma S. Design, synthesis and structure-activity relationships of novel N11-, C12- and C13-substituted 15-membered homo-aza-clarithromycin derivatives against various resistant bacteria. Bioorg Chem 2021; 113:104992. [PMID: 34051415 DOI: 10.1016/j.bioorg.2021.104992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Bacterial infections are still the main significant problem of public health in the world, and their elimination will greatly rely on the discovery of antibacterial drugs. In the processes of our searching for novel macrolide derivatives with excellent activity against sensitive and resistant bacteria, three series of novel N11-, C12- and C13-substituted 15-membered homo-aza-clarithromycin derivatives were designed and synthesized as Series A, B and C by creatively opening the lactone ring of clarithromycin (CAM), introducing various 4-substituted phenyl-1H-1,2,3-triazole side chains at the N11, C12 or C13 position of CAM and macrolactonization. The results from their in vitro antibacterial activity demonstrated that compounds 20c, 20d and 20f displayed not only the most potent activity against S. aureus ATCC25923 with the MIC values of 0.5, 0.5 and 0.5 µg/mL, but also greatly improved activity against B. subtilis ATCC9372 with the MIC values of less than or equal to 0.25, 0.25 and 0.25 µg/mL, respectively. In particular, compound 11g exhibited the strongest antibacterial effectiveness against all the tested resistant bacterial strains and had well balanced activity with the MIC values of 4-8 µg/mL. Further study on minimum bactericidal concentration and kinetics confirmed that compound 11g possessed a bacteriostatic effect on bacterial proliferation. Moreover, the results of molecular docking revealed an potential additional binding force between compound 11g and U790 in addition to the normal binding force of macrolide skeleton, which may explain why this compound performed the most potent activity against resistant bacteria. The results of cytotoxic assay indicated that compounds 20c, 20d and 20f were non-toxic to human breast cancer MCF-7 cells at its effective antibacterial concentration.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Xingbang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Nan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Na Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China.
| |
Collapse
|
4
|
Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol 2017; 174:2967-2983. [PMID: 28664582 DOI: 10.1111/bph.13936] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022] Open
Abstract
Macrolides represent a large family of protein synthesis inhibitors of great clinical interest due to their applicability to human medicine. Macrolides are composed of a macrocyclic lactone of different ring sizes, to which one or more deoxy-sugar or amino sugar residues are attached. Macrolides act as antibiotics by binding to bacterial 50S ribosomal subunit and interfering with protein synthesis. The high affinity of macrolides for bacterial ribosomes, together with the highly conserved structure of ribosomes across virtually all of the bacterial species, is consistent with their broad-spectrum activity. Since the discovery of the progenitor macrolide, erythromycin, in 1950, many derivatives have been synthesised, leading to compounds with better bioavailability and acid stability and improved pharmacokinetics. These efforts led to the second generation of macrolides, including well-known members such as azithromycin and clarithromycin. Subsequently, in order to address increasing antibiotic resistance, a third generation of macrolides displaying improved activity against many macrolide resistant strains was developed. However, these improvements were accompanied with serious side effects, leading to disappointment and causing many researchers to stop working on macrolide derivatives, assuming that this procedure had reached the end. In contrast, a recent published breakthrough introduced a new chemical platform for synthesis and discovery of a wide range of diverse macrolide antibiotics. This chemical synthesis revolution, in combination with reduction in the side effects, namely, 'Ketek effects', has led to a macrolide renaissance, increasing the hope for novel and safe therapeutic agents to combat serious human infectious diseases.
Collapse
Affiliation(s)
- George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|