1
|
Masaryk L, Orvoš J, Słoczyńska K, Herchel R, Moncol J, Milde D, Halaš P, Křikavová R, Koczurkiewicz-Adamczyk P, Pękala E, Fischer R, Šalitroš I, Nemec I, Štarha P. Anticancer half-sandwich Ir( iii) complex and its interaction with various biomolecules and their mixtures – a case study with ascorbic acid. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00535b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anticancer azo bond-containing half-sandwich Ir(iii) complex oxidizes ascorbate to dehydroascorbate, and ascorbate recovers in the presence of reduced glutathione.
Collapse
Affiliation(s)
- Lukáš Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jakub Orvoš
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Halaš
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Róbert Fischer
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
2
|
Machiraju PK, Yedla P, Gubbala SP, Bohari T, Abdul JK, Xu S, Patel R, Chittireddy VRR, Boppana K, Jagarlapudi SA, Neamati N, Syed R, Amanchy R. Identification, synthesis and evaluation of CSF1R inhibitors using fragment based drug design. Comput Biol Chem 2019; 80:374-383. [DOI: 10.1016/j.compbiolchem.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/12/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
|
3
|
Liu YQ, Wang YN, Lu XY, Tong LJ, Li Y, Zhang T, Xun QJ, Feng F, Chen YZ, Su Y, Shen YY, Chen Y, Geng MY, Ding K, Li YL, Xie H, Ding J. Identification of compound D2923 as a novel anti-tumor agent targeting CSF1R. Acta Pharmacol Sin 2018; 39:1768-1776. [PMID: 29968849 PMCID: PMC6289367 DOI: 10.1038/s41401-018-0056-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R) plays a critical role in promoting tumor progression in various types of tumors. Here, we identified D2923 as a novel and selective inhibitor of CSF1R and explored its antitumor activity both in vitro and in vivo. D2923 potently inhibited CSF1R in vitro kinase activity with an IC50 value of 0.3 nM. It exhibited 10- to 300-fold less potency against a panel of kinases tested. D2923 markedly blocked CSF-1-induced activation of CSF1R and its downstream signaling transduction in THP-1 and RAW264.7 macrophages and thus inhibited the in vitro growth of macrophages. Moreover, D2923 dose-dependently attenuated the proliferation of a small panel of myeloid leukemia cells, mainly by arresting the cells at G1 phase as well as inducing apoptosis in the cells. The results of the in vivo experiments further demonstrated that D2923 displayed potent antitumor activity against M-NFS-60 xenografts, with tumor growth inhibition rates of 50% and 88% at doses of 40 and 80 mg/kg, respectively. Additionally, D2923 was well tolerated with no significant body-weight loss observed in the treatment groups compared with the control. Furthermore, a western blot analysis and the immunohistochemistry results confirmed that the phosphorylation of CSF1R in tumor tissue was dramatically reduced after D2923 treatment, and this was accompanied by the depletion of macrophages in the tumor. Meanwhile, the expression of the proliferation marker Ki67 was also markedly decreased in the D2923 treatment group compared with the control group. Taken together, we identified D2923 as a novel and effective CSF1R inhibitor, which deserves further investigation.
Collapse
Affiliation(s)
- Ying-Qiang Liu
- School of Life Science, Shanghai University, 200444, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ya-Nan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiao-Yun Lu
- School of Pharmacy, Jinan University, No. 601 Huangpu Avenue, 510632, West Guangzhou, China
| | - Lin-Jiang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Qiu-Ju Xun
- School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Pharmacy, Jinan University, No. 601 Huangpu Avenue, 510632, West Guangzhou, China
| | - Fang Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yu-Zhe Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yi Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yan-Yan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yi Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Mei-Yu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Ke Ding
- School of Pharmacy, Jinan University, No. 601 Huangpu Avenue, 510632, West Guangzhou, China
| | - Yan-Li Li
- School of Life Science, Shanghai University, 200444, Shanghai, China.
| | - Hua Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| |
Collapse
|
4
|
Mitrugno A, Sylman JL, Ngo ATP, Pang J, Sears RC, Williams CD, McCarty OJT. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC. Am J Physiol Cell Physiol 2016; 312:C176-C189. [PMID: 27903583 DOI: 10.1152/ajpcell.00196.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/08/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Aspirin, an anti-inflammatory and antithrombotic drug, has become the focus of intense research as a potential anticancer agent owing to its ability to reduce tumor proliferation in vitro and to prevent tumorigenesis in patients. Studies have found an anticancer effect of aspirin when used in low, antiplatelet doses. However, the mechanisms through which low-dose aspirin works are poorly understood. In this study, we aimed to determine the effect of aspirin on the cross talk between platelets and cancer cells. For our study, we used two colon cancer cell lines isolated from the same donor but characterized by different metastatic potential, SW480 (nonmetastatic) and SW620 (metastatic) cancer cells, and a pancreatic cancer cell line, PANC-1 (nonmetastatic). We found that SW480 and PANC-1 cancer cell proliferation was potentiated by human platelets in a manner dependent on the upregulation and activation of the oncoprotein c-MYC. The ability of platelets to upregulate c-MYC and cancer cell proliferation was reversed by an antiplatelet concentration of aspirin. In conclusion, we show for the first time that inhibition of platelets by aspirin can affect their ability to induce cancer cell proliferation through the modulation of the c-MYC oncoprotein.
Collapse
Affiliation(s)
- Annachiara Mitrugno
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon; .,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Joanna L Sylman
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Rosalie C Sears
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon.,Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon; and
| | - Craig D Williams
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon.,College of Pharmacy, Oregon State University, Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon.,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
5
|
Laev SS, Salakhutdinov NF. Anti-arthritic agents: progress and potential. Bioorg Med Chem 2015; 23:3059-80. [PMID: 26014481 DOI: 10.1016/j.bmc.2015.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 12/20/2022]
Abstract
Osteoarthritis and rheumatoid arthritis are the two most common types of arthritis. Cartilage breakdown is a key feature of both diseases which contributes to the pain and joint deformity experienced by patients. Therefore, anti-arthritis drugs are of great importance. The aim of this review is to present recent progress in studies of various agents against osteoarthritis and rheumatoid arthritis. The structures and activities of anti-arthritic agents, which used in medical practice or are in development, are presented and discussed. The effects and mechanisms of action of opioids, glucocorticoids, non-steroidal anti-inflammatory drugs, disease-modifying anti-rheumatic drugs, natural products derived from plants, nutraceuticals, and a number of new and perspective agents are considered. Various perspective targets for the treatment of osteoarthritis and rheumatoid arthritis are also discussed. Trials of good quality are needed to draw solid conclusions regarding efficacy of many of the studied agents. Unfortunately, to date, there is no pharmacologic agent proven to prevent the progression of both diseases, and there is an urgent need for further development of better anti-arthritic agents.
Collapse
Affiliation(s)
- Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| | - Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
6
|
Belfrage AK, Gising J, Svensson F, Åkerblom E, Sköld C, Sandström A. Efficient and Selective Palladium-Catalysed C-3 Urea Couplings to 3,5-Dichloro-2(1H)-pyrazinones. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Zhu TH, Xu XP, Cao JJ, Wei TQ, Wang SY, Ji SJ. Cobalt(II)-Catalyzed Isocyanide Insertion Reaction with Amines under Ultrasonic Conditions: A Divergent Synthesis of Ureas, Thioureas and Azaheterocycles. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300745] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|