1
|
Upadhyay DB, Nogales J, Mokariya JA, Vala RM, Tandon V, Banerjee S, Patel HM. One-pot synthesis of tetrahydropyrimidinecarboxamides enabling in vitro anticancer activity: a combinative study with clinically relevant brain-penetrant drugs. RSC Adv 2024; 14:27174-27186. [PMID: 39193280 PMCID: PMC11348845 DOI: 10.1039/d4ra04171b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, we describe a one-pot three-component synthesis of bioactive tetrahydopyrimidinecarboxamide derivatives employing lanthanum triflate as a catalyst. Out of the synthesized compounds, 4f had the most potent anti-cancer activity and impeded cell cycle progression effectively. Anti-cancer bioactivity was observed in 4f against liver, breast, and lung cancers as well as primary patient-derived glioblastoma cell lines. Compound 4f effectively inhibited the 3D neurosphere formation in primary patient-derived glioma stem cells. Specifically, 4f exhibited synergistic cytotoxicity with the EGFR inhibitor that is the clinical epidermal growth factor receptor inhibitor osimertinib. 4f does not exhibit anti-kinase activity and is cytostatic in nature, and further work is needed to understand the true molecular target of 4f and its derivatives. Through our current work, we establish a promising tetrahydopyrimidinecarboxamide-based lead compound with anti-cancer activity, which may exhibit potent anti-cancer activity in combination with specific clinically relevant small molecule kinase inhibitors.
Collapse
Affiliation(s)
- Dipti B Upadhyay
- Department of Chemistry, Sardar Patel University Vallabh Vidyanagar Gujarat India
| | - Joaquina Nogales
- Division of Cancer Research, School of Medicine, University of Dundee Dundee DD1 9SY UK
| | - Jaydeep A Mokariya
- Department of Chemistry, Sardar Patel University Vallabh Vidyanagar Gujarat India
| | - Ruturajsinh M Vala
- Department of Chemistry, Sardar Patel University Vallabh Vidyanagar Gujarat India
| | - Vasudha Tandon
- Division of Cancer Research, School of Medicine, University of Dundee Dundee DD1 9SY UK
| | - Sourav Banerjee
- Division of Cancer Research, School of Medicine, University of Dundee Dundee DD1 9SY UK
| | - Hitendra M Patel
- Department of Chemistry, Sardar Patel University Vallabh Vidyanagar Gujarat India
| |
Collapse
|
2
|
Anticancer evaluation of the selected tetrahydropyrimidines: 3D-QSAR, cytotoxic activities, mechanism of action, DNA, and BSA interactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Li Z, Liu T, He X, Bai C. The evolution paths of some reprehensive scaffolds of RORγt modulators, a perspective from medicinal chemistry. Eur J Med Chem 2021; 228:113962. [PMID: 34776280 DOI: 10.1016/j.ejmech.2021.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
The ligand binding domain (LBD) of retinoid-related orphan nuclear receptor γt (RORγt) has been exploited as a promising target for the new small molecule therapeutics to cure autoimmune diseases via modulating the IL-17 and IL-22 production by Th17 cells. Diverse chemical scaffolds of these small molecules have been discovered by multiple groups with methods such as high throughput screening (HTS) and virtual screening. These different scaffolds are further developed by medicinal chemists to afford lead compounds the best of which enter clinical trials. In this review, we summarize these chemical scaffolds and their evolution paths according to the groups in which they have been discovered or studied. We combine the data of the chemistry, biological assays and structural biology of each chemical scaffold, in order to afford insight to develop new RORγt modulators with higher potency, less toxicity and elucidated working mechanism.
Collapse
Affiliation(s)
- Zhuohao Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Gülten Ş, Gezer U, Gündoğan EA. Fast and Efficient One-Pot Three-Component Synthesis of Some 1,2,3,4- Tetrahydro-6-methyl-N-phenyl-5-pyrimidinecarboxamide Derivatives via Biginelli Condensation Reaction. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190819142221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrahydropyrimidine (THPM) synthesis has an enormous importance in organic chemistry
and especially in pharmaceutical applications. Pyrimidines are the most active class of N-containing
heterocyclic compounds and have different biological properties. The heterocyclic ring system with a
thio group occupy a unique position in medicinal chemistry. This type of compounds play an important
role in synthetic drugs and in biological processes. Dihydropyrimidinethione derivatives occur widely
in nature. Several modifications of THPM-5-carboxamides have attracted considerable interest of medicinal
chemists due to their pharmacological and therapeutic properties. A series of 1,2,3,4-tetrahydro-
2-pyrimidinone/thione derivatives bearing a phenylcarbamoyl group at C-5 position were synthesized
by one-pot three-component Biginelli condensation reaction. The reaction of acetoacetanilide as the
1,3-dicarbonyl component with various aromatic aldehydes and urea/thiourea in the presence of a catalytic
amount of p-toluenesulfonic acid monohydrate (PTSA·H2O) or concentrated HCl as an efficient
catalyst leads to Biginelli compounds. We have prepared eight THPM 5-carboxamide derivatives, four
of them are new compounds. Their structures were confirmed by spectroscopic techniques and elemental
analysis. These compounds have potential applications in organic synthesis and medicinal
chemistry. We have synthesized a series of THPM-5-carboxamides by simple and efficient threecomponent
Biginelli condensation reaction. Significant benefits of the present procedure include: a)
application of inexpensive, non-toxic, environmentally friendly and easily available catalysts, b) the
reactions are easy to carry out without high temperature and the workup is very simple, c) the required
reaction times are relatively short (30-80 min with HCl and 8-24 h with PTSA·H2O), d) compatibility
with various functional groups, e) the products are isolated in good to excellent yields (50-95%).
Collapse
Affiliation(s)
- Şirin Gülten
- Department of Chemistry, Faculty of Arts and Sciences, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey
| | - Ufuk Gezer
- Department of Chemistry, Faculty of Arts and Sciences, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey
| | - Elmas Aksanli Gündoğan
- Department of Chemistry, Faculty of Arts and Sciences, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey
| |
Collapse
|
5
|
Matsuoka H, Tokunaga R, Katayama M, Hosoda Y, Miya K, Sumi K, Ohishi A, Kamishikiryo J, Shima A, Michihara A. Retinoic acid receptor-related orphan receptor α reduces lipid droplets by upregulating neutral cholesterol ester hydrolase 1 in macrophages. BMC Mol Cell Biol 2020; 21:32. [PMID: 32321446 PMCID: PMC7310410 DOI: 10.1186/s12860-020-00276-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Neutral cholesterol ester hydrolase 1 (NCEH1) catalyzes the hydrolysis of cholesterol ester (CE) in macrophages. Genetic ablation of NCEH1 promotes CE-laden macrophages and the development of atherosclerosis in mice. Dysregulation of NCEH1 levels is involved in the pathogenesis of multiple disorders including metabolic diseases and atherosclerosis; however, relatively little is known regarding the mechanisms regulating NCEH1. Retinoic acid receptor-related orphan receptor α (RORα)-deficient mice exhibit several phenotypes indicative of aberrant lipid metabolism, including dyslipidemia and increased susceptibility to atherosclerosis. Results In this study, inhibition of lipid droplet formation by RORα positively regulated NCEH1 expression in macrophages. In mammals, the NCEH1 promoter region was found to harbor putative RORα response elements (ROREs). Electrophoretic mobility shift, chromatin immunoprecipitation, and luciferase reporter assays showed that RORα binds and responds to ROREs in human NCEH1. Moreover, NCEH1 was upregulated through RORα via a phorbol myristate acetate-dependent mechanism during macrophage differentiation from THP1 cells. siRNA-mediated knockdown of RORα significantly downregulated NCEH1 expression and accumulated lipid droplets in human hepatoma cells. In contrast, NCEH1 expression and removal of lipid droplets were induced by RORα agonist treatments and RORα overexpression in macrophages. Conclusion These data strongly suggested that NCEH1 is a direct RORα target, defining potential new roles for RORα in the inhibition of lipid droplet formation through NCEH1.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Riki Tokunaga
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Miyu Katayama
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Yuichiro Hosoda
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Kaoruko Miya
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Kento Sumi
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Ami Ohishi
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Jun Kamishikiryo
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Akiho Shima
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Akihiro Michihara
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
6
|
Doebelin C, He Y, Campbell S, Nuhant P, Kumar N, Koenig M, Garcia-Ordonez R, Chang MR, Roush WR, Lin L, Kahn S, Cameron MD, Griffin PR, Solt LA, Kamenecka TM. Discovery and Optimization of a Series of Sulfonamide Inverse Agonists for the Retinoic Acid Receptor-Related Orphan Receptor-α. Med Chem 2019; 15:676-684. [PMID: 30799793 DOI: 10.2174/1573406415666190222124745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/04/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Despite a massive industry endeavor to develop RORγ-modulators for autoimmune disorders, there has been no indication of efforts to target the close family member RORα for similar indications. This may be due to the misconception that RORα is redundant to RORγ, or the inherent difficulty in cultivating tractable starting points for RORα. RORα-selective modulators would be useful tools to interrogate the biology of this understudied orphan nuclear receptor. OBJECTIVE The goal of this research effort was to identify and optimize synthetic ligands for RORα starting from the known LXR agonist T0901317. METHODS Fourty-five analogs of the sulfonamide lead (1) were synthesized and evaluated for their ability to suppress the transcriptional activity of RORα, RORγ, and LXRα in cell-based assays. Analogs were characterized by 1H-NMR, 13C-NMR, and LC-MS analysis. The pharmacokinetic profile of the most selective RORα inverse agonist was evaluated in rats with intraperitoneal (i.p.) and per oral (p.o.)dosing. RESULTS Structure-activity relationship studies led to potent dual RORα/RORγ inverse agonists as well as RORα-selective inverse agonists (20, 28). LXR activity could be reduced by removing the sulfonamide nitrogen substituent. Attempts to improve the potency of these selective leads by varying substitution patterns throughout the molecule proved challenging. CONCLUSION The synthetic RORα-selective inverse agonists identified (20, 28) can be utilized as chemical tools to probe the function of RORα in vitro and in vivo.
Collapse
Affiliation(s)
- Christelle Doebelin
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Yuanjun He
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Sean Campbell
- Immunology & Microbiology, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Philippe Nuhant
- Departments of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Naresh Kumar
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Marcel Koenig
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Ruben Garcia-Ordonez
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Mi Ra Chang
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - William R Roush
- Departments of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Li Lin
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Susan Kahn
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Patrick R Griffin
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Laura A Solt
- Immunology & Microbiology, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Theodore M Kamenecka
- Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| |
Collapse
|
7
|
Current progress in asymmetric Biginelli reaction: an update. Mol Divers 2018; 22:751-767. [DOI: 10.1007/s11030-018-9841-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
|
8
|
Discovery and structural optimization of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-ones as RORc inverse agonists. Acta Pharmacol Sin 2016; 37:1516-1524. [PMID: 27374490 DOI: 10.1038/aps.2016.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
AIM Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. METHODS Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. RESULTS A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC50 values were 2.39 μmol/L in AlphaScreen assay, and 0.82 μmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. CONCLUSION 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Collapse
|
9
|
Gülten Ş. Nickel Chloride Hexahydrate Catalyzed Multicomponent Biginelli's Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and Thiones. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Şirin Gülten
- Department of Chemistry, Faculty of Arts and Sciences; Çanakkale Onsekiz Mart University; 17020 Çanakkale Turkey
| |
Collapse
|
10
|
Mandler MD, Truong PM, Zavalij PY, Doyle MP. Catalytic Conversion of Diazocarbonyl Compounds to Imines: Applications to the Synthesis of Tetrahydropyrimidines and β-Lactams. Org Lett 2014; 16:740-3. [DOI: 10.1021/ol403427s] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael D. Mandler
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Phong M. Truong
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Y. Zavalij
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Michael P. Doyle
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|