1
|
Asadi P, Mahdie F, Khodarahmi G, Safaeian L, Hassanzade F. Novel triazine-tyrosine hybrids containing thiyazol or pyridine fragment as anti-multiple sclerosis agents: Design, synthesis, biological evaluation, and molecular docking study. Heliyon 2024; 10:e38365. [PMID: 39398023 PMCID: PMC11470521 DOI: 10.1016/j.heliyon.2024.e38365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
In this study novel triazine-tyrosine hybrids containing thiazole or pyridine fragments were introduced as anti- Multiple Sclerosis agents. The compounds were designed according to the structure of the Sphingosine-1-phosphate receptor subtype 1 (S1P1) modulator, fingolimode. At first, docking studies was performed using crystal structures of S1P1 and Sphingosine-1-phosphate receptor subtype 3 (S1P3) to theoretically identify the selectivity of the compounds towards the S1P1 isoform. The docking results showed better binding energy (lower ΔGb) and therefore higher selectivity for S1P1 receptor than S1P3 receptor. Subsequently the designed compounds were synthesized according to proper chemical reactions and structurally analyzed with FTIR and NMR spectrophotometers. Considering the importance of the S1P1 receptor in release of lymphocytes and therefore inflammation produced in Multiple Sclerosis disease, the synthesized compounds were investigated to study lymphocyte reduction in an animal model. Compound (8e) with 2-mercaptobenzothiazole substitution at doses of 1 and 3 mg/kg showed significant reduction effect on the percentage of lymphocytes (68.80 %, 56.75 %) compared to the fingolimod (65.73 %, 20.66 %), as the positive control group.
Collapse
Affiliation(s)
- Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Bioinformatics Research Center. Isfahan University of Medical science, Isfahan, Iran
- Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateme Mahdie
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Safaeian
- Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hassanzade
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| |
Collapse
|
2
|
Ma F, Li J, Zhang S, Gu Y, Tan T, Chen W, Wang S, Ma P, Xu H, Yang G, Lerner RA. DNA-Encoded Libraries: Hydrazide as a Pluripotent Precursor for On-DNA Synthesis of Various Azole Derivatives. Chemistry 2021; 27:8214-8220. [PMID: 33811386 DOI: 10.1002/chem.202100850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 01/25/2023]
Abstract
DNA-encoded combinatorial chemical library (DEL) technology, an approach that combines the power of genetics and chemistry, has emerged as an invaluable tool in drug discovery. Skeletal diversity plays a fundamental importance in DEL applications, and relies heavily on novel DNA-compatible chemical reactions. We report herein a phylogenic chemical transformation strategy using DNA-conjugated benzoyl hydrazine as a common versatile precursor in azole chemical expansion of DELs. DNA-compatible reactions deriving from the common benzoyl hydrazine precursor showed excellent functional group tolerance with exceptional efficiency in the synthesis of various azoles, including oxadiazoles, thiadiazoles, and triazoles, under mild reaction conditions. The phylogenic chemical transformation strategy provides DELs a facile way to expand into various unique chemical spaces with privileged scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry 2020; 26:11349-11390. [PMID: 32359086 DOI: 10.1002/chem.202000617] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Daniel J Graham
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
4
|
Langeslag M, Kress M. The ceramide-S1P pathway as a druggable target to alleviate peripheral neuropathic pain. Expert Opin Ther Targets 2020; 24:869-884. [PMID: 32589067 DOI: 10.1080/14728222.2020.1787989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuropathic pain disorders are diverse, and the currently available therapies are ineffective in the majority of cases. Therefore, there is a major need for gaining novel mechanistic insights and developing new treatment strategies for neuropathic pain. Areas covered: We performed an in-depth literature search on the molecular mechanisms and systemic importance of the ceramide-to-S1P rheostat regulating neuron function and neuroimmune interactions in the development of neuropathic pain. Expert opinion: The S1P receptor modulator FTY720 (fingolimod, Gilenya®), LPA receptor antagonists and several mechanistically related compounds in clinical development raise great expectations for treating neuropathic pain disorders. Research on S1P receptors, S1P receptor modulators or SPHK inhibitors with distinct selectivity, pharmacokinetics and safety must provide more mechanistic insight into whether they may qualify as useful treatment options for neuropathic pain disorders. The functional relevance of genetic variations within the ceramide-to-S1P rheostat should be explored for an enhanced understanding of neuropathic pain pathogenesis. The ceramide-to-S1P rheostat is emerging as a critically important regulator hub of neuroimmune interactions along the pain pathway, and improved mechanistic insight is required to develop more precise and effective drug treatment options for patients suffering from neuropathic pain disorders.
Collapse
Affiliation(s)
- Michiel Langeslag
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| | - Michaela Kress
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| |
Collapse
|
5
|
Xiao Q, Hu M, Chen S, Tang Y, Shi Z, Jin J, Hu J, Xie P, Yin D. Design and synthesis of selective sphingosine-1-phosphate receptor 1 agonists with increased phosphorylation rates. Acta Pharm Sin B 2020; 10:1134-1142. [PMID: 32642418 PMCID: PMC7332640 DOI: 10.1016/j.apsb.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 01/25/2023] Open
Abstract
FTY720 and IMMH002, prodrugs for sphingosine-1-phosphate receptor 1 (S1P1) agonists, show inadequate and inconsistent levels of phosphorylation in humans compared to that in rats. In this study, FTY720 or IMMH002 analogues (21–24) were designed and synthesized with modified head pieces to improve the biotransformation of the prodrugs to the active phosphorylated forms. Target compounds were synthesized via a convergent route using the key and optically pure building block 9, which was first synthesized via asymmetrically catalyzed amination. The phosphorylation rates of these analogues in rat or human blood were compared. The new methyl-substituted analogue compound 21 showed higher phosphorylation rates in both rats and humans than the parent compound, whereas compound 23 showed improvements in rats, but not in humans. In pharmacokinetics studies of rats, compounds 21 and 23 both had higher levels of phosphorylation than FTY720 and IMMH002. Thus, our study not only yielded new compounds with therapeutic potential, but also showed species differences between rats and humans in response to the structural modifications, which might be useful for predicting the biotransformation behavior and efficacy of this class of prodrugs in the clinic.
Collapse
|
6
|
Vicente C, Arriazu E, Martínez-Balsalobre E, Peris I, Marcotegui N, García-Ramírez P, Pippa R, Rabal O, Oyarzábal J, Guruceaga E, Prósper F, Mateos MC, Cayuela ML, Odero MD. A novel FTY720 analogue targets SET-PP2A interaction and inhibits growth of acute myeloid leukemia cells without inducing cardiac toxicity. Cancer Lett 2020; 468:1-13. [DOI: 10.1016/j.canlet.2019.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
|
7
|
Luo G, Chen L, Easton A, Newton A, Bourin C, Shields E, Mosure K, Soars MG, Knox RJ, Matchett M, Pieschl RL, Post-Munson DJ, Wang S, Herrington J, Graef J, Newberry K, Sivarao DV, Senapati A, Bristow LJ, Meanwell NA, Thompson LA, Dzierba C. Discovery of Indole- and Indazole-acylsulfonamides as Potent and Selective Na V1.7 Inhibitors for the Treatment of Pain. J Med Chem 2019; 62:831-856. [PMID: 30576602 DOI: 10.1021/acs.jmedchem.8b01550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3-Aryl-indole and 3-aryl-indazole derivatives were identified as potent and selective Nav1.7 inhibitors. Compound 29 was shown to be efficacious in the mouse formalin assay and also reduced complete Freund's adjuvant (CFA)-induced thermal hyperalgesia and chronic constriction injury (CCI) induced cold allodynia and models of inflammatory and neuropathic pain, respectively, following intraperitoneal (IP) doses of 30 mg/kg. The observed efficacy could be correlated with the mouse dorsal root ganglion exposure and NaV1.7 potency associated with 29.
Collapse
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Ling Chen
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Amy Easton
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Amy Newton
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Clotilde Bourin
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Eric Shields
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Kathy Mosure
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Matthew G Soars
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Ronald J Knox
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Michele Matchett
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Rick L Pieschl
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Debra J Post-Munson
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Shuya Wang
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - James Herrington
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - John Graef
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Kimberly Newberry
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Digavalli V Sivarao
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Arun Senapati
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Linda J Bristow
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Nicholas A Meanwell
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Lorin A Thompson
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Carolyn Dzierba
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|
8
|
Xiao Q, Tang Y, Xie P, Yin D. Asymmetric amination of α,α-dialkyl substituted aldehydes catalyzed by a simple chiral primary amino acid and its application to the preparation of a S1P1 agonist. RSC Adv 2019; 9:33497-33505. [PMID: 35529148 PMCID: PMC9073532 DOI: 10.1039/c9ra06210f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
The chiral catalytic amination of an α,α-dialkyl substituted aldehyde usually proceeds with low enantioselectivity. We selected naphthyl-l-alanine as the catalyst and observed improved enantioselectivity for the amination. Using this method, racemic α-methyl-α-benzyloxypropanal was aminated to give chiral serine derivatives in 74% ee, which was further increased to >99% ee after recrystallization. Moreover, we also successfully synthesized a chiral phosphonium salt 9 for the preparation of one α-substituted alaninol compound 14 as an S1P1 agonist in high overall yield. The chiral catalytic amination of an α,α-dialkyl substituted aldehyde usually proceeds with low enantioselectivity.![]()
Collapse
Affiliation(s)
- Qiong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Department of Medicinal Chemistry
- Institute of Materia Medica
- Peking Union Medical College
| | - Yifan Tang
- Beijing Union Pharmaceutical Factory
- PR China
| | - Ping Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Department of Medicinal Chemistry
- Institute of Materia Medica
- Peking Union Medical College
| | - Dali Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Department of Medicinal Chemistry
- Institute of Materia Medica
- Peking Union Medical College
| |
Collapse
|
9
|
Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 2018; 24:1459-1468. [PMID: 30104766 PMCID: PMC6129206 DOI: 10.1038/s41591-018-0135-2] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
Abstract
T-cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T-cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve patients and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T-cell deficient lymphoid organs. Missing naïve T-cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T-cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T-cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T-cell-activating therapies that were previously ineffective. Sequestration of T-cells in bone marrow is therefore a tumor-adaptive mode of T-cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct.
Collapse
|
10
|
Kinetically guided radical-based synthesis of C(sp 3)-C(sp 3) linkages on DNA. Proc Natl Acad Sci U S A 2018; 115:E6404-E6410. [PMID: 29946037 DOI: 10.1073/pnas.1806900115] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA-encoded libraries (DEL)-based discovery platforms have recently been widely adopted in the pharmaceutical industry, mainly due to their powerful diversity and incredible number of molecules. In the two decades since their disclosure, great strides have been made to expand the toolbox of reaction modes that are compatible with the idiosyncratic aqueous, dilute, and DNA-sensitive parameters of this system. However, construction of highly important C(sp3)-C(sp3) linkages on DNA through cross-coupling remains unexplored. In this article, we describe a systematic approach to translating standard organic reactions to a DEL setting through the tactical combination of kinetic analysis and empirical screening with information captured from data mining. To exemplify this model, implementation of the Giese addition to forge high value C-C bonds on DNA was studied, which represents a radical-based synthesis in DEL.
Collapse
|
11
|
Jasiak K, Kudelko A, Wróblowska M, Biernasiuk A, Malm A, Krawczyk M. Convenient Synthesis and Biological Activity of Mono and Diacyl 2,5-Dimercapto-1,3,4-thiadiazole Derivatives. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Karolina Jasiak
- Department of Chemical Organic Technology and Petrochemistry; The Silesian University of Technology; Krzywoustego 4 PL 44100 Gliwice Poland
| | - Agnieszka Kudelko
- Department of Chemical Organic Technology and Petrochemistry; The Silesian University of Technology; Krzywoustego 4 PL 44100 Gliwice Poland
| | - Monika Wróblowska
- Department of Chemical Organic Technology and Petrochemistry; The Silesian University of Technology; Krzywoustego 4 PL 44100 Gliwice Poland
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy; Medical University; Chodźki 1 PL 20093 Lublin Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy; Medical University; Chodźki 1 PL 20093 Lublin Poland
| | - Maria Krawczyk
- Institute of Industrial Organic Chemistry; Annopol 6 PL 03236 Warsaw Poland
| |
Collapse
|
12
|
Dyckman AJ. Modulators of Sphingosine-1-phosphate Pathway Biology: Recent Advances of Sphingosine-1-phosphate Receptor 1 (S1P 1) Agonists and Future Perspectives. J Med Chem 2017; 60:5267-5289. [PMID: 28291340 DOI: 10.1021/acs.jmedchem.6b01575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sphingoid base derived class of lipids (sphingolipids) is a family of interconverting molecules that play key roles in numerous structural and signaling processes. The biosynthetic pathway of the sphingolipids affords many opportunities for therapeutic intervention: targeting the ligands directly, targeting the various proteins involved in the interconversion of the ligands, or targeting the receptors that respond to the ligands. The focus of this article is on the most advanced of the sphingosine-related therapeutics, agonists of sphingosine-1-phosphate receptor 1 (S1P1). The diverse structural classes of S1P1 agonists will be discussed and the status of compounds of clinical relevance will be detailed. An examination of how potential safety concerns are being navigated with compounds currently under clinical evaluation is followed by a discussion of the novel methods being explored to identify next-generation S1P1 agonists with improved safety profiles. Finally, therapeutic opportunities for sphingosine-related targets outside of S1P1 are touched upon.
Collapse
Affiliation(s)
- Alaric J Dyckman
- Research and Development, Bristol-Myers Squibb Company , P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
13
|
James E, Pertusati F, Brancale A, McGuigan C. Kinase-independent phosphoramidate S1P 1 receptor agonist benzyl ether derivatives. Bioorg Med Chem Lett 2017; 27:1371-1378. [PMID: 28236593 DOI: 10.1016/j.bmcl.2017.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 02/01/2023]
Abstract
Previously published S1P receptor modulator benzyl ether derivatives have shown potential as being viable therapeutics for the treatment of neurodegenerative diseases, however, two of the most S1P1-selective compounds are reported as being poorly phosphorylated by kinases in vivo. Phosphoramidates of BED compounds (2a, 2b) were synthesised with the aim of producing kinase-independent S1P receptor modulators. Carboxypeptidase, human serum and cell lysate processing experiments were conducted. ProTide BED analogues were found to have an acceptable level of stability in acidic and basic conditions and in vitro metabolic processing experiments showed that they are processed to the desired pharmacologically active monophosphate. The research describes the development of an entirely novel family of therapeutic agents.
Collapse
Affiliation(s)
- Edward James
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Chris McGuigan
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| |
Collapse
|
14
|
Migliore M, Pontis S, Fuentes de Arriba AL, Realini N, Torrente E, Armirotti A, Romeo E, Di Martino S, Russo D, Pizzirani D, Summa M, Lanfranco M, Ottonello G, Busquet P, Jung KM, Garcia-Guzman M, Heim R, Scarpelli R, Piomelli D. Second-Generation Non-Covalent NAAA Inhibitors are Protective in a Model of Multiple Sclerosis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marco Migliore
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Silvia Pontis
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Angel Luis Fuentes de Arriba
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Natalia Realini
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Esther Torrente
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Andrea Armirotti
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Elisa Romeo
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Simona Di Martino
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Debora Russo
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Daniela Pizzirani
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Maria Summa
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Massimiliano Lanfranco
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Giuliana Ottonello
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Perrine Busquet
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Kwang-Mook Jung
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry; University of California; Irvine CA 92697-4625 USA
| | - Miguel Garcia-Guzman
- Anteana Therapeutics; 11189 Sorrento Valley Road, Suite 104 San Diego CA 92121 USA
| | - Roger Heim
- Anteana Therapeutics; 11189 Sorrento Valley Road, Suite 104 San Diego CA 92121 USA
| | - Rita Scarpelli
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development; Fondazione Istituto Italiano di Tecnologia; via Morego 30 16163 Genoa Italy
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry; University of California; Irvine CA 92697-4625 USA
| |
Collapse
|
15
|
Migliore M, Pontis S, Fuentes de Arriba AL, Realini N, Torrente E, Armirotti A, Romeo E, Di Martino S, Russo D, Pizzirani D, Summa M, Lanfranco M, Ottonello G, Busquet P, Jung KM, Garcia-Guzman M, Heim R, Scarpelli R, Piomelli D. Second-Generation Non-Covalent NAAA Inhibitors are Protective in a Model of Multiple Sclerosis. Angew Chem Int Ed Engl 2016; 55:11193-11197. [PMID: 27404798 DOI: 10.1002/anie.201603746] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/11/2016] [Indexed: 11/11/2022]
Abstract
Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are endogenous lipid mediators that suppress inflammation. Their actions are terminated by the intracellular cysteine amidase, N-acylethanolamine acid amidase (NAAA). Even though NAAA may offer a new target for anti-inflammatory therapy, the lipid-like structures and reactive warheads of current NAAA inhibitors limit the use of these agents as oral drugs. A series of novel benzothiazole-piperazine derivatives that inhibit NAAA in a potent and selective manner by a non-covalent mechanism are described. A prototype member of this class (8) displays high oral bioavailability, access to the central nervous system (CNS), and strong activity in a mouse model of multiple sclerosis (MS). This compound exemplifies a second generation of non-covalent NAAA inhibitors that may be useful in the treatment of MS and other chronic CNS disorders.
Collapse
Affiliation(s)
- Marco Migliore
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Silvia Pontis
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Angel Luis Fuentes de Arriba
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Esther Torrente
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Elisa Romeo
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Simona Di Martino
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Debora Russo
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Daniela Pizzirani
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Maria Summa
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Massimiliano Lanfranco
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Giuliana Ottonello
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Perrine Busquet
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Kwang-Mook Jung
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA 92697-4625, USA
| | - Miguel Garcia-Guzman
- Anteana Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego CA 92121, USA
| | - Roger Heim
- Anteana Therapeutics, 11189 Sorrento Valley Road, Suite 104, San Diego CA 92121, USA
| | - Rita Scarpelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.,Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA 92697-4625, USA
| |
Collapse
|
16
|
Shaikh RS, Keul P, Schäfers M, Levkau B, Haufe G. New fluorinated agonists for targeting the sphingosin-1-phosphate receptor 1 (S1P1). Bioorg Med Chem Lett 2015; 25:5048-51. [DOI: 10.1016/j.bmcl.2015.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 11/25/2022]
|
17
|
Samuvel DJ, Saxena N, Dhindsa JS, Singh AK, Gill GS, Grobelny DW, Singh I. AKP-11 - A Novel S1P1 Agonist with Favorable Safety Profile Attenuates Experimental Autoimmune Encephalomyelitis in Rat Model of Multiple Sclerosis. PLoS One 2015; 10:e0141781. [PMID: 26513477 PMCID: PMC4626178 DOI: 10.1371/journal.pone.0141781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders.
Collapse
Affiliation(s)
- Devadoss J. Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Nishant Saxena
- Charles P. Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jasdeep S. Dhindsa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gurmit S. Gill
- Akaal Pharma Pty Ltd., 310E Thomas Cherry Building, Bundoora, Australia
| | | | - Inderjit Singh
- Charles P. Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Tsuji T, Suzuki K, Nakamura T, Goto T, Sekiguchi Y, Ikeda T, Fukuda T, Takemoto T, Mizuno Y, Kimura T, Kawase Y, Nara F, Kagari T, Shimozato T, Yahara C, Inaba S, Honda T, Izumi T, Tamura M, Nishi T. Synthesis and SAR studies of benzyl ether derivatives as potent orally active S1P1 agonists. Bioorg Med Chem 2014; 22:4246-56. [DOI: 10.1016/j.bmc.2014.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|