1
|
Abideen SA, Khan M, Irfan M, Ahmad S. Deciphering the dynamics of cathepsin D as a potential drug target to enhance anticancer drug-induced apoptosis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Daher SS, Lee M, Jin X, Teijaro CN, Barnett PR, Freundlich JS, Andrade RB. Alternative approaches utilizing click chemistry to develop next-generation analogs of solithromycin. Eur J Med Chem 2022; 233:114213. [PMID: 35240514 PMCID: PMC9009214 DOI: 10.1016/j.ejmech.2022.114213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
The marked rise in bacterial drug resistance has created an urgent need for novel antibacterials belonging to new drug classes and ideally possessing new mechanisms of action. The superior biological activity of solithromycin against streptococci and other bacteria causative of community-acquired pneumonia pathogens, compared to telithromycin and other macrolides encouraged us to extensively explore this class of antibiotics. We, thus, present the design and synthesis of a novel series of solithromycin analogs. Three main strategies were pursued in structure-activity relationship studies covering the N-11 side chain and the desosamine motif, which are both chief elements for establishing strong interactions with the bacterial ribosome as the molecular target. Minimal inhibitory concentration assays were determined to assess the in vitro potency of the various analogs in relation to solithromycin. Two analogs exhibited improved activity compared to solithromycin against resistant strains, which can be assessed in further pre-clinical studies.
Collapse
Affiliation(s)
- Samer S Daher
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA.
| | - Miseon Lee
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Xiao Jin
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | | | - Pamela R Barnett
- Department of Pharmacology, Physiology, Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA; Department of Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
3
|
Daher SS, Lee M, Jin X, Teijaro CN, Wheeler SE, Jacobson MA, Buttaro B, Andrade RB. Synthesis, Biological Evaluation, and Computational Analysis of Biaryl Side-Chain Analogs of Solithromycin. ChemMedChem 2021; 16:3368-3373. [PMID: 34355515 DOI: 10.1002/cmdc.202100435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Indexed: 12/26/2022]
Abstract
There is an urgent need for new antibiotics to mitigate the existential threat posed by antibiotic resistance. Within the ketolide class, solithromycin has emerged as one of the most promising candidates for further development. Crystallographic studies of bacterial ribosomes and ribosomal subunits complexed with solithromycin have shed light on the nature of molecular interactions (π-stacking and H-bonding) between from the biaryl side-chain of the drug and key residues in the 50S ribosomal subunit. We have designed and synthesized a library of solithromycin analogs to study their structure-activity relationships (SAR) in tandem with new computational studies. The biological activity of each analog was evaluated in terms of ribosomal affinity (Kd determined by fluorescence polarization), as well as minimum inhibitory concentration assays (MICs). Density functional theory (DFT) studies of a simple binding site model identify key H-bonding interactions that modulate the potency of solithromycin analogs.
Collapse
Affiliation(s)
- Samer S Daher
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Miseon Lee
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Xiao Jin
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Steven E Wheeler
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 N. Broad Street, Philadelphia, PA 19140, USA
| | - Bettina Buttaro
- Department of Microbiology and Immunology, School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Scaffold Modifications in Erythromycin Macrolide Antibiotics. A Chemical Minireview. Molecules 2020; 25:molecules25173941. [PMID: 32872323 PMCID: PMC7504511 DOI: 10.3390/molecules25173941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022] Open
Abstract
Clarithromycin and congeners are important antibacterial members of the erythromycin A 14-membered macrocyclic lactone family. The macrolide scaffold consists of a multifunctional core that carries both chemically reactive and non-reactive substituents and sites. Two main approaches are used in the preparation of the macrolides. In semisynthesis, the naturally occurring macrocycle serves as a substrate for structural modifications of peripheral substituents. This review is focused on substituents in non-activated positions. In the total synthesis approach, the macrolide antibiotics are constructed by a convergent assembly of building blocks from presynthesized substrates or substrates prepared by biogenetic engineering. The assembled block structures are linear chains that are cyclized by macrolactonization or by metal-promoted cross-coupling reactions to afford the 14-membered macrolactone. Pendant glycoside residues are introduced by stereoselective glycosylation with a donor complex. When available, a short summary of antibacterial MIC data is included in the presentations of the structural modifications discussed.
Collapse
|
5
|
Abstract
Computational approaches are useful tools to interpret and guide experiments to expedite the antibiotic drug design process. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) are the two general types of computer-aided drug design (CADD) approaches in existence. SBDD methods analyze macromolecular target 3-dimensional structural information, typically of proteins or RNA, to identify key sites and interactions that are important for their respective biological functions. Such information can then be utilized to design antibiotic drugs that can compete with essential interactions involving the target and thus interrupt the biological pathways essential for survival of the microorganism(s). LBDD methods focus on known antibiotic ligands for a target to establish a relationship between their physiochemical properties and antibiotic activities, referred to as a structure-activity relationship (SAR), information that can be used for optimization of known drugs or guide the design of new drugs with improved activity. In this chapter, standard CADD protocols for both SBDD and LBDD will be presented with a special focus on methodologies and targets routinely studied in our laboratory for antibiotic drug discoveries.
Collapse
|
6
|
Seetharamsingh B, Khairnar PV, Reddy DS. First Total Synthesis of Gliomasolide C and Formal Total Synthesis of Sch-725674. J Org Chem 2015; 81:290-6. [DOI: 10.1021/acs.joc.5b02318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- B. Seetharamsingh
- CSIR-National Chemical Laboratory, Division
of Organic Chemistry, Dr. HomiBhabha Road, Pune, 411008, India
| | - Pankaj V. Khairnar
- CSIR-National Chemical Laboratory, Division
of Organic Chemistry, Dr. HomiBhabha Road, Pune, 411008, India
| | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory, Division
of Organic Chemistry, Dr. HomiBhabha Road, Pune, 411008, India
| |
Collapse
|
7
|
Liang JH. Introduction of a nitrogen-containing side chain appended on C-10 of cethromycin leads to reduced CYP3A4 inhibition (WO2014049356A1). Expert Opin Ther Pat 2014; 25:119-23. [PMID: 25327846 DOI: 10.1517/13543776.2014.971754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Infections caused by antibiotic-resistant bacteria pose an increasing risk for clinical treatment. Macrolide-lincosamide-streptogramin B is becoming increasingly ineffective due to the methylation at the binding site of bacteria. Despite great efforts on the natural product, erythromycin, only one derivative, that is, telithromycin, capable of fighting against resistant bacteria has so far been marketed. However, the 3'-dimethylamino group is readily metabolized to a nitroso group, which would inhibit CYP3A4, a very important metabolic enzyme responsible for nearly half of all marketed drugs. AREAS COVERED Modifications at C-10 of erythromycin were seldom reported. This invention disclosed novel ketolides that had a side chain comprising additional nitrogen atoms in place of the original 10-methyl group. Surprisingly, introduction of the side chain at C-10 led to reduced cytochrome inhibition and increased metabolic stability. As a result, the limited ability to inhibit CYP3A4 would relieve the drug-drug interaction and improve the safety of drug co-administration. EXPERT OPINION This invention opens a new avenue for future modifications to the erythromycin family. It remains unclear how the side chain effected on reduction of CYP inhibition. To fully identify structure-activity relationships, the MIC data of the derivatives on gram-negative bacteria is desirable.
Collapse
Affiliation(s)
- Jian-Hua Liang
- Beijing Institute of Technology, School of Life Science , Beijing 100081 , P R China +86 10 68912140 ;
| |
Collapse
|
8
|
Glassford I, Lee M, Wagh B, Velvadapu V, Paul T, Sandelin G, DeBrosse C, Klepacki D, Small MC, MacKerell AD, Andrade RB. Desmethyl macrolides: synthesis and evaluation of 4-desmethyl telithromycin. ACS Med Chem Lett 2014; 5:1021-6. [PMID: 25221660 DOI: 10.1021/ml5002097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/16/2014] [Indexed: 12/15/2022] Open
Abstract
Novel sources of antibiotics are needed to address the serious threat of bacterial resistance. Accordingly, we have launched a structure-based drug design program featuring a desmethylation strategy wherein methyl groups have been replaced with hydrogens. Herein we report the total synthesis, molecular modeling, and biological evaluation of 4-desmethyl telithromycin (6), a novel desmethyl analogue of the third-generation ketolide antibiotic telithromycin (2) and our final analogue in this series. While 4-desmethyl telithromycin (6) was found to be equipotent with telithromycin (2) against wild-type bacteria, it was 4-fold less potent against the A2058G mutant. These findings reveal that strategically replacing the C4-methyl group with hydrogen (i.e., desmethylation) did not address this mechanism of resistance. Throughout the desmethyl series, the sequential addition of methyls to the 14-membered macrolactone resulted in improved bioactivity. Molecular modeling methods indicate that changes in conformational flexibility dominate the increased biological activity; moreover, they reveal 6 adopts a different conformation once bound to the A2058G ribosome, thus impacting noncovalent interactions reflected in a lower MIC value. Finally, fluorescence polarization experiments of 6 with E. coli ribosomes confirmed 6 is indeed binding the ribosome.
Collapse
Affiliation(s)
- Ian Glassford
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Miseon Lee
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Bharat Wagh
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Venkata Velvadapu
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Tapas Paul
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gary Sandelin
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Charles DeBrosse
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Dorota Klepacki
- Center
for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, United States
| | - Meagan C. Small
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Rodrigo B. Andrade
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
9
|
Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl 2014; 53:8840-69. [PMID: 24990531 PMCID: PMC4536949 DOI: 10.1002/anie.201310843] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 01/13/2023]
Abstract
The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted.
Collapse
Affiliation(s)
- Peter M. Wright
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Ian B. Seiple
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| |
Collapse
|
10
|
Wright PM, Seiple IB, Myers AG. Zur Rolle der chemischen Synthese in der Entwicklung antibakterieller Wirkstoffe. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310843] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|