1
|
Loza-Rodríguez N, Millán-Sánchez A, Mallandrich M, Calpena AC, López O. Lipid-Based Gels for Delivery of 3-O-Ethyl L-Ascorbic acid in Topical Applications. Pharmaceutics 2024; 16:1187. [PMID: 39339223 PMCID: PMC11435238 DOI: 10.3390/pharmaceutics16091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
This study explores the incorporation of 10% 3-O-ethyl L-ascorbic acid (ETVC), a derivative of vitamin C, into two lipid gel systems: a hydrogel (HG) consisting exclusively of lipids and water and a bigel (BG) combining the hydrogel with an oleogel made from olive oil and beeswax. We investigated the ETVC release profiles from both materials using synthetic membranes and measured their permeation through porcine skin in vitro. Additionally, the interaction of these lipid gel systems with the stratum corneum (SC) was determined. Results from the release study indicate that the BG exhibited slower ETVC release compared to the HG. The permeation experiments showed that the presence of lipids in the formulations enhanced ETVC retention in the skin. The HG delivered a higher amount to the SC, while the BG achieved greater retention in the epidermis. This difference is attributed to the different lipophilic nature of each material. The structural analysis of SC lipids revealed that the organization of surface lipids remained unaltered by the application of the gels. Finally, an in vitro efficacy test in porcine skin using methylene blue indicated that our ETVC gels exhibited antioxidant activity. These findings provide valuable insights into the potential of lipid-based gels for topical applications.
Collapse
Affiliation(s)
- Noèlia Loza-Rodríguez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
- Bicosome S.L., C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Aina Millán-Sánchez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, C/Joan XXII 27-31, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, C/Joan XXII 27-31, 08028 Barcelona, Spain
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Tae H, Park S, Tan LY, Yang C, Lee YA, Choe Y, Wüstefeld T, Jung S, Cho NJ. Elucidating Structural Configuration of Lipid Assemblies for mRNA Delivery Systems. ACS NANO 2024; 18:11284-11299. [PMID: 38639114 DOI: 10.1021/acsnano.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The development of mRNA delivery systems utilizing lipid-based assemblies holds immense potential for precise control of gene expression and targeted therapeutic interventions. Despite advancements in lipid-based gene delivery systems, a critical knowledge gap remains in understanding how the biophysical characteristics of lipid assemblies and mRNA complexes influence these systems. Herein, we investigate the biophysical properties of cationic liposomes and their role in shaping mRNA lipoplexes by comparing various fabrication methods. Notably, an innovative fabrication technique called the liposome under cryo-assembly (LUCA) cycle, involving a precisely controlled freeze-thaw-vortex process, produces distinctive onion-like concentric multilamellar structures in cationic DOTAP/DOPE liposomes, in contrast to a conventional extrusion method that yields unilamellar liposomes. The inclusion of short-chain DHPC lipids further modulates the structure of cationic liposomes, transforming them from multilamellar to unilamellar structures during the LUCA cycle. Furthermore, the biophysical and biological evaluations of mRNA lipoplexes unveil that the optimal N/P charge ratio in the lipoplex can vary depending on the structure of initial cationic liposomes. Cryo-EM structural analysis demonstrates that multilamellar cationic liposomes induce two distinct interlamellar spacings in cationic lipoplexes, emphasizing the significant impact of the liposome structures on the final structure of mRNA lipoplexes. Taken together, our results provide an intriguing insight into the relationship between lipid assembly structures and the biophysical characteristics of the resulting lipoplexes. These relationships may open the door for advancing lipid-based mRNA delivery systems through more streamlined manufacturing processes.
Collapse
Affiliation(s)
- Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Chungmo Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yong-An Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Younghwan Choe
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Torsten Wüstefeld
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
3
|
Loza-Rodríguez N, Millán-Sánchez A, López O. A biocompatible lipid-based bigel for topical applications. Eur J Pharm Biopharm 2023; 190:24-34. [PMID: 37433416 DOI: 10.1016/j.ejpb.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
The development of biocompatible delivery systems is a necessity for medical and topical applications. Herein, the development of a new bigel for topical application is described. It is composed of 40% colloidal lipid hydrogel and 60% olive oil and beeswax oleogel. Its characterization and the potential of the bigel as a drug carrier through the skin was evaluated in vitro using fluorescence microscopy and two phases of the bigel were labeled with two fluorescent probes: sodium fluorescein (hydrophilic phase) and Nile red (lipophilic phase). The structure of the bigel showed two phases with fluorescence microscopy in which the hydrogel phase was incorporated into a continuous oleogel matrix. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) presented a combination of vibrations characteristic of the different molecules forming the bigel, and Differential Scanning Calorimetry (DSC) showed different transitions attributed to beeswax lipids. Small-angle and wide-angle X-ray scattering (SAXS and WAXS) indicated a predominant lamellar structure with orthorhombic lateral packing that could be related to the arrangement of beeswax crystals. Bigel enables deeper penetration of hydrophilic and lipophilic probes into deeper layers, making it a promising candidate for effective topical carriers in medical and dermatological applications.
Collapse
Affiliation(s)
- Noèlia Loza-Rodríguez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Bicosome S.L. C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Aina Millán-Sánchez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Li M, Heller WT, Liu CH, Gao CY, Cai Y, Hou Y, Nieh MP. Effects of fluidity and charge density on the morphology of a bicellar mixture - A SANS study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183315. [PMID: 32304755 DOI: 10.1016/j.bbamem.2020.183315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/28/2023]
Abstract
The spontaneously formed structures of physiologically relevant lipid model membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1,2-hexanoyl-sn-glycero-3-phosphocholine have been evaluated in depth using small angle neutron scattering. Although a common molar ratio of long- to short- chain phospholipids (~4) as reported in many bicellar mixtures was used, discoidal bicelles were not found as the major phase throughout the range of lipid concentration and temperature studied, indicating that the required condition for the formation of bicelle is the immiscibility between the long- and short- chain lipids, which were in the gel and Lα phases, respectively, in previous reports. In this study, all lipids are in the Lα phase. The characterization outcome suggests that the spontaneous structures tie strongly with the physical parameters of the system such as melting transition temperature of the long-chain lipid, total lipid concentration and charge density of the system. Multilamellar vesicles, unilamellar vesicles, ribbons and perforated lamellae can be obtained based on the analysis of the small angle neutron scattering results, leading to the construction of structural diagrams. This report provides the important map to choose suitable lipid systems for the structural study of membrane-associated proteins, design of theranostic nanocarriers or other related research fields.
Collapse
Affiliation(s)
- Ming Li
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA
| | - William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA
| | - Carrie Y Gao
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yutian Cai
- Department of Polymer Material Science and Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410000, China
| | - Yiming Hou
- Department of Polymer Material Science and Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410000, China
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs 06269, USA.
| |
Collapse
|
5
|
Sut TN, Park S, Choe Y, Cho NJ. Characterizing the Supported Lipid Membrane Formation from Cholesterol-Rich Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15063-15070. [PMID: 31670521 DOI: 10.1021/acs.langmuir.9b02851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are simplified model membrane systems that mimic the fundamental properties of biological cell membranes and allow the surface-sensitive tools to be used in numerous sensing applications. SLBs can be prepared by various methods including vesicle fusion, solvent-assisted lipid bilayer (SALB), and bicelle adsorption and are generally composed of phospholipids. Incorporating other biologically relevant molecules, such as cholesterol (Chol), into SLBs has been reported with the vesicle fusion and SALB methods, whereas it remains unexplored with the bicelle absorption method. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and fluorescence microscopy techniques, we explored the possibility of forming SLBs from Chol-containing bicelles and discovered that Chol-enriched SLBs can be fabricated with bicelles. We also compared the Chol-enriched SLB formation of the bicelle method to that of vesicle fusion and SALB and discussed how the differences in lipid assembly properties can cause the differences in the adsorption kinetics and final results of SLB formation. Collectively, our findings demonstrate that the vesicle fusion method is least favorable for forming Chol-enriched SLBs, whereas the SALB and bicelle methods are more favorable, highlighting the need to consider the application requirements when choosing a suitable method for the formation of Chol-enriched SLBs.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Younghwan Choe
- Department of Chemistry , Columbia University , 3000 Broadway , New York 10027 , United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
6
|
Sut TN, Jackman JA, Yoon BK, Park S, Kolahdouzan K, Ma GJ, Zhdanov VP, Cho NJ. Influence of NaCl Concentration on Bicelle-Mediated SLB Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10658-10666. [PMID: 31318563 DOI: 10.1021/acs.langmuir.9b01644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The deposition of two-dimensional bicellar disks on hydrophilic surfaces is an emerging approach to fabricate supported lipid bilayers (SLBs) that requires minimal sample preparation, works at low lipid concentrations, and yields high-quality SLBs. While basic operating steps in the fabrication protocol mimic aspects of the conventional vesicle fusion method, lipid bicelles and vesicles have distinct architectural properties, and understanding how experimental parameters affect the efficiency of bicelle-mediated SLB formation remains to be investigated. Herein, using the quartz crystal microbalance-dissipation and localized surface plasmon resonance techniques, we investigated the effect of bulk NaCl concentration on bicelle-mediated SLB formation on silicon dioxide surfaces. For comparison, similar experiments were conducted with vesicles as well. In both cases, SLB formation was observed to occur rapidly provided that the NaCl concentration was sufficiently high (>50 mM). Under such conditions, the effect of NaCl concentration on SLB formation was minor in the case of bicelles and significant in the case of vesicles where it is expected to be related primarily to osmotic pressure. At lower NaCl concentrations, bicelles also formed SLBs but slowly, whereas adsorbed vesicles remained intact. These findings were complemented by time-lapsed fluorescence microscopy imaging and fluorescence recovery after photobleaching measurements that corroborated bicelle-mediated SLB formation across the range of tested NaCl concentrations. The results are discussed by comparing the architectural properties of bicelles and vesicles along with theoretical analysis of the corresponding adsorption kinetics.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Kavoos Kolahdouzan
- Department of Chemistry , Pomona College , 645 North College Avenue , Claremont , California 91711 , United States
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive 637459 , Singapore
| |
Collapse
|
7
|
Kolahdouzan K, Jackman JA, Yoon BK, Kim MC, Johal MS, Cho NJ. Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5052-5064. [PMID: 28457139 DOI: 10.1021/acs.langmuir.7b00210] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are widely studied model membrane platforms that are compatible with various surface-sensitive measurement techniques. SLBs are typically formed on silica-based materials, and there are numerous possible fabrication routes involving either bottom-up molecular self-assembly or vesicle adsorption and rupture. In between these two classes of fabrication strategies lies an emerging approach based on depositing quasi-two-dimensional lamellar, bicellar disks composed of a mixture of long-chain and short-chain phospholipids to promote the formation of SLBs. This approach takes advantage of the thermodynamic preference of long-chain phospholipids to form planar SLBs, whereas short-chain phospholipids have brief residence times. Although a few studies have shown that SLBs can be formed on silica-based materials from bicellar mixtures, outstanding questions remain about the self-assembly mechanism as well as the influence of the total phospholipid concentration, ratio of the two phospholipids (termed the "q-ratio"), and process of sample preparation. Herein, we address these questions through comprehensive quartz crystal microbalance-dissipation, fluorescence microscopy, and fluorescence recovery after photobleaching experiments. Our findings identify that optimal SLB formation occurs at lower total concentrations of phospholipids than previously used as short-chain phospholipids behave like membrane-destabilizing detergents at higher concentrations. Using lower phospholipid concentrations, we also discovered that the formation of SLBs proceeds through a two-step mechanism involving a critical coverage of bicellar disks akin to vesicle fusion. In addition, the results indicate that at least one cycle of freeze-thaw-vortexing is useful during the sample preparation process to produce SLBs. Taken together, the findings in this work identify optimal routes for fabricating SLBs from bicellar mixtures and reveal mechanistic details about the bicelle-mediated SLB formation process, which will aid further exploration of bicellar mixtures as tools for model membrane fabrication.
Collapse
Affiliation(s)
- Kavoos Kolahdouzan
- Department of Chemistry, Pomona College , 645 North College Avenue, Claremont, California 91711, United States
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Min Chul Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Malkiat S Johal
- Department of Chemistry, Pomona College , 645 North College Avenue, Claremont, California 91711, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
8
|
Vidlářová L, Hanuš J, Veselý M, Ulbrich P, Štěpánek F, Zbytovská J. Effect of lipid nanoparticle formulations on skin delivery of a lipophilic substance. Eur J Pharm Biopharm 2016; 108:289-296. [DOI: 10.1016/j.ejpb.2016.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/28/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
|
9
|
Moner V, Fernández E, Rodríguez G, Cócera M, Barbosa-Barros L, de la Maza A, López O. Lamellar body mimetic system: An up-to-down repairing strategy of the stratum corneum lipid structure. Int J Pharm 2016; 510:135-43. [DOI: 10.1016/j.ijpharm.2016.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
10
|
Lancelot A, Sierra T, Serrano JL. Nanostructured liquid-crystalline particles for drug delivery. Expert Opin Drug Deliv 2014; 11:547-64. [DOI: 10.1517/17425247.2014.884556] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Melo T, Silva EMP, Simões C, Domingues P, Domingues MRM. Photooxidation of glycated and non-glycated phosphatidylethanolamines monitored by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:68-78. [PMID: 23303749 DOI: 10.1002/jms.3129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 06/01/2023]
Abstract
Phosphatidylethanolamines (PE) are one of the major components of cells membranes, namely in skin and in retina, that are continuously exposed to solar UV radiation being major targets of photooxidation damage. In addition, due to the presence of the free amine group, PE can also undergo glycation, in hyperglycemic conditions which may increase the susceptibility to oxidation. The aim of this study is to develop a model, based on mass spectrometry (MS) analysis, to identify photooxidative degradation of selected PE (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4) and glycated PEs due to UV irradiation. Photooxidation products were analysed by electrospray ionization MS (ESI-MS) and tandem MS (ESI-MS/MS) in positive and negative mode. Emphasis is placed in the influence of glycation in the generation of distinct photooxidation products. ESI-MS spectra of PE after UV photo-irradiation showed mainly hydroperoxy derivatives, due to oxidation of unsaturated fatty acyl chains. Glycated PE gave rise to several new photooxidation products formed due to oxidative cleavages of the glucose moiety, namely between C1 and C2, C2 and C3, and C5 and C6 of this sugar unit. These new products were identified by ESI-MS/MS in positive mode showing distinct neutral loss depending on the different structure of the polar head group. These new identified advanced glycated photooxidation products may have a deleterious role in the etiology of diabetic retinopathy and in diabetic retinal microvascular complications.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | |
Collapse
|
12
|
Rodríguez G, Rubio L, Barba C, López-Iglesias C, de la Maza A, López O, Cócera M. Characterization of new DOPC/DHPC platform for dermal applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:333-45. [DOI: 10.1007/s00249-012-0878-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/20/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022]
|
13
|
Rodríguez G, Cócera M, Rubio L, Alonso C, Pons R, Sandt C, Dumas P, López-Iglesias C, de la Maza A, López O. Bicellar systems to modify the phase behaviour of skin stratum corneum lipids. Phys Chem Chem Phys 2012; 14:14523-33. [DOI: 10.1039/c2cp42421e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|