1
|
Okami K, Fumoto S, Yamashita M, Nakashima M, Miyamoto H, Kawakami S, Nishida K. One-Step Formation Method of Plasmid DNA-Loaded, Extracellular Vesicles-Mimicking Lipid Nanoparticles Based on Nucleic Acids Dilution-Induced Assembly. Cells 2024; 13:1183. [PMID: 39056764 PMCID: PMC11274598 DOI: 10.3390/cells13141183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
We propose a nucleic acids dilution-induced assembly (NADIA) method for the preparation of lipid nanoparticles. In the conventional method, water-soluble polymers such as nucleic acids and proteins are mixed in the aqueous phase. In contrast, the NADIA method, in which self-assembly is triggered upon dilution, requires dispersion in an alcohol phase without precipitation. We then investigated several alcohols and discovered that propylene glycol combined with sodium chloride enabled the dispersion of plasmid DNA and protamine sulfate in the alcohol phase. The streamlined characteristics of the NADIA method enable the preparation of extracellular vesicles-mimicking lipid nanoparticles (ELNPs). Among the mixing methods using a micropipette, a syringe pump, and a microfluidic device, the lattermost was the best for decreasing batch-to-batch differences in size, polydispersity index, and transfection efficiency in HepG2 cells. Although ELNPs possessed negative ζ-potentials and did not have surface antigens, their transfection efficiency was comparable to that of cationic lipoplexes. We observed that lipid raft-mediated endocytosis and macropinocytosis contributed to the transfection of ELNPs. Our strategy may overcome the hurdles linked to supply and quality owing to the low abundance and heterogeneity in cell-based extracellular vesicles production, making it a reliable and scalable method for the pharmaceutical manufacture of such complex formulations.
Collapse
Affiliation(s)
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (K.O.); (H.M.); (S.K.); (K.N.)
| | | | | | | | | | | |
Collapse
|
2
|
Green synthesis of calcium hydroxide nanoparticles using carob fruit extract and evaluation of their cytotoxic activity. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Wang P, Qu X, Che X, Luo Q, Tang X, Liu Y. Pharmaceutical strategies in improving anti-tumour efficacy and safety of intraperitoneal therapy for peritoneal metastasis. Expert Opin Drug Deliv 2021; 18:1193-1210. [PMID: 33682562 DOI: 10.1080/17425247.2021.1896493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: In selected patients with limited peritoneal metastasis (PM), favorable tumor biology, and a good clinical condition, there is an indication for combination of cytoreductive surgery (CRS) and subsequent intravenous (IV) or intraperitoneal (IP) chemotherapy. Compared with IV injection, IP therapy can achieve a high drug concentration within the peritoneal cavity with low systemic toxicity, however, the clinical application of IP chemotherapy is limited by the related abdominal pain, infection, and intolerance.Areas covered:To improve the anti-tumor efficacy and safety of IP therapy, various pharmaceutical strategies have been developed and show promising potential. This review discusses the specialized modification of traditional drug delivery systems and demonstrates the preparation of customized drug carriers for IP therapy, including chemotherapy and gene therapy. IP therapy has important clinical significance in the treatment of PM using novel anti-tumor agents as well as conventional drugs in new applications.Expert opinion: Although IP therapy exhibits good performance both in mouse models and in patients with PM in clinical trials, its clinical application remains limited due to the serious side effects and low acceptability. Further investigations, including pharmaceutical strategies, are needed to develop potential IP therapy, focusing on the efficacy and safety thereof.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| |
Collapse
|
4
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Qu Y, Zhang Y, Yu Q, Chen H. Surface-Mediated Intracellular Delivery by Physical Membrane Disruption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31054-31078. [PMID: 32559060 DOI: 10.1021/acsami.0c06978] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effective and nondestructive intracellular delivery of exogenous molecules and other functional materials into living cells is of importance for diverse biological fundamental research and therapeutic applications, such as gene editing and cell-based therapies. However, for most exogenous molecules, the cell plasma membrane is effectively impermeable and thus remains the greatest barrier to intracellular delivery. In recent years, methods based on surface-mediated physical membrane disruption have attracted considerable attention. These methods exploit the physical properties of the surface to transiently increase the membrane permeability of cells come in contact thereto, thereby facilitating the efficient intracellular delivery of molecules regardless of molecule or target cell type. In this Review, we focus on recent progress, particularly over the past decade, on these surface-mediated membrane disruption-based delivery systems. According to the membrane disruption mechanism, three categories can be recognized: (i) mechanical penetration, (ii) electroporation, and (iii) photothermal poration. Each of these is discussed in turn and a brief perspective on future developments in this promising area is presented.
Collapse
Affiliation(s)
- Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
Kum DB, Mishra N, Vrancken B, Thibaut HJ, Wilder-Smith A, Lemey P, Neyts J, Dallmeier K. Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerg Microbes Infect 2020; 8:1734-1746. [PMID: 31797751 PMCID: PMC6896426 DOI: 10.1080/22221751.2019.1694394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
By infecting mice with the yellow fever virus vaccine strain 17D (YFV-17D; Stamaril®), the dose dependence and evolutionary consequences of neurotropic yellow fever infection was assessed. Highly susceptible AG129 mice were used to allow for a maximal/unlimited expansion of the viral populations. Infected mice uniformly developed neurotropic disease; the virus was isolated from their brains, plaque purified and sequenced. Viral RNA populations were overall rather homogenous [Shannon entropies 0−0.15]. The remaining, yet limited intra-host population diversity (0−11 nucleotide exchanges per genome) appeared to be a consequence of pre-existing clonal heterogeneities (quasispecies) of Stamaril®. In parallel, mice were infected with a molecular clone of YFV-17D which was in vivo launched from a plasmid. Such plasmid-launched YFV-17D had a further reduced and almost clonal evolution. The limited intra-host evolution during unrestricted expansion in a highly susceptible host is relevant for vaccine and drug development against flaviviruses in general. Firstly, a propensity for limited evolution even upon infection with a (very) low inoculum suggests that fractional dosing as implemented in current YF-outbreak control may pose only a limited risk of reversion to pathogenic vaccine-derived virus variants. Secondly, it also largely lowers the chance of antigenic drift and development of resistance to antivirals.
Collapse
Affiliation(s)
- Dieudonné Buh Kum
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.,Aligos Belgium, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Bram Vrancken
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Annelies Wilder-Smith
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Philippe Lemey
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
7
|
Samanta A, Podder S, Kumarasamy M, Ghosh CK, Lahiri D, Roy P, Bhattacharjee S, Ghosh J, Mukhopadhyay AK. Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109734. [PMID: 31349529 DOI: 10.1016/j.msec.2019.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
The present work reports the very first hydrothermal synthesis of 100% triclinic phase pure aragonite (A1) with microdumbbell microstructural architecture and Au Nanoparticle-decorated (AuNP-decorated) aragonites (A2, A3 and A4) with spherical, pentagonal/hexagonal and agglomerated AuNP-decorated microdumbbells having triclinic aragonite phase as the major and cubic AuNPs as the minor phase. Even in dark the AuNP-decorated aragonites (especially A2) show efficacies as high 90% against gram-negative e.g., Pseudomonas putida (P. putida) bacteria. Further the AuNP-decorated aragonites (A3) show anti-biofilm capability of as high as about 20% against P. putida. Most importantly the AuNP-decorated aragonites (A3) offer anti-cancer efficacy of as high as 53% while those of A1, A2, and A4 are e.g., 26%, 46% and 37%, respectively. For the very first time, based on detailed investigations, the mechanisms behind such advance antibiofilm and anticancer activities are linked to the generation of excess labile toxic reactive oxygen species (ROS). Thus, these materials show enormous potential as futuristic, multi-functional biomaterials for anti-bacterial, anti-biofilm and anti-cancer applications.
Collapse
Affiliation(s)
- Aniruddha Samanta
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, India; School of Material Science and Nanotechnology, Jadavpur University, India.
| | - Soumik Podder
- School of Material Science and Nanotechnology, Jadavpur University, India
| | - Murali Kumarasamy
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee, India; Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | | | - Debrupa Lahiri
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee, India
| | - Partha Roy
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, India; Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | | | - Jiten Ghosh
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, India.
| | - Anoop Kumar Mukhopadhyay
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, India.
| |
Collapse
|
8
|
Nishimura K, Fumoto S, Fuchigami Y, Hagimori M, Maruyama K, Kawakami S. Effective intraperitoneal gene transfection system using nanobubbles and ultrasound irradiation. Drug Deliv 2017; 24:737-744. [PMID: 28446052 PMCID: PMC8241157 DOI: 10.1080/10717544.2017.1319433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this study, we demonstrate the low toxicity and highly efficient and spatially improved transfection of plasmid DNA (pDNA) with liposomal nanobubbles (bubble liposomes [BLs]) using ultrasound (US) irradiation in mice. Naked pDNA with BLs was intraperitoneally injected, followed by US irradiation. The injection volume, the duration of US irradiation, and the dose of BLs were optimized. Both BLs and US irradiation were essential to achieve high transgene expression from naked pDNA. We observed transgene expression in the entire peritoneal tissues, including the peritoneal wall, liver, spleen, stomach and small and large intestines. The area of transfection could be controlled with focused US irradiation. There were few changes in the morphology of the peritoneum, the peritoneal function or serum alanine aminotransferase levels, suggesting the safety of BLs with US irradiation. Using a tissue-clearing method, the spatial distribution of transgene expression was evaluated. BLs with US irradiation delivered pDNA to the submesothelial layer in the peritoneal wall, whereas transgene expression was restricted to the surface layer in the liver and stomach. Therefore, BLs with US irradiation could be an effective and safe method of gene transfection to the peritoneum.
Collapse
Affiliation(s)
- Koyo Nishimura
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| | - Shintaro Fumoto
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| | - Yuki Fuchigami
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| | - Masayori Hagimori
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| | - Kazuo Maruyama
- b Faculty of Pharma-Sciences , Teikyo University , Tokyo , Japan
| | - Shigeru Kawakami
- a Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan and
| |
Collapse
|
9
|
Fumoto S, Nishida K. Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines. Chem Pharm Bull (Tokyo) 2017; 65:642-648. [DOI: 10.1248/cpb.c17-00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
10
|
Fumoto S, Nishimura K, Nishida K, Kawakami S. Three-Dimensional Imaging of the Intracellular Fate of Plasmid DNA and Transgene Expression: ZsGreen1 and Tissue Clearing Method CUBIC Are an Optimal Combination for Multicolor Deep Imaging in Murine Tissues. PLoS One 2016; 11:e0148233. [PMID: 26824850 PMCID: PMC4732687 DOI: 10.1371/journal.pone.0148233] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
Evaluation methods for determining the distribution of transgene expression in the body and the in vivo fate of viral and non-viral vectors are necessary for successful development of in vivo gene delivery systems. Here, we evaluated the spatial distribution of transgene expression using tissue clearing methods. After hydrodynamic injection of plasmid DNA into mice, whole tissues were subjected to tissue clearing. Tissue clearing followed by confocal laser scanning microscopy enabled evaluation of the three-dimensional distribution of transgene expression without preparation of tissue sections. Among the tested clearing methods (ClearT2, SeeDB, and CUBIC), CUBIC was the most suitable method for determining the spatial distribution of transgene expression in not only the liver but also other tissues such as the kidney and lung. In terms of the type of fluorescent protein, the observable depth for green fluorescent protein ZsGreen1 was slightly greater than that for red fluorescent protein tdTomato. We observed a depth of ~1.5 mm for the liver and 500 μm for other tissues without preparation of tissue sections. Furthermore, we succeeded in multicolor deep imaging of the intracellular fate of plasmid DNA in the murine liver. Thus, tissue clearing would be a powerful approach for determining the spatial distribution of plasmid DNA and transgene expression in various murine tissues.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishimura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|