1
|
Petriccone M, Laurent R, Caminade AM, Sebastián RM. Diverse Approaches for the Difunctionalization of PPH Dendrimers, Precise Versus Stochastic: How Does this Influence Catalytic Performance? ACS Macro Lett 2024; 13:853-858. [PMID: 38917088 PMCID: PMC11256758 DOI: 10.1021/acsmacrolett.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Random difunctionalization of dendrimer surfaces, frequently employed in biological applications, provides the advantage of dual functional groups through a synthetic pathway that is simpler compared to precise difunctionalization. However, is the random difunctionalization as efficient as the precise difunctionalization on the surface of dendrimers? This question is unanswered to date because most dendrimer families face challenges in achieving precise functionalization. Polyphosphorhydrazone (PPH) dendrimers present a unique opportunity to obtain precise difunctionalization at each terminal branching point. The work concerning catalysis we report with PPH dendrimers, whether precisely or randomly functionalized, addresses this question. Across PPH dendrimers, from generations 1 to 3, precise functionalization consistently outperforms random functionalization in terms of efficiency. This finding introduces a novel concept in dendrimer science, emphasizing the superiority of precise over random functionalization methodologies. Introducing a groundbreaking concept in the field of dendrimers.
Collapse
Affiliation(s)
- Massimo Petriccone
- Department
of Chemistry, Science Faculty, Universitat
Autònoma de Barcelona, Campus de Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Régis Laurent
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Rosa María Sebastián
- Department
of Chemistry, Science Faculty, Universitat
Autònoma de Barcelona, Campus de Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
2
|
Muthumanickam S, Ramachandran B, Jeyakanthan J, Jegatheswaran S, Pandi B. Designing a novel drug-drug conjugate as a prodrug for breast cancer therapy: in silico insights. Mol Divers 2024:10.1007/s11030-024-10886-w. [PMID: 38833125 DOI: 10.1007/s11030-024-10886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Breast cancer (BC) poses a significant global health threat, necessitating innovative therapeutic approaches. The ribosomal s6 kinase 2 (RSK2) has emerged as a promising target due to its roles in cell proliferation and survival. This study proposes a drug-drug conjugate prodrug comprising Methotrexate (hydrophobic) and Capecitabine (hydrophilic) for BC treatment. In silico approaches, including Molecular Docking, Molecular Dynamics Simulations, MM-PBSA, ADME, and DFT calculations were employed to evaluate the prodrug's potential. The designed MET-CAP ligand exhibits a robust docking score (-8.980 kcal/mol), superior binding affinity (-53.16 kcal/mol), and stable dynamic behavior (0.62 nm) compared to native ligands. The DFT results reveal intramolecular charge transfer in MET-CAP (HLG = 0.09 eV), indicating its potential as a BC inhibitor. ADME analysis suggests satisfactory pharmaceutically relevant properties. The results indicate that the conjugated MET-CAP ligand exhibits favorable binding characteristics, stability, and pharmaceutically relevant properties, making it a potential RSK2 inhibitor for BC therapy. The multifaceted approach provides insights into binding interactions, stability, and pharmacokinetic properties, laying the foundation for further experimental validation and potential clinical development.
Collapse
Affiliation(s)
| | - Balajee Ramachandran
- Department of Pharmacology, Saveetha Institute of Technical and Medical Sciences (SIMATS), Chennai, 600 077, India
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | - Boomi Pandi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
3
|
Joshi M, Bhatt P. Ameliorated in vitroanti-cancer efficacy of methotrexate loaded zinc oxide nanoparticles in breast cancer cell lines MCF-7 & MDA-MB-231 and its acute toxicity study. NANOTECHNOLOGY 2024; 35:335101. [PMID: 38746972 DOI: 10.1088/1361-6528/ad4b24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Traditional therapies often struggle with specificity and resistance in case of cancer treatments. It is therefore important to investigate new approaches for cancer treatment based on nanotechnology. Zinc oxide nanoparticles (ZnONPs) are known to exhibit anti-cancer properties by inducing oxidative stress, apoptosis, and cell cycle arrest. Methotrexate (MTX) a known anti-folate shows specificity to folate receptors and interrupts healthy functioning of cells. This study proposes the use of previously characterized biocompatible Methotrexate loaded Zinc oxide nanoparticles (MTX-ZnONPs) as a dual action therapeutic strategy against breast cancer cell lines, MCF-7 (MTX-sensitive) and MDA-MB-231 (MTX-resistant). To elucidate the cytotoxicity mechanism of MTX-ZnONPs an in depthIn vitrostudy was carried out.In vitroassays, including cell cycle analysis, apoptosis assay, and western blot analysis to study the protein expression were performed. Results of these assays, further supported the anti-cancer activity of MTX-ZnONPs showing apoptotic and necrotic activity in MCF-7 and MDA-MB-231 cell line respectively.In vivoacute oral toxicity study to identify the LD50in animals revealed no signs of toxicity and mortality up to 550 mg kg-1body weight of animal, significantly higher LD50values than anticipated therapeutic levels and safety of the synthesized nanosystem. The study concludes that MTX-ZnONPs exhibit anti-cancer potential against breast cancer cells offering a promising strategy for overcoming resistance.
Collapse
Affiliation(s)
- Mitesh Joshi
- Department of Biological Sciences, SVKM's NMIMS (Deemed-to-be University), Sunandan Divatia School of Science, Vile Parle (West), Mumbai 400056, India
| | - Purvi Bhatt
- Department of Biological Sciences, SVKM's NMIMS (Deemed-to-be University), Sunandan Divatia School of Science, Vile Parle (West), Mumbai 400056, India
| |
Collapse
|
4
|
Cejas-Sánchez J, Caminade AM, Kajetanowicz A, Grela K, Sebastián RM. A water-soluble polyphosphorhydrazone Janus dendrimer built by "click" chemistry as support for Ru-complexes in catalysis. Dalton Trans 2024; 53:9120-9129. [PMID: 38738979 DOI: 10.1039/d3dt04376b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The field of supported catalysis has experienced increased attention with respect to the development of novel architectures for immobilizing catalytic species, aiming to maintain or enhance their activity while facilitating the easy recovery and reuse of the active moiety. Dendrimers have been identified as promising candidates capable of imparting such properties to catalysts through selective functionalization. The present study details the synthesis of two polyphosphorhydrazone (PPH) dendrons, each incorporating azide or acetylene groups at the core for subsequent coupling through "click" triazole chemistry. Employing this methodology, a novel PPH Janus dendrimer was successfully synthesized, featuring ten polyethylene glycol (PEG) chains on one side of the structure and ten Ru(p-cymene) derivatives on the other. This design was intended to confer dual properties, influencing solubility modulation, and allowing the presence of active catalytic moieties. The synthesized dendrimer underwent testing in the isomerization of allyl alcohols in organic solvents and biphasic solvent mixtures. The results demonstrated a positive dendritic effect compared with model monometallic and bimetallic species, providing a proof-of-concept for the first PPH Janus dendrimer with tested applications in catalysis.
Collapse
Affiliation(s)
- Joel Cejas-Sánchez
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain.
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France
- LCC-CNRS, Université de Toulouse, UPS, INPT, Toulouse CEDEX 4, France
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Rosa María Sebastián
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain.
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
5
|
Shariati L, Esmaeili Y, Rahimmanesh I, Babolmorad S, Ziaei G, Hasan A, Boshtam M, Makvandi P. Advances in nanobased platforms for cardiovascular diseases: Early diagnosis, imaging, treatment, and tissue engineering. ENVIRONMENTAL RESEARCH 2023; 238:116933. [PMID: 37652218 DOI: 10.1016/j.envres.2023.116933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Cardiovascular diseases (CVDs) present a significant threat to health, with traditional therapeutics based treatment being hindered by inefficiencies, limited biological effects, and resistance to conventional drug. Addressing these challenges requires advanced approaches for early disease diagnosis and therapy. Nanotechnology and nanomedicine have emerged as promising avenues for personalized CVD diagnosis and treatment through theranostic agents. Nanoparticles serve as nanodevices or nanocarriers, efficiently transporting drugs to injury sites. These nanocarriers offer the potential for precise drug and gene delivery, overcoming issues like bioavailability and solubility. By attaching specific target molecules to nanoparticle surfaces, controlled drug release to targeted areas becomes feasible. In the field of cardiology, nanoplatforms have gained popularity due to their attributes, such as passive or active targeting of cardiac tissues, enhanced sensitivity and specificity, and easy penetration into heart and artery tissues due to their small size. However, concerns persist about the immunogenicity and cytotoxicity of nanomaterials, necessitating careful consideration. Nanoparticles also hold promise for CVD diagnosis and imaging, enabling straightforward diagnostic procedures and real-time tracking during therapy. Nanotechnology has revolutionized cardiovascular imaging, yielding multimodal and multifunctional vehicles that outperform traditional methods. The paper provides an overview of nanomaterial delivery routes, targeting techniques, and recent advances in treating, diagnosing, and engineering tissues for CVDs. It also discusses the future potential of nanomaterials in CVDs, including theranostics, aiming to enhance cardiovascular treatment in clinical practice. Ultimately, refining nanocarriers and delivery methods has the potential to enhance treatment effectiveness, minimize side effects, and improve patients' well-being and outcomes.
Collapse
Affiliation(s)
- Laleh Shariati
- Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Babolmorad
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghazal Ziaei
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
6
|
Szczygieł A, Węgierek-Ciura K, Mierzejewska J, Wróblewska A, Rossowska J, Anger-Góra N, Szermer-Olearnik B, Świtalska M, Goszczyński TM, Pajtasz-Piasecka E. The modulation of local and systemic anti-tumor immune response induced by methotrexate nanoconjugate in murine MC38 colon carcinoma and B16 F0 melanoma tumor models. Am J Cancer Res 2023; 13:4623-4643. [PMID: 37970366 PMCID: PMC10636663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
Methotrexate (MTX) which is one of the longest-used cytostatics, belongs to the group of antimetabolites and is used for treatment in different types of cancer as well as during autoimmune diseases. MTX can act as a modulator enable to create the optimal environment to generate the specific anti-tumor immune response. A novel system for MTX delivery is its conjugation with high-molecular-weight carriers such as hydroxyethyl starch (HES), a modified amylopectin-based polymer applied in medicine as a colloidal plasma volume expander. Such modification prolongs the plasma half-life of the HES-MTX nanoconjugate and improves the distribution of the drug in the body. In the current study, we focused on evaluating the dose-dependent therapeutic efficacy of chemotherapy with HES-MTX nanoconjugate compared to the free form of MTX, and examining the time-dependent changes in the local and systemic anti-tumor immune response induced by this therapy. To confirm the higher effectiveness of HES-MTX in comparison to MTX, we analyzed its action using murine MC38 colon carcinoma and B16 F0 melanoma tumor models. It was noted that HES-MTX at a dose of 20 mg/kg b.w. was more effective in tumor growth inhibition than MTX in both tumor models. One of the main differences between the two analyzed tumor models concerned the kinetics of the appearance of the immunomodulation. In MC38 tumors, the beneficial change in the tumor microenvironment (TME) landscape, manifested by the depletion of pro-tumor immune cells, and increased influx of cells with strong anti-tumor activity was noted already 3 days after HES-MTX administration, while in B16 F0 model, these changes occurred 10 days after the start of therapy. Thus, the immunomodulatory potential of the HES-MTX nanoconjugate may be closely related to the specific immune cell composition of the TME, which combined with additional treatment such as immunotherapies, would enhance the therapeutic potential of the nanoconjugate.
Collapse
Affiliation(s)
- Agnieszka Szczygieł
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Katarzyna Węgierek-Ciura
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jagoda Mierzejewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Wróblewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Natalia Anger-Góra
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Tomasz M Goszczyński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
7
|
Kaur N, Popli P, Tiwary N, Swami R. Small molecules as cancer targeting ligands: Shifting the paradigm. J Control Release 2023; 355:417-433. [PMID: 36754149 DOI: 10.1016/j.jconrel.2023.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Abstract
Conventional chemotherapeutics exploration is hampered due to their nonspecific distribution leading to unintended serious toxicity. Toxicity is so severe that deciding to go for chemotherapy becomes a question of concern for many terminally ill cancer patients. However, with evolving times nanotechnology assisted in reducing the haywire distribution and channelizing the movement of drug-enclosing drug delivery systems to cancer cells to a greater extent, yet toxicity issues still could not be obliterated. Thus, active targeting appeared as a refuge, where ligands actively or specifically deliver linked chemotherapeutics and carriers to cancer cells. For a very long time, large molecule weight/macromolecular ligands (peptides and big polymers) were considered the first choice for ligand-directed active cancer targeting, due to their specificity towards overexpressed native cancer receptors. However, complex characterization, instability, and the expensive nature demanded to reconnoitre better alternatives for macromolecule ligands. The concept of small molecules as ligands emerged from the idea that few chemical molecules including chemotherapeutics have a higher affinity for cancer receptors, which are overexpressed on cell membranes, and may have the ability to assist in drug cellular uptake through endocytosis. But now the question is, can they assist the conjugated macro cargos to enter the cell or not? This present review will provide a holistic overview of the small molecule ligands explored till now.
Collapse
Affiliation(s)
- Navjeet Kaur
- Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Pankaj Popli
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, India
| | - Neha Tiwary
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chikara University, Punjab, India.
| |
Collapse
|
8
|
González-Méndez I, Loera-Loera E, Sorroza-Martínez K, Vonlanthen M, Cuétara-Guadarrama F, Bernad-Bernad MJ, Rivera E, Gracia-Mora J. Synthesis of β-Cyclodextrin-Decorated Dendritic Compounds Based on EDTA Core: A New Class of PAMAM Dendrimer Analogs. Pharmaceutics 2022; 14:2363. [PMID: 36365180 PMCID: PMC9697223 DOI: 10.3390/pharmaceutics14112363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
In this work, two dendritic molecules containing an ethylenediaminetetraacetic acid (EDTA) core decorated with two and four β-cyclodextrin (βCD) units were synthesized and fully characterized. Copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry under microwave irradiation was used to obtain the target compounds with yields up to 99%. The classical ethylenediamine (EDA) core present in PAMAM dendrimers was replaced by an EDTA core, obtaining platforms that increase the water solubility at least 80 times compared with native βCD. The synthetic methodology presented here represents a convenient alternative for the rapid and efficient construction of PAMAM analogs. These molecules are envisaged for future applications as drug carriers.
Collapse
Affiliation(s)
- Israel González-Méndez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Esteban Loera-Loera
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3000, Coyoacán, Mexico City CP 04910, Mexico
| | - Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Jesús Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico
| |
Collapse
|
9
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
10
|
Specific Bifunctionalization on the Surface of Phosphorus Dendrimers Syntheses and Properties. ORGANICS 2022. [DOI: 10.3390/org3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dendrimers are highly branched macromolecules possessing, in most cases, identical terminal functions. However, it is sometimes desirable to have two types of surface functions in order to fulfil specific properties. The stochastic functionalization is frequently used for such purposes, but the presence of an uncontrolled number of each type of terminal function, albeit acceptable for research purposes, has no practical use. Thus, it is highly desirable to find strategies suitable for the precise grafting of two different functional groups on the surface of dendrimers. The easiest way, and the most widely used, consists in using a bifunctional monomer to be grafted to all of the surface functions of the dendrimers. Two other strategies are known but are rarely used: the modification of an existing function, to generate two functions, and the sequential grafting of one function then of a second function. The three methods are illustrated in this review with polyphosphorhydrazone (PPH) dendrimers, together with their properties as catalysts, for materials, and as biological tools.
Collapse
|
11
|
Kavanagh EW, Green JJ. Toward Gene Transfer Nanoparticles as Therapeutics. Adv Healthc Mater 2022; 11:e2102145. [PMID: 35006646 DOI: 10.1002/adhm.202102145] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Genetic medicine has great potential to treat the underlying causes of many human diseases with exquisite precision, but the field has historically been stymied by delivery as the central challenge. Nanoparticles, engineered constructs the size of natural viruses, are being designed to more closely mimic the delivery efficiency of viruses, while enabling the advantages of increased safety, cargo-carrying flexibility, specific targeting, and ease in manufacturing. The speed in which nonviral gene transfer nanoparticles are making progress in the clinic is accelerating, with clinical validation of multiple nonviral nucleic acid delivery nanoparticle formulations recently FDA approved for both expression and for silencing of genes. While much of this progress has been with lipid nanoparticle formulations, significant development is being made with other nanomaterials for gene transfer as well, with favorable attributes such as biodegradability, scalability, and cell targeting. This review highlights the state of the field, current challenges in delivery, and opportunities for engineered nanomaterials to meet these challenges, including enabling long-term therapeutic gene editing. Delivery technology utilizing different kinds of nanomaterials and varying cargos for gene transfer (DNA, mRNA, and ribonucleoproteins) are discussed. Clinical applications are presented, including for the treatment of genetic diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Erin W. Kavanagh
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering Translational Tissue Engineering Center and Institute for NanoBioTechnology Johns Hopkins University School of Medicine 400 North Broadway, Smith Building 5017 Baltimore MD 21231 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering Translational Tissue Engineering Center and Institute for NanoBioTechnology Johns Hopkins University School of Medicine 400 North Broadway, Smith Building 5017 Baltimore MD 21231 USA
| |
Collapse
|
12
|
Chellampillai B, Kashid S, Pawar A, Mali A. Investigation of dimyristoyl phosphatidyl glycerol and cholesterol based nanocochleates as a potential oral delivery carrier for methotrexate. J Liposome Res 2021; 32:308-316. [PMID: 34957892 DOI: 10.1080/08982104.2021.2018603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methotrexate (MTX), a biopharmaceutical classification system-IV anticancer drug, exhibits low therapeutic efficacy. Moreover, its clinical applications were restricted due to its multidrug resistance (MDR) in cancer and its toxic effects. The present investigation was to fabricate 1, 2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium (DMPG-Na), (3β)-cholest-5-en-3-ol (cholesterol) and calcium-based nanocochleates (NCs) as a potential oral delivery carrier for MTX to enhance its therapeutic efficacy with low toxicity. MTX-loaded NCs (MTX-NCs) was developed by the addition of calcium ion into preformed nanoliposomes (MTX-NLs) comprising MTX, DMPG-Na, with cholesterol and evaluated by in-vitro and in-vivo methods in comparison with MTX-NLs and pure MTX. Stable tubular rod structure of MTX-NCs possessing particle size, encapsulation efficiency and zeta potential of 374.1 ± 2.2 nm, 78.63 ± 2.12% and -71.2 mV, respectively were obtained from homogenous unilamellar, discrete and spherical structured MTX-NLs with a diameter and zeta potential of 363.3 ± 3.7 nm and -74.6 mV respectively. A thermal study revealed an amorphous state of MTX in MTX-NCs. Pharmacokinetics study in rats, MTX-NLs and MTX-NCs were showed controlled release with 5 and 6 fold improvements in oral bioavailability. Moreover, MTX-NCs showed low tissue distribution. These results collectively suggest that the developed system could be used to improve the therapeutic efficacy of MTX.
Collapse
Affiliation(s)
- Bothiraja Chellampillai
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University (BVDU), Maharashtra, India
| | - Sneha Kashid
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University (BVDU), Maharashtra, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University (BVDU), Maharashtra, India
| | - Ashwin Mali
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University (BVDU), Maharashtra, India
| |
Collapse
|
13
|
|
14
|
Thalji MR, Ibrahim AA, Ali GA. Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother 2021; 144:112260. [PMID: 34607105 DOI: 10.1016/j.biopha.2021.112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/09/2023] Open
Abstract
Abnormal structural and molecular changes in malignant tissues were thoroughly investigated and utilized to target tumor cells, hence rescuing normal healthy tissues and lowering the unwanted side effects as non-specific cytotoxicity. Various ligands for cancer cell specific markers have been uncovered and inspected for directional delivery of the anti-cancer drug to the tumor site, in addition to diagnostic applications. Over the past few decades research related to the ligand targeted therapy (LTT) increased tremendously aiming to treat various pathologies, mainly cancers with well exclusive markers. Malignant tumors are known to induce elevated levels of a variety of proteins and peptides known as cancer "markers" as certain antigens (e.g., Prostate specific membrane antigen "PSMA", carcinoembryonic antigen "CEA"), receptors (folate receptor, somatostatin receptor), integrins (Integrin αvβ3) and cluster of differentiation molecules (CD13). The choice of an appropriate marker to be targeted and the design of effective ligand-drug conjugate all has to be carefully selected to generate the required therapeutic effect. Moreover, since some tumors express aberrantly high levels of more than one marker, some approaches investigated targeting cancer cells with more than one ligand (dual or multi targeting). We aim in this review to report an update on the cancer-specific receptors and the vehicles to deliver cytotoxic drugs, including recent advancements on nano delivery systems and their implementation in targeted cancer therapy. We will discuss the advantages and limitations facing this approach and possible solutions to mitigate these obstacles. To achieve the said aim a literature search in electronic data bases (PubMed and others) using keywords "Cancer specific receptors, cancer specific antibody, tumor specific peptide carriers, cancer overexpressed proteins, gold nanotechnology and gold nanoparticles in cancer treatment" was carried out.
Collapse
Affiliation(s)
- Layla Al-Mansoori
- Qatar University, Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Philip Elsinga
- University of Groningen, University Medical Center Groningen (UMCG), Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sayed K Goda
- Cairo University, Faculty of Science, Giza, Egypt; University of Derby, College of Science and Engineering, Derby, UK.
| |
Collapse
|
16
|
Kim GH, Lee G, Kang MH, Kim M, Jin Y, Beck S, Cheon J, Sung J, Joo J. Luminescent silicon nanoparticles for distinctive tracking of cellular targeting and trafficking. Faraday Discuss 2021; 222:304-317. [PMID: 32100767 DOI: 10.1039/c9fd00124g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing therapeutic nanoparticles that actively target disease cells or tissues by exploiting the binding specificity of receptors presented on the cell surface has extensively opened up biomedical applications for drug delivery and imaging. An ideal nanoparticle for biomedical applications is required to report confirmation of relevant targeting and the ultimate fate in a physiological environment for further verification, e.g. to adapt dosage or predict response. Herein, we demonstrate tracking of silicon nanoparticles through intrinsic photoluminescence (PL) during the course of cellular targeting and uptake. Time-resolved analysis of PL characteristics in cellular microenvironments provides dynamic information on the physiological conditions where the silicon nanoparticles are exposed. In particular, the PL lifetime of the silicon nanoparticles is in the order of microseconds, which is significantly longer than the nanosecond lifetimes exhibited by fluorescent molecules naturally presented in cells, thus allowing discrimination of the nanoparticles from the cellular background autofluorescence in time-gated imaging. The PL lifetime is a physically intensive property that reports the inherent characteristics of the nanoparticles regardless of surrounding noise. Furthermore, we investigate a unique means to inform the lifespan of the biodegradable silicon nanoparticles responsive to local microenvironment in the course of endocytosis. A multivalent strategy of nanoparticles for enhanced cell targeting is also demonstrated with complementary analysis of time-resolved PL emission imaging and fluorescence correlation spectroscopy. The result presents the promising potential of the photoluminescent silicon nanoparticles toward advanced cell targeting systems that simultaneously enable tracking of cellular trafficking and tissue microenvironment monitoring.
Collapse
Affiliation(s)
- Gi-Heon Kim
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Szczygieł A, Anger-Góra N, Węgierek-Ciura K, Mierzejewska J, Rossowska J, Goszczyński TM, Świtalska M, Pajtasz-Piasecka E. Immunomodulatory potential of anticancer therapy composed of methotrexate nanoconjugate and dendritic cell‑based vaccines in murine colon carcinoma. Oncol Rep 2021; 45:945-962. [PMID: 33432365 PMCID: PMC7859925 DOI: 10.3892/or.2021.7930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy with low-molecular weight compounds, despite elimination of cancer cells, entails adverse effects. To overcome this disadvantage, innovative drug delivery systems are being developed, including conjugation of macromolecular carriers with therapeutics, e.g. a nanoconjugate of hydroxyethyl starch and methotrexate (HES-MTX). The purpose of the present study was to determine whether HES-MTX, applied as a chemotherapeutic, is able to modulate the immune response and support the antitumor response generated by dendritic cells (DCs) used subsequently as immunotherapeutic vaccines. Therefore, MTX or HES-MTX was administered, as sole treatment or combined with DC-based vaccines, to MC38 colon carcinoma tumor-bearing mice. Alterations in antitumor immune response were evaluated by multiparameter flow cytometry analyses and functional assays. The results demonstrated that the nanoconjugate possesses greater immunomodulatory potential than MTX as reflected by changes in the landscape of immune cells infiltrating the tumor and increased cytotoxicity of splenic lymphocytes. In contrast to MTX, therapy with HES-MTX as sole treatment or combined with DC-based vaccines, contributed to significant tumor growth inhibition. However, only treatment with HES-MTX and DC-based vaccines activated the systemic specific antitumor response. In conclusion, due to its immunomodulatory properties, the HES-MTX nanoconjugate could become a potent anticancer agent used in both chemo- and chemoimmunotherapeutic treatment schemes.
Collapse
Affiliation(s)
- Agnieszka Szczygieł
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Natalia Anger-Góra
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Katarzyna Węgierek-Ciura
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Jagoda Mierzejewska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Tomasz M Goszczyński
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Marta Świtalska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Elżbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| |
Collapse
|
18
|
Chittasupho C, Aonsri C, Imaram W. Targeted dendrimers for antagonizing the migration and viability of NALM-6 lymphoblastic leukemia cells. Bioorg Chem 2021; 107:104601. [PMID: 33476870 DOI: 10.1016/j.bioorg.2020.104601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
Acute lymphoblastic leukemia (ALL) or white blood cell cancer is one of the major causes that kills many children worldwide. Although various therapeutic agents are available for ALL treatment, the new drug discovery and drug delivery system are needed to improve their effectiveness, to reduce the toxicity and side-effect, and to enhance their selectivity to target cancer cells. CXCR4 is a protein expressed on the surface of various types of cancer cell including ALL. In this work, the CXCR4-targeted PAMAM dendrimer was constructed by conjugating G5 PAMAM with a CXCR4 antagonist, LFC131. The results revealed that the LFC131-conjugated G5 PAMAM selectively targeted CXCR4 expressing leukemic precursor B cells (NALM-6) and the migration of NALM-6 cells induced by SDF-1α was inhibited at non-cytotoxic concentration. Further research based on this findings may contribute to potential anti-metastatic drugs for lymphoblastic leukemia.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Chaiyawat Aonsri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand; Special Research Unit for Advanced Magnetic Resonance, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
19
|
Lyu Z, Ding L, Tintaru A, Peng L. Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers. Acc Chem Res 2020; 53:2936-2949. [PMID: 33275845 DOI: 10.1021/acs.accounts.0c00589] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendrimers, notable for their well-defined radial structures with numerous terminal functionalities, hold great promise for biomedical applications such as drug delivery, diagnostics, and therapeutics. However, their translation into clinical use has been greatly impeded by their challenging stepwise synthesis and difficult purification.To circumvent these obstacles, we have pioneered a self-assembly approach to constructing noncovalent supramolecular dendrimers using small amphiphilic dendrimer building units which can be easily synthesized and purified. By virtue of their amphipathic nature, the small amphiphilic dendrimers are able to self-assemble and generate large supramolecular dendrimers via noncovalent weak interactions such as van der Waals forces, H bonds, and electrostatic interactions. The so-created noncovalent dendrimers can mimic covalent dendrimers not only in terms of the radial structural feature emanating from a central core but also in their capacity to deliver drugs and imaging agents for biomedical applications. The noncovalent supramolecular dendrimers can be easily synthesized and modulated with regard to size, shape, and properties by varying the nature of the hydrophobic and hydrophilic entities as well as the dendrimer generation and terminal functionalities, ensuring their adaptability to specific applications. In particular, the dendritic structure of the amphiphilic building units permits the creation of large void spaces within the formed supramolecular dendrimers for the physical encapsulation of drugs, while the large number of surface functionalities can be exploited for both physical and chemical conjugation of pharmaceutic agents for drug delivery.Poly(amidoamine) (PAMAM) dendrimers are the most intensively studied for biomedical applications by virtue of their excellent biocompatibility imparted by their peptide-mimicking amide backbones and numerous interior and terminal amine functionalities. We present a short overview of our self-assembly strategy for constructing supramolecular PAMAM dendrimers for biomedical applications. Specifically, we start with the introduction of dendrimers and their synthesis, focusing on the innovative self-assembly synthesis of supramolecular dendrimers. We then detail the representative examples of the noncovalent supramolecular PAMAM dendrimers established in our group for the delivery of anticancer drugs, nucleic acid therapeutics, and imaging agents, either within the dendrimer interior or at the dendrimer terminals on the surface. Some of the supramolecular dendrimer nanosystems exhibit outstanding performance, excelling the corresponding clinical anticancer therapeutics and imaging agents. This self-assembly approach to creating supramolecular dendrimers is completely novel in concept yet easy to implement in practice, offering a fresh perspective for exploiting the advantageous features of dendrimers in biomedical applications.
Collapse
Affiliation(s)
- Zhenbin Lyu
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire (ICR), UMR 7273, 13013 Marseille, France
| | - Ling Ding
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, 13385 Marseille, France
| | - Aura Tintaru
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire (ICR), UMR 7273, 13013 Marseille, France
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| |
Collapse
|
20
|
Guo D, Shi C, Wang L, Ji X, Zhang S, Luo J. A Rationally Designed Micellar Nanocarrier for the Delivery of Hydrophilic Methotrexate in Psoriasis Treatment. ACS APPLIED BIO MATERIALS 2020; 3:4832-4846. [PMID: 34136761 DOI: 10.1021/acsabm.0c00342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Methotrexate (MTX) is broadly applied in the clinic for the treatments of cancers and autoimmune diseases. Targeted delivery of MTX is attractive to improve its efficacy and reduce off-target toxicity. However, MTX encapsulation in nanoparticle is challenging due to its high water solubility. We rationally designed a well-defined telodendrimer (TD) nanocarrier based on MTX structure to sequester it in nanoparticles. Riboflavin (Rf) and positive charges groups were precisely conjugated on TD to form multivalent hydrogen bonds, π-π stacking and electrostatic interactions with MTX. A reverse micelle approach was developed to preset MTX and TD interactions in the core of micelles, which ensures the effective MTX loading upon dispersion into aqueous solution. As results, MTX loading capacity reaches over 20% (w/w) in the optimized nanocarrier with the particle size of 20-30 nm. The nanoformulations sustain the release of MTX in a controlled manner and exhibit excellent hemocompatibility. The in vitro cellular uptake of MTX was significantly improved by the nanoformulations. The potency of MTX nanoformulations is comparable to the free MTX in cytotoxicity. A psoriasis-like skin inflammation model was induced in mouse by imiquimod (IMQ) stimulation. MTX nanoformulations improved the psoriasis targeting and exhibited a superior long-lasting efficacy in reducing skin inflammation compared with the free MTX in psoriasis treatment.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Shengle Zhang
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.,Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.,Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.,Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| |
Collapse
|
21
|
Yang V, Gouveia MJ, Santos J, Koksch B, Amorim I, Gärtner F, Vale N. Breast cancer: insights in disease and influence of drug methotrexate. RSC Med Chem 2020; 11:646-664. [PMID: 33479665 PMCID: PMC7578709 DOI: 10.1039/d0md00051e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization, cancer is one of the leading causes of morbidity and mortality worldwide. The previously estimated 14 million new cases in the year of 2012 are expected to rise, yearly, over the following 2 decades. Among women, breast cancer is the most common one. In 2012, almost 1.7 million people were diagnosed worldwide and half a million died from the disease. Despite having several treatments available, from surgery to chemotherapy, most of these treatments have severe adverse effects. Chemotherapy has a narrow therapeutic window and requires high dosage treatment in patients with advanced-stage cancers and further need innovative treatment strategies. Although methotrexate (MTX) is not a first line drug used against breast cancer, however, it might be valuable to fight the disease. MTX is an effective and cheap drug that might impair malignant growth without irreversible damage to normal tissues. Nevertheless, while MTX does present some disadvantages including poor solubility and low permeability, several strategies are being used to discover and provide novel and effective targeted treatment against breast cancer. In this review, we analyze the chemotherapy of breast cancer and its relationship with drug MTX.
Collapse
Affiliation(s)
- Vítor Yang
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Maria João Gouveia
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Joana Santos
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Beate Koksch
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Irina Amorim
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho, 45 , 4200-135 Porto , Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho, 45 , 4200-135 Porto , Portugal
| | - Nuno Vale
- Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal .
- Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho, 45 , 4200-135 Porto , Portugal
| |
Collapse
|
22
|
Ambekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109546] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Progress Toward Absorption, Distribution, Metabolism, Elimination, and Toxicity of DNA Nanostructures. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Farran B, Montenegro RC, Kasa P, Pavitra E, Huh YS, Han YK, Kamal MA, Nagaraju GP, Rama Raju GS. Folate-conjugated nanovehicles: Strategies for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110341. [PMID: 31761235 DOI: 10.1016/j.msec.2019.110341] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/02/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer theranostics represents a strategy that aims at combining diagnosis with therapy through the simultaneous imaging and targeted delivery of therapeutics to cancer cells. Recently, the folate receptor alpha has emerged as an attractive theranostic target due to its overexpression in multiple solid tumors and its great functional versatility. In fact, it can be incorporated into folate-conjugated nano-systems for imaging and drug delivery. Hence, it can be used along the line of personalized clinical strategies as both an imaging tool and a delivery method ensuring the selective transport of treatments to tumor cells, thus highlighting its theranostic qualities. In this review, we will explore these theranostic characteristics in detail and assess their clinical potential. We will also discuss the technological advances that have allowed the design of sophisticated folate-based nanocarriers harboring various chemical properties and suited for the transport of various therapeutic agents.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Raquel Carvalho Montenegro
- Biological Science Institute, Federal University of Para, Augusto Correa Avenue, 01 Guamá, Belém, Pará, Brazil
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP, 500004, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
25
|
Samiei Foroushani M, Niroumand N, Karimi Shervedani R, Yaghoobi F, Kefayat A, Torabi M. A theranostic system based on nanocomposites of manganese oxide nanoparticles and a pH sensitive polymer: Preparation, and physicochemical characterization. Bioelectrochemistry 2019; 130:107347. [PMID: 31437809 DOI: 10.1016/j.bioelechem.2019.107347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023]
Abstract
A multifunctional nanocomposite theranostic system is constructed of manganese oxide (Mn3O4) nanoparticles (NPs), as a tumor diagnostic agent, in conjunction with polyacrylic acid (PAA), as a pH-sensitive drug delivery agent, and methotrexate (MTX), as a model of targeting agent and anticancer drug. Physicochemical characteristics of the Mn3O4@PAA/MTX system is studied in detail by several techniques, including X-ray and Auger photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The system performance is studied based on (i) in-vitro MRI measurements to support efficiency of the Mn3O4@PAA NPs as a diagnostic agent, (ii) drug release performance of the Mn3O4@PAA/MTX NPs at pHs of 5.4 and 7.4 through in-vitro method to evaluate application of the NPs as pH-sensitive nanocarriers for MTX, and (iii) impedance spectroscopy measurements to show Mn3O4@PAA/MTX NPs affinity for capturing of cancer cells. The results show that (i) Mn3O4@PAA NPs can be used as a contrast agent in MRI measurements (r1 ≅ 6.5 mM-1 s-1), (ii) the MTX, loaded on Mn3O4@PAA NPs, is released faster and more efficient at pH 5.4 than 7.4, and (iii) the GC-Mn3O4@PAA/MTX electrode system captures the 4T1 cells 3.32 times larger than L929 cells.
Collapse
Affiliation(s)
| | - Nazanin Niroumand
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Fatemeh Yaghoobi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mostafa Torabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
26
|
Khan FA, Akhtar S, Almohazey D, Alomari M, Almofty SA, Badr I, Elaissari A. Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1533-1542. [PMID: 31007071 DOI: 10.1080/21691401.2019.1577886] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Poly (methyl methacrylate) (PMMA) is basically biocompatible polyester with high resistance to chemical hydrolysis, and high drug permeability and the most important characteristics of PMMA is that it does not produce any toxicity. There is not much information about PMMA action on the colon cancer cells. In the present study, we have synthesized PMMA nanoparticles. The distribution pattern of PMMA particles was analysed by Zeta sizer and the size of the particles was calculated by using quasi elastic light scattering (QELS). The surface structure and the morphology of PMMA were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. We have also analysed their effects on cancerous cells (human colorectal carcinoma cells, HCT-116) and normal, healthy cells (human embryonic kidney cells, HEK-293) by using morphometric, MTT, DAPI and wound healing methods. We report that PMMA particles inhibited the cancer cell viability in a dose-dependent manner. The lower dose (1.0 μg/ml) showed a moderate decrease in cancer cell viability, whereas higher dosages (2.5 μg/ml, 5.0 μg/mL and 7.5 μg/mL) showed steadily decrease in the cancer cell viability. We also report that PMMA is highly selective to cancerous cells (HCT-116), as we did not find any action on the normal healthy cells (HEK-293). In conclusion, our results suggest PMMA particles are potential biomaterials to be used in the treatment of colon cancer.
Collapse
Affiliation(s)
- Firdos Alam Khan
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Sultan Akhtar
- b Department of Biophysics, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Dana Almohazey
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Munther Alomari
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Sarah Ameen Almofty
- a Department of Stem Cell Biology, Institute for Research and Medical Consultations , Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Ibrahim Badr
- c Centre national de la recherche scientifique, LAGEP-UMR 5007, University Claude Bernard Lyon-1 , University of Lyon , Lyon , France
| | - Abdelhamid Elaissari
- c Centre national de la recherche scientifique, LAGEP-UMR 5007, University Claude Bernard Lyon-1 , University of Lyon , Lyon , France
| |
Collapse
|
27
|
Hao F, Lee RJ, Zhong L, Dong S, Yang C, Teng L, Meng Q, Lu J, Xie J, Teng L. Hybrid micelles containing methotrexate-conjugated polymer and co-loaded with microRNA-124 for rheumatoid arthritis therapy. Theranostics 2019; 9:5282-5297. [PMID: 31410215 PMCID: PMC6691571 DOI: 10.7150/thno.32268] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Methotrexate (MTX) is a first-line drug for rheumatoid arthritis (RA)therapy. However, MTX monotherapy often results in irreversible joint damage due to its slow onset of action and long duration. microRNA-124 (miR-124) has shown direct bone protection activity against RA. A co-delivery system for MTX and microRNA combination may provide therapeutic synergy. Methods: Methotrexate-conjugated polymer hybrid micelles (M-PHMs) were prepared by self-assembly of two functional amphiphilic polymers (MTX-PEI-LA and mPEG-LA) at an optimized weight ratio. Incorporation of microRNA was achieved through electrostatic interactions between microRNA and cationic polymer MTX-PEI-LA. Cellular uptake, endosome escape, biodistribution, and therapeutic efficacy of M-PHMs/miR-124 complexes were investigated and evaluated in RAW264.7 cells and a rat adjuvant-induced arthritis (AIA) model. Results: M-PHMs/miR-124 complexes exhibited folate receptor-mediated uptake in activated RAW264.7 cells. miR-124 was able to escape from the endosome and down-regulate nuclear factor of activated T cells cytoplasmic1 (NFATc1). M-PHMs/miR-124 complexes accumulated in inflamed joints of AIA rats and showed superior therapeutic efficacy through both anti-inflammatory effect and direct bone protective effect. Combination of miR-124 and MTX in these micelles induced disease remission. Conclusions: M-PHMs/miR-124 was highly effective against RA through therapeutic synergy. Additional studies are warranted to further investigate its therapeutic potential and delineate its mechanisms of action.
Collapse
Affiliation(s)
- Fei Hao
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Robert J Lee
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
- College of Pharmacy, The Ohio State University, Columbus, 500 W 12th Ave, Columbus, OH 43210, USA
| | - Lihuang Zhong
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Chunmiao Yang
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Lirong Teng
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Qingfan Meng
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Jing Xie
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| |
Collapse
|
28
|
Zhang H, Li Y, Pan Z, Chen Y, Fan Z, Tian H, Zhou S, Zhang Y, Shang J, Jiang B, Wang F, Luo F, Hou Z. Multifunctional Nanosystem Based on Graphene Oxide for Synergistic Multistage Tumor-Targeting and Combined Chemo-Photothermal Therapy. Mol Pharm 2019; 16:1982-1998. [PMID: 30892898 DOI: 10.1021/acs.molpharmaceut.8b01335] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Locating nanomedicines at the active sites plays a pivotal role in the nanoparticle-based cancer therapy field. Herein, a multifunctional nanotherapeutic is designed by using graphene oxide (GO) nanosheets with rich carboxyl groups as the supporter for hyaluronic acid (HA)-methotrexate (MTX) prodrug modification via an adipicdihydrazide cross-linker, achieving synergistic multistage tumor-targeting and combined chemo-photothermal therapy. As a tumor-targeting biomaterial, HA can increase affinity of the nanocarrier toward CD44 receptor for enhanced cellular uptake. MTX, a chemotherapeutic agent, can also serve as a tumor-targeting enhancer toward folate receptor based on its similar structure with folic acid. The prepared nanosystems possess a sheet shape with a dynamic size of approximately 200 nm and pH-responsive drug release. Unexpectedly, the physiological stability of HA-MTX prodrug-decorated GO nanosystems in PBS, serum, and even plasma is more excellent than that of HA-decorated GO nanosystems, while both of them exhibit an enhanced photothermal effect than GO nanosheets. More importantly, because of good blood compatibility as well as reduced undesired interactions with blood components, HA-MTX prodrug-decorated GO nanosystems exhibited remarkably superior accumulation at the tumor sites by passive and active targeting mechanisms, achieving highly effective synergistic chemo-photothermal therapeutic effect upon near-infrared laser irradiation, efficient ablation of tumors, and negligible systemic toxicity. Hence, the HA-MTX prodrug-decorated hybrid nanosystems have a promising potential for synergistic multistage tumor-targeting therapy.
Collapse
Affiliation(s)
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , China.,Department of Translational Medicine, Xiamen Institute of Rare Earth Materials , Chinese Academy of Sciences , Xiamen 361024 , P. R. China
| | | | | | | | | | - Song Zhou
- Department of General Surgery , The Affiliated Southeast Hospital of Xiamen University , Zhangzhou 363000 , China
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Cheng M, Cao J, Zhang Y, Yuan Z, Wu Q, Wang W. Multivalent nanoparticles for personalized theranostics based on tumor receptor distribution behavior. NANOSCALE 2019; 11:5005-5013. [PMID: 30839969 DOI: 10.1039/c8nr09347d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is acknowledged that the targeting ability of multivalent ligand-modified nanoparticles (MLNs) strongly depends on the ligand spatial presentation determined by ligand valency. However, the receptor overexpression level varies between different types or stages of tumors. Thus, it is essential to explore the influence of ligand valency on the targeting ability of MLNs to tumors with different levels of receptor overexpression. In this study, a dual-acting agent raltitrexed was used as a ligand to target the folate receptor (FR). Different copies of the raltitrexed-modified multivalent dendritic polyethyleneimine ligand cluster PRn (n = 2, 4, and 8) were conjugated onto magnetic nanoparticles to form multivalent magnetic NPs (MMNs) with different valences. The in vitro studies demonstrated that Fe-PR4 was the most effective valency in the treatment of high FR overexpressing KB cells with a decentralized receptor distribution, owing to the fact that Fe-PR2 was negative in statistical rebinding and Fe-PR8 could induce steric hindrance in the limited binding area. Instead, in moderate FR overexpressing HeLa cells with clustered receptor display, the extra ligands on Fe-PR8 would facilitate statistical rebinding more beneficially. Furthermore, in in vivo tumor inhibition and targeted magnetic resonance imaging (MRI) of KB tumors and another moderate FR expressing H22 tumor, similar results were obtained with the cell experiments. Overall, the optimizable treatment effect of Fe-PRn by modulating the ligand valency based on the overexpressing tumor receptor distribution behavior supports the potential of Fe-PRn as a nanomedicine for personalized theranostics.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Targeted Co-Delivery of siRNA and Methotrexate for Tumor Therapy via Mixed Micelles. Pharmaceutics 2019; 11:pharmaceutics11020092. [PMID: 30795589 PMCID: PMC6409946 DOI: 10.3390/pharmaceutics11020092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 01/20/2023] Open
Abstract
A combination of chemotherapeutic drugs and siRNA is emerging as a new modality for cancer therapy. A safe and effective carrier platform is needed for combination drug delivery. Here, a functionalized mixed micelle-based delivery system was developed for targeted co-delivery of methotrexate (MTX) and survivin siRNA. Linolenic acid (LA) was separately conjugated to branched polyethlenimine (b-PEI) and methoxy-polyethyleneglycol (mPEG). MTX was then conjugated to LA-modified b-PEI (MTX-bPEI-LA) to form a functionalized polymer-drug conjugate. Functionalized mixed micelles (M-MTX) were obtained by the self-assembly of MTX-bPEI-LA and LA-modified mPEG (mPEG-LA). M-MTX had a narrow particle size distribution and could successfully condense siRNA at an N/P ratio of 16/1. M-MTX/siRNA was selectively taken up by HeLa cells overexpressing the folate receptor (FR) and facilitated the release of the siRNA into the cytoplasm. In vitro, M-MTX/siRNA produced a synergy between MTX and survivin siRNA and markedly suppressed survivin protein expression. In tumor-bearing mice, M-MTX/Cy5-siRNA showed an elevated tumor uptake. In addition, M-MTX/siRNA inhibited tumor growth. Immunohistochemistry and a western blot analysis showed a significant target gene downregulation. In conclusion, M-MTX/siRNA was highly effective as a delivery system and may serve as a model for the targeted co-delivery of therapeutic agents.
Collapse
|
31
|
Wei G, Wang Y, Huang X, Yang G, Zhao J, Zhou S. Enhancing the Accumulation of Polymer Micelles by Selectively Dilating Tumor Blood Vessels with NO for Highly Effective Cancer Treatment. Adv Healthc Mater 2018; 7:e1801094. [PMID: 30565900 DOI: 10.1002/adhm.201801094] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Indexed: 12/28/2022]
Abstract
The accumulation of nanoparticles in tumors by the enhanced permeability and retention (EPR) effect is effective and well known. However, how to maximize accumulation is still a bottleneck in the development of nanomedicine. Herein, a tumor vascular-targeted hybrid polymeric micelle, which has a great capacity to selectively augment the EPR effect of nanoparticles by dilating tumor blood vessels via the activity of nitric oxide (NO), is presented. Under neutral conditions, the micelle is stable, with a long blood circulation half-life due to the carboxylated poly(ethylene glycol) (PEG) layer; in mildly acidic tumor tissues, the micelle can selectively target the tumor blood vessels by the exposed cyclic Arg-Gly-Asp peptide (cRGD) peptides, which is realized with a pH-dependent hydrolysis of the monomethoxy PEG layer. Simultaneously, exposed copper ions catalyze the decomposition of endogenous NO donors, which generates NO in situ, leading to vasodilation and increased tumor vascular permeability. As a result, the accumulation of nanoparticles is significantly enhanced, and a high accumulation of doxorubicin in tumors is achieved at 48 h after injection. This high dose of therapeutic agent produces a large inhibition of tumor growth (94%) in cancer treatment, and shows no general toxicity, with 100% of the mice surviving the treatment regimen.
Collapse
Affiliation(s)
- Guoqing Wei
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Xuehui Huang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Guang Yang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Jingya Zhao
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu Sichuan 610031 P. R. China
| |
Collapse
|
32
|
Basu A, Upadhyay P, Ghosh A, Chattopadhyay D, Adhikary A. Folic-Acid-Adorned PEGylated Graphene Oxide Interferes with the Cell Migration of Triple Negative Breast Cancer Cell Line, MDAMB-231 by Targeting miR-21/PTEN Axis through NFκB. ACS Biomater Sci Eng 2018; 5:373-389. [DOI: 10.1021/acsbiomaterials.8b01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arijita Basu
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Priyanka Upadhyay
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Avijit Ghosh
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
33
|
Vieira Gonzaga R, da Silva Santos S, da Silva JV, Campos Prieto D, Feliciano Savino D, Giarolla J, Igne Ferreira E. Targeting Groups Employed in Selective Dendrons and Dendrimers. Pharmaceutics 2018; 10:E219. [PMID: 30413047 PMCID: PMC6320891 DOI: 10.3390/pharmaceutics10040219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
The design of compounds with directed action to a defined organ or tissue is a very promising approach, since it can decrease considerably the toxicity of the drug/bioactive compound. For this reason, this kind of strategy has been greatly important in the scientific community. Dendrimers, on the other hand, comprise extremely organized macromolecules with many peripheral functionalities, stepwise controlled synthesis, and defined size. These nanocomposites present several biological applications, demonstrating their efficiency to act in the pharmaceutical field. Considering that, the main purpose of this review was describing the potential of dendrons and dendrimers as drug targeting, applying different targeting groups. This application has been demonstrated through interesting examples from the literature considering the last ten years of publications.
Collapse
Affiliation(s)
- Rodrigo Vieira Gonzaga
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Soraya da Silva Santos
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Joao Vitor da Silva
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Diego Campos Prieto
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | | | - Jeanine Giarolla
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | | |
Collapse
|
34
|
Khan FA, Akhtar S, Almohazey D, Alomari M, Almofty SA, Eliassari A. Fluorescent magnetic submicronic polymer (FMSP) nanoparticles induce cell death in human colorectal carcinoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S247-S253. [DOI: 10.1080/21691401.2018.1491476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdelhamid Eliassari
- University of Lyon, Lyon, France
- LAGEP-CPE, University Lyon 1, Villeurbanne, CNRS, UMR 5007, Villeurbanne, France
| |
Collapse
|
35
|
Khan FA, Akhtar S, Almofty SA, Almohazey D, Alomari M. FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 Cells): Morphometric Analysis. Biomolecules 2018; 8:biom8020032. [PMID: 29882888 PMCID: PMC6022976 DOI: 10.3390/biom8020032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Currently, breast cancer treatment mostly revolves around radiation therapy and surgical interventions, but often these treatments do not provide satisfactory relief to the patients and cause unmanageable side-effects. Nanomaterials show promising results in treating cancer cells and have many advantages such as high biocompatibility, bioavailability and effective therapeutic capabilities. Interestingly, fluorescent magnetic nanoparticles have been used in many biological and diagnostic applications, but there is no report of use of fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in the treatment of human breast cancer cells. In the present study, we tested the effect of FMSP-nanoparticles on human breast cancer cells (MCF-7). We tested different concentrations (1.25, 12.5 and 50 µg/mL) of FMSP-nanoparticles in MCF-7 cells and evaluated the nanoparticles response morphometrically. Our results revealed that FMSP-nanoparticles produced a concentration dependent effect on the cancer cells, a dose of 1.25 µg/mL produced no significant effect on the cancer cell morphology and cell death, whereas dosages of 12.5 and 50 µg/mL resulted in significant nuclear augmentation, disintegration, chromatic condensation followed by dose dependent cell death. Our results demonstrate that FMSP-nanoparticles induce cell death in MCF-7 cells and may be a potential anti-cancer agent for breast cancer treatment.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
36
|
Abstract
PURPOSE Cancer remains a significant cause of morbidity and mortality across the globe. A recent report suggests around 14.1 million new cases and 8.2 million cancer-related deaths, which are expected to reach 21.7 million and 13 million by 2030 worldwide, respectively. MATERIALS AND METHODS Because of highly complex mechanisms of cancer progression, it is important to explore and develop new innovative technologies which are more efficient compared with presently available treatment options. RESULTS Currently, chemotherapy, radiation and surgery are the most commonly used cancer treatment methods. In the last decade, nanomedicine emerged as an alternative treatment option that uses specific drug-delivery systems, improves efficacy of drugs and reduces detrimental side effects to normal tissues. CONCLUSION In this review, we have summarized cancer nanomedicines (active and passive drug delivery) available in the market. We have also discussed other nanomedicines that are at different stages of clinical trials.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Khalid Anwar
- b School of Life Sciences , Jawaharlal Nehru University , New Delhi , India
| | - Chelapram K Firoz
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Mohammad Oves
- c Center of Excellence in Environmental Studies , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Mohammad Amjad Kamal
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Shams Tabrez
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
37
|
Suksiriworapong J, Taresco V, Ivanov DP, Styliari ID, Sakchaisri K, Junyaprasert VB, Garnett MC. Synthesis and properties of a biodegradable polymer-drug conjugate: Methotrexate-poly(glycerol adipate). Colloids Surf B Biointerfaces 2018; 167:115-125. [PMID: 29631222 DOI: 10.1016/j.colsurfb.2018.03.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Abstract
Polymer-drug conjugates have been actively developed as potential anticancer drug delivery systems. In this study, we report the first polymer-anticancer drug conjugate with poly(glycerol adipate) (PGA) through the successful conjugation of methotrexate (MTX). MTX-PGA conjugates were controllably and simply fabricated by carbodiimide-mediated coupling reaction with various high molar ratios of MTX. The MTX-PGA conjugate self-assembled into nanoparticles with size dependent on the amount of conjugated MTX and the pH of medium. Change in particle size was attributed to steric hindrance and bulkiness inside the nanoparticle core and dissociation of free functional groups of the drug. The MTX-PGA nanoparticles were physically stable in media with pH range of 5-9 and ionic strength of up to 0.15 M NaCl and further chemically stable against hydrolysis in pH 7.4 medium over 30 days but enzymatically degradable to release unchanged free drug. Although 30%MTX-PGA nanoparticles exhibited only slightly less potency than free MTX in 791T cells in contrast to previously reported human serum albumin-MTX conjugates which had >300 times lower potency than free MTX. However, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells than MTX. Together with the enzymic degradation experiments, these results suggest that with a suitable biodegradable polymer a linker moiety is not a necessary component. These easily synthesised PGA drug conjugates lacking a linker moiety could therefore be an effective new pathway for development of polymer drug conjugates.
Collapse
Affiliation(s)
- Jiraphong Suksiriworapong
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| | - Vincenzo Taresco
- University of Nottingham, School of Pharmacy, University Park, Nottingham, NG7 2RD, UK
| | - Delyan P Ivanov
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ioanna D Styliari
- University of Nottingham, School of Pharmacy, University Park, Nottingham, NG7 2RD, UK
| | - Krisada Sakchaisri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Varaporn Buraphacheep Junyaprasert
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Martin C Garnett
- University of Nottingham, School of Pharmacy, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
38
|
Xie J, Fan Z, Li Y, Zhang Y, Yu F, Su G, Xie L, Hou Z. Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy. Int J Nanomedicine 2018; 13:1381-1398. [PMID: 29563794 PMCID: PMC5849920 DOI: 10.2147/ijn.s152312] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim We designed acid-labile methotrexate (MTX) targeting prodrug self-assembling nanoparticles loaded with curcumin (CUR) drug for simultaneous delivery of multi-chemotherapeutic drugs and combination cancer therapy. Methods A dual-acting MTX, acting as both an anticancer drug and as a tumor-targeting ligand, was coupled to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aldehyde(polyethylene glycol)-2000] via Schiff's base reaction. The synthesized prodrug conjugate (DSPE-PEG-Imine-MTX) could be self-assembled into micellar nanoparticles (MTX-Imine-M) in aqueous solution, which encapsulated CUR into their core by hydrophobic interactions (MTX-Imine-M-CUR). Results The prepared MTX-Imine-M-CUR nanoparticles were composed of an inner hydrophobic DSPE/CUR core and an outside hydrophilic bishydroxyl poly (ethyleneglycol) (PEG) shell with a self-targeting MTX prodrug corona. The imine linker between 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aldehyde(polyethyleneglycol)-2000] and MTX, as a dynamic covalent bond, was strong enough to remain intact in physiological pH, even though it is rapidly cleaved in acidic pH. The MTX-Imine-M-CUR could codeliver MTX and CUR selectively and efficiently into the cancer cells via folate receptor-mediated endocytosis followed by the rapid intracellular release of CUR and the active form of MTX via the acidity of endosomes/lysosomes. Moreover, the MTX-Imine-M-CUR resulted in significantly higher in vitro and in vivo anticancer activity than pH-insensitive DSPE-PEGAmide-MTX assembling nanoparticles loaded with CUR (MTX-Amide-M-CUR), MTX unconjugated DSPE-PEG assembling micellar nanoparticles loaded with CUR (M-CUR), combination of both free drugs, and individual free drugs. Conclusion The smart system provided a simple, yet feasible, drug delivery strategy for targeted combination chemotherapy.
Collapse
Affiliation(s)
- Jiajiang Xie
- Xiamen Xianyue Hospital, Xiamen, China.,Research Center of Biomedical Engineering of Xiamen, Key Laboratory of Biomedical Engineering of Fujian Province, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, China
| | - Zhongxiong Fan
- Research Center of Biomedical Engineering of Xiamen, Key Laboratory of Biomedical Engineering of Fujian Province, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, China
| | - Yang Li
- Research Center of Biomedical Engineering of Xiamen, Key Laboratory of Biomedical Engineering of Fujian Province, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, China
| | - Yinying Zhang
- Research Center of Biomedical Engineering of Xiamen, Key Laboratory of Biomedical Engineering of Fujian Province, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, China
| | - Fei Yu
- College of Medicals, Xiamen University, Xiamen, China
| | - Guanghao Su
- Children's Hospital of Soochow University, Suzhou, China
| | - Liya Xie
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhenqing Hou
- Research Center of Biomedical Engineering of Xiamen, Key Laboratory of Biomedical Engineering of Fujian Province, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, China
| |
Collapse
|
39
|
Alavi AS, Meshkini A. Fabrication of poly(ethylene glycol)-coated mesoporous nanocomposite ZnO@Fe2O3 for methotrexate delivery: An integrated nanoplatform for dual-mode cancer therapy. Eur J Pharm Sci 2018; 115:144-157. [DOI: 10.1016/j.ejps.2018.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
|
40
|
Li Y, Song L, Lin J, Ma J, Pan Z, Zhang Y, Su G, Ye S, Luo FH, Zhu X, Hou Z. Programmed Nanococktail Based on pH-Responsive Function Switch for Self-Synergistic Tumor-Targeting Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39127-39142. [PMID: 29039650 DOI: 10.1021/acsami.7b08218] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tumor-targeting combination chemotherapy is an important way to improve the therapeutic index and reduce the side effects as compared to traditional cancer treatments. However, one of the major challenges in surface functionalization of nanoparticle (NP) is accomplishing multiple purposes through one single ligand. Upon such consideration, methotrexate (MTX), an anticancer drug with a targeting moiety inspired by the similar structure of folate, could be used to covalently link with lipid-polymer conjugate (DSPE-PEG) via a pH-sensitive dynamic covalent imine (CH═N) bond to synthesize the acid-induced function "targeting-anticancer" switching DSPE-PEG-CH═N-MTX. We hypothesize that using this kind of MTX prodrug to functionalize NP's surface would be conductive to combine the early phase active targeting function and the late-phase anticancer function in one nanosystem. Herein, a nanococktail is programmed for codelivery of epirubicin (EPI) and MTX by co-self-assembly of acid-dissociated EPI-phospholipid (PC) complex and acid-cleavable DSPE-PEG-CH═N-MTX conjugate. The obtained nanococktail (MTX-PEG-EPI-PC NPs) could not only actively target folate receptors-overexpressing tumor cells but also respond to acidic endo/lysosomes for triggering the on-demand release of pharmaceutically active EPI/MTX. The intracellular drug distribution also demonstrated that the system could codeliver two drugs to individual target sites of action, inducing the significant synergistic anticancer efficiency based on different anticancer mechanisms. More importantly, the in vivo tumor accumulation and anticancer efficacy of MTX-PEG-EPI-PC NPs (via cleavable imine bond) were significantly enhanced as compared to the individual free drug, both free drugs, PEG-EPI-PC NPs, and MTX-PEG-EPI-PC NPs (via the uncleavable amide bond). This self-synergistic tumor-targeting therapy might represent a promising strategy for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, Peopel's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Guo Z, You L, Shi C, Song M, Gao M, Xu D, Peng C, Zhuang R, Liu T, Su X, Du J, Zhang X. Development of a New FR-Targeting Agent 99mTc-HYNFA with Improved Imaging Contrast and Comparison of Multimerization and/or PEGylation Strategies for Radio-Folate Modification. Mol Pharm 2017; 14:3780-3788. [PMID: 28969422 DOI: 10.1021/acs.molpharmaceut.7b00536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study aims to develop a new folate receptor (FR)-targeting agent for SPECT imaging with improved contrast and evaluate the modification strategies of multimerization and/or PEGylation in the development of new radio-folates. A series of novel folate derivatives have been synthesized and radiolabeled with 99mTc using tricine and TPPTS as coligands. To better investigate their pharmacokinetics, cell uptake, biodistribution, and microSPECT/CT imaging were evaluated. Four radioligands displayed high KB cell uptake after incubation for 2 and 4 h. Presaturated with excess folic acid (FA) resulted in a significant blocking effect in KB cells, indicating specificity of these radioligands toward FR. Biodistribution and microSPECT imaging studies in KB tumor-bearing mice showed that the folate conjugate 99mTc-HYNFA with poly(ethylene glycol) (PEG) and triazole linkage displayed the highest tumor uptake (16.30 ± 2.01 %ID/g at 2 h p.i. and 14.9 ± 0.62 %ID/g at 4 h p.i. in mice biodistribution) and best imaging contrast, indicating promising application prospect. More interestingly, the in vivo performance of this monomeric 99mTc-HYNFA was much better than that of FA multimers and non-PEGylated monomers, suggesting that multimerization may not be a feasible method for the design of radio-folates. PEG linkage rather than FA multimerization should be taken into consideration in the development of folate-based radiopharmaceuticals in the future.
Collapse
Affiliation(s)
- Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China.,Department of Isotope, China Institute of Atomic Energy , P.O. Box 2108, Beijing 102413, China
| | - Linyi You
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Manli Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China.,The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450000, China
| | - Mengna Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Ting Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Xinhui Su
- Zhongshan Hospital Affiliated of Xiamen University , Hubin South Road, Xiamen 361004, China
| | - Jin Du
- Department of Isotope, China Institute of Atomic Energy , P.O. Box 2108, Beijing 102413, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , 4221-116 Xiang'An South Road, Xiamen 361102, China
| |
Collapse
|
42
|
Li Y, Lin J, Ma J, Song L, Lin H, Tang B, Chen D, Su G, Ye S, Zhu X, Luo F, Hou Z. Methotrexate-Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34650-34665. [PMID: 28920426 DOI: 10.1021/acsami.7b10027] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
"All-in-one" carrier-free-based nano-multi-drug self-delivery system could combine triple advantages of small molecules, nanoscale characteristics, and synergistic combination therapy together. Researches have showed that dual-acting small-molecular methotrexate (MTX) could target and kill the folate-receptor-overexpressing cancer cells. Inspired by this mechanism, a novel collaborative early-phase tumor-selective targeting and late-phase synergistic anticancer approach was developed for the self-assembly of chemotherapeutic drug-drug conjugate, which showed various advantages of more simplicity, efficiency, and flexibility over the conventional approach based only on single or combination cancer chemotherapy. MTX and 10-hydroxyl camptothecin (CPT) were chosen to conjugate through ester linkage. Because of the amphiphilicity and ionicity, MTX-CPT conjugates as molecular building blocks could self-assemble into MTX-CPT nanoparticles (MTX-CPT NPs) in aqueous solution, thus notably improving the aqueous solubility of CPT and the membrane permeability of MTX. The MTX-CPT NPs with a precise drug-to-drug ratio showed pH-/esterase-responsive drug release, sequential function "Targeting-Anticancer" switch, and real-time monitoring fluorescence "Off-On" switch. By doping with a lipophilic near-infrared (NIR) cyanine dye (e.g., 1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, DiR), the prepared DiR-loaded MTX-CPT NPs acted as an effective probe for in vivo NIR fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging. Both in vitro and in vivo studies demonstrated that MTX-CPT NPs could specifically codeliver multidrug to different sites of action with distinct anticancer mechanisms to kill folate-receptor-overexpressing tumor cells in a synergistic way. This novel, simple, and highly convergent self-targeting nanomulti-drug codelivery system exhibited great potential in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bowen Tang
- College of Pharmacy, Western University of Health Science , Pomona, California 91766, United States
| | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, PR China
| | | | | | | | | |
Collapse
|
43
|
Meshkini A, Oveisi H. Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells. Colloids Surf B Biointerfaces 2017; 158:319-330. [DOI: 10.1016/j.colsurfb.2017.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 01/24/2023]
|
44
|
Song L, Pan Z, Zhang H, Li Y, Zhang Y, Lin J, Su G, Ye S, Xie L, Li Y, Hou Z. Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. J Mater Chem B 2017; 5:6835-6846. [PMID: 32264333 DOI: 10.1039/c7tb01548h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) functionalized with targeting ligands have shown promise, but are still limited by their nonspecific uptake by certain healthy tissues and cells that express low or even comparable levels of receptors. To increase their accumulation at tumor sites while decreasing the unintended toxicity, a possible solution is the involvement of two separate tumor-specific ligands in the localization. In this study, a dual tumor-targeting drug-loaded NP system was self-assembled by the amphiphilic conjugate of methotrexate-hyaluronic acid-octadecylamine (MTX-HA-OCA) with curcumin (CUR) encapsulated within the hydrophobic core (designated as MTX-HA-OCA/CUR NPs). The advantages of this nanosystem are that the anticancer drug MTX can be utilized as a tumor-targeting ligand toward folate receptors due to its structural similarity to folic acid (FA), and HA can serve as another tumor-targeting ligand toward CD44 receptors. The MTX-HA-OCA/CUR NPs are ∼70 nm in diameter and have sustained/controlled drug release behavior. An in vitro cellular uptake and competition inhibition study exhibited that MTX-HA-OCA/CUR NPs could significantly enhance the internalization efficiency in HeLa cells via folate/CD44 receptor-mediated endocytosis as compared to HA-OCA/CUR NPs. More importantly, the in vitro cytotoxicity of MTX-HA-OCA/CUR NPs was significantly enhanced as compared to those of the HA-OCA/CUR NPs, both free drugs, and individual free drug. Furthermore, the real-time in vivo and ex vivo fluorescence imaging of HeLa tumor-bearing mice showed that MTX-HA-OCA/CUR NPs could more efficiently enhance their accumulation and improve the penetration at the tumor site as compared to HA-OCA/CUR NPs. Therefore, these dually folate/CD44 receptor-targeted self-assembled HA NPs for the co-delivery of both anticancer drugs might provide a promising strategy for dual-targeted combination cancer therapy.
Collapse
Affiliation(s)
- Liang Song
- Key Laboratory of Biomedical Engineering of Fujian Province & Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Truebenbach I, Gorges J, Kuhn J, Kern S, Baratti E, Kazmaier U, Wagner E, Lächelt U. Sequence-Defined Oligoamide Drug Conjugates of Pretubulysin and Methotrexate for Folate Receptor Targeted Cancer Therapy. Macromol Biosci 2017; 17. [PMID: 28371444 DOI: 10.1002/mabi.201600520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/14/2017] [Indexed: 01/23/2023]
Abstract
The conjugation of small molecule drugs to ligand containing carrier systems facilitates receptor targeted delivery. The folate receptor (FR) constitutes an ideal target for tumor selective therapy, being overexpressed on several tumor types. It can be targeted using the vitamin folic acid (FolA) or the structurally related drug methotrexate (MTX). Several sequence-defined oligoamides with mono- and multivalent FolA or MTX ligands and an additional thiol conjugation site are synthesized via solid-phase assisted synthesis. Their structure activity relationships are assessed in respect to dihydrofolate reductase inhibition, receptor mediated endocytosis, and cytotoxicity. Then, the tubulin-binding agent pretubulysin (PT), a highly potent drug exhibiting antitumoral, antiangiogenic, and antimetastatic properties, is conjugated via an activated mercaptane derivative to the set of FR-targeting oligoamides. In a combined PT/MTX cytotoxicity study in FR-overexpressing KB and L1210 cells, a 2-arm MTX-PT construct or the 4-arm analog displays the highest potency in the respective cell lines.
Collapse
Affiliation(s)
- Ines Truebenbach
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Jan Gorges
- Institute of Organic Chemistry, Saarland University, P. O. Box 151150, 66041, Saarbrücken, Germany
| | - Jasmin Kuhn
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Sarah Kern
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Emanuele Baratti
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, P. O. Box 151150, 66041, Saarbrücken, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| |
Collapse
|
46
|
El Brahmi N, El Kazzouli S, Mignani S, Laurent R, Ladeira S, Caminade AM, Bousmina M, Majoral JP. Symmetrical and unsymmetrical incorporation of active biological monomers on the surface of phosphorus dendrimers. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Zhang L, Wang Y, Zhang X, Wei X, Xiong X, Zhou S. Enzyme and Redox Dual-Triggered Intracellular Release from Actively Targeted Polymeric Micelles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3388-3399. [PMID: 28071889 DOI: 10.1021/acsami.6b14078] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Highly effective delivery of therapeutic agents into target cells using nanocarriers and subsequently rapid intracellular release are of great importance in cancer treatment. Here, we developed an enzyme and redox dual-responsive polymeric micelle with active targeting abilities to achieve rapid intracellular drug release. To overcome both its poor solubility in water and instability in the blood circulation, camptothecin (CPT) was chemically conjugated to monomethyl poly(ethylene glycol) (mPEG) via a redox-responsive linker to form polymeric prodrugs. The enzyme-responsive function is achieved by connecting hydrophobic polycaprolactone segments and hydrophilic PEG segments with azo bonds. Additionally, the end of the PEG segment was decorated with phenylboronic acid (PBA), endowing the nanocarriers with active targeting abilities. The dual-responsive targeting polymeric micelles can be generated by self-assembly of a mixture of the polymeric prodrug and enzyme-responsive copolymer. The in vitro drug release profile revealed that CPT was rapidly released from the micelles under a simulated condition similar to the tumor cell microenvironment. In vivo and ex vivo fluorescence imaging indicated that these micelles possess excellent specificity to target hepatoma carcinoma cells. The antitumor effect in mice liver cancer cells (H22) in tumor-bearing Kunming (KM) mice demonstrated that this nanocarrier exhibits high therapeutic efficiency in artificial solid tumors and low toxicity to normal tissues, with a survival rate of approximately 100% after 160 days of treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Xiaobin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Xiang Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| |
Collapse
|
48
|
Mahmoodi NO, Ghavidast A, Amirmahani N. A comparative study on the nanoparticles for improved drug delivery systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:681-693. [DOI: 10.1016/j.jphotobiol.2016.07.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022]
|
49
|
Bai Y, Nguyen L, Song Z, Peng S, Lee J, Zheng N, Kapoor I, Hagler LD, Cai K, Cheng J, Chan HYE, Zimmerman SC. Integrating Display and Delivery Functionality with a Cell Penetrating Peptide Mimic as a Scaffold for Intracellular Multivalent Multitargeting. J Am Chem Soc 2016; 138:9498-507. [DOI: 10.1021/jacs.6b03697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Shaohong Peng
- Laboratory
of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | | - H. Y. Edwin Chan
- Laboratory
of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China
| | | |
Collapse
|
50
|
Zhao Y, Guo Y, Li R, Wang T, Han M, Zhu C, Wang X. Methotrexate Nanoparticles Prepared with Codendrimer from Polyamidoamine (PAMAM) and Oligoethylene Glycols (OEG) Dendrons: Antitumor Efficacy in Vitro and in Vivo. Sci Rep 2016; 6:28983. [PMID: 27388443 PMCID: PMC4937365 DOI: 10.1038/srep28983] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PGD NPs possessed spherical morphology, nanoscaled particle size (approximately 182.4 nm), and narrow particle size distribution. Release of MTX from MTX/PGD NPs showed a sustained release manner and completed within 48 h. Hemolytic evaluation indicated MTX/PGD NPs presented good blood compatibility, and the cytotoxicity of nanoparticles against breast cancer cells in vitro, biodistribution in tumor tissue, and antitumor efficacy in vivo were enhanced significantly compared to MTX injection. According to the higher drug-loading content, enhanced antitumor efficacy, and appropriate particle size, MTX/PGD NPs as the drug delivery systems could have potential application for cancer chemotherapy in clinic.
Collapse
Affiliation(s)
- Yanna Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ran Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| | - Ting Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chunyan Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|