1
|
Martinez A, Lamaizon CM, Valls C, Llambi F, Leal N, Fitzgerald P, Guy C, Kamiński MM, Inestrosa NC, van Zundert B, Cancino GI, Dulcey AE, Zanlungo S, Marugan JJ, Hetz C, Green DR, Alvarez AR. c-Abl Phosphorylates MFN2 to Regulate Mitochondrial Morphology in Cells under Endoplasmic Reticulum and Oxidative Stress, Impacting Cell Survival and Neurodegeneration. Antioxidants (Basel) 2023; 12:2007. [PMID: 38001860 PMCID: PMC10669615 DOI: 10.3390/antiox12112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The endoplasmic reticulum is a subcellular organelle key in the control of synthesis, folding, and sorting of proteins. Under endoplasmic reticulum stress, an adaptative unfolded protein response is activated; however, if this activation is prolonged, cells can undergo cell death, in part due to oxidative stress and mitochondrial fragmentation. Here, we report that endoplasmic reticulum stress activates c-Abl tyrosine kinase, inducing its translocation to mitochondria. We found that endoplasmic reticulum stress-activated c-Abl interacts with and phosphorylates the mitochondrial fusion protein MFN2, resulting in mitochondrial fragmentation and apoptosis. Moreover, the pharmacological or genetic inhibition of c-Abl prevents MFN2 phosphorylation, mitochondrial fragmentation, and apoptosis in cells under endoplasmic reticulum stress. Finally, in the amyotrophic lateral sclerosis mouse model, where endoplasmic reticulum and oxidative stress has been linked to neuronal cell death, we demonstrated that the administration of c-Abl inhibitor neurotinib delays the onset of symptoms. Our results uncovered a function of c-Abl in the crosstalk between endoplasmic reticulum stress and mitochondrial dynamics via MFN2 phosphorylation.
Collapse
Affiliation(s)
- Alexis Martinez
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Basal Center for Aging and Regeneration, Pontificia Universidad Católica de Chile (CARE UC), Santiago 8331150, Chile
| | - Cristian M. Lamaizon
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cristian Valls
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Fabien Llambi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Nancy Leal
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Marcin M. Kamiński
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Nibaldo C. Inestrosa
- Basal Center for Aging and Regeneration, Pontificia Universidad Católica de Chile (CARE UC), Santiago 8331150, Chile
- Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas 6210427, Chile
| | - Brigitte van Zundert
- Basal Center for Aging and Regeneration, Pontificia Universidad Católica de Chile (CARE UC), Santiago 8331150, Chile
- Institute of Biomedical Sciences, Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA 01655, USA
| | - Gonzalo I. Cancino
- Laboratory of Neurobiology, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Andrés E. Dulcey
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Juan J. Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8330015, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8330015, Chile
- The Buck Institute for Research in Aging, Novato, CA 94945, USA
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alejandra R. Alvarez
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Basal Center for Aging and Regeneration, Pontificia Universidad Católica de Chile (CARE UC), Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
2
|
Lu P, Vander Mause ER, Redd Bowman KE, Brown SM, Ahne L, Lim CS. Mitochondrially targeted p53 or DBD subdomain is superior to wild type p53 in ovarian cancer cells even with strong dominant negative mutant p53. J Ovarian Res 2019; 12:45. [PMID: 31092272 PMCID: PMC6521536 DOI: 10.1186/s13048-019-0516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Background While tumor suppressor p53 functions primarily as a transcription factor in the nucleus, cellular stress can cause p53 to translocate to the mitochondria and directly trigger a rapid apoptotic response. We have previously shown that fusing p53 (or its DNA binding domain, DBD, alone) to the mitochondrial targeting signal (MTS) from Bak or Bax can target p53 to the mitochondria and induce apoptosis in gynecological cancer cell lines including cervical cancer cells (HeLa; wt p53), ovarian cancer cells (SKOV-3; p53 267del non-expressing), and breast cancer cells (T47D; L194F p53 mutation). However, p53 with Bak or Bax MTSs have not been previously tested in cancers with strong dominant negative (DN) mutant p53 which are capable of inactivating wt p53 by homo-oligomerization. Since p53-Bak or Bax MTS constructs act as monomers, they are not subject to DN inhibition. For this study, the utility of p53-Bak or p53-Bax MTS constructs was tested for ovarian cancers which are known to have varying p53 statuses, including a strong DN contact mutant p53 (Ovcar-3 cells), a p53 DN structural mutant (Kuramochi cells), and a p53 wild type, low expressing cells (ID8). Results Our mitochondrial p53 constructs were tested for their ability to localize to the mitochondria in both mutant non-expressing p53 (Skov-3) and p53 structural mutant (Kuramochi) cell lines using fluorescence microscopy and a nuclear transcriptional activity assay. The apoptotic activity of these mitochondrial constructs was determined using a mitochondrial outer membrane depolarization assay (TMRE), caspase assay, and a late stage cell death assay (7-AAD). We also tested the possibility of using our constructs with paclitaxel, the current standard of care in ovarian cancer treatment. Our data indicates that our mitochondrial p53 constructs are able to effectively localize to the mitochondria in cancer cells with structural mutant p53 and induce apoptosis in many ovarian cancer cell lines with different p53 statuses. These constructs can also be used in combination with paclitaxel for an increased apoptotic effect. Conclusions The results suggest that targeting p53 to mitochondria can be a new strategy for ovarian cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13048-019-0516-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Erica R Vander Mause
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Katherine E Redd Bowman
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Sarah M Brown
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Lisa Ahne
- Philipps-Universitat Marburg, Biegenstraße 10, Marburg, 35037, Germany
| | - Carol S Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
Keshavarz-Pakseresht B, Shandiz SAS, Baghbani-Arani F. Imatinib induces up-regulation of NM23, a metastasis suppressor gene, in human Hepatocarcinoma (HepG2) Cell Line. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:29-33. [PMID: 28331561 DOI: 10.22037/ghfbb.v0i0.940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
AIM The present study investigated the anti-tumor activity of Imatinib mesylate through modulation of NM23 gene expression in human hepatocellular carcinoma (HepG2) cell line. BACKGROUND Hepatocellular carcinoma (HCC) is considered to be the third leading cause of cancer related death worldwide. Down regulation of NM23, a metastasis suppressor gene, has been associated with several types of malignant cancer. Recently, effects of Imatinib mesylate, a first member of tyrosine kinases inhibitors, were indicated in research and treatment of different malignant tumors. METHODS Cell viability was quantitated by MTT assay after HepG2 cells exposure to Imatinib mesylate at various concentrations of 0, 1.56, 3.125, 6.25, 12.5, 25,50μM for 24 hours. Also, quantitative real time PCR technique was applied for the detection of NM23 gene expression in HepG2 cell line. RESULTS There was a dose dependent increase in the cytotoxicity effect of imatinib. The real time PCR results demonstrated that inhibitory effect of Imatinib mesylate on viability via up regulation of NM23 gene expression compared to GAPDH gene (internal control gene) in cancer cells. CONCLUSION According to our findings, imatinib can modulate metastasis by enhancing Nm23 gene expression in human hepatocellular carcinoma (HepG2) cell line.
Collapse
Affiliation(s)
- Behta Keshavarz-Pakseresht
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | | | - Fahimeh Baghbani-Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
4
|
Shandiz SAS, Farasati S, Saeedi B, Baghbani-Arani F, Asl EA, Keshavarz-Pakseresht B, Rahimi A, Assadi A, Noorbazargan H, Hesari MR, Mirzaie A. Up regulation of KAI1 gene expression and apoptosis effect of imatinib mesylate in gastric adenocarcinoma (AGS) cell line. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60996-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Shandiz SAS, Khosravani M, Mohammadi S, Noorbazargan H, Mirzaie A, Inanlou DN, Jalali MD, Jouzaghkar H, Baghbani-Arani F, Keshavarz-Pakseresht B. Evaluation of imatinib mesylate (Gleevec) on KAI1/CD82 gene expression in breast cancer MCF-7 cells using quantitative real-time PCR. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Lu P, Bruno BJ, Rabenau M, Lim CS. Delivery of drugs and macromolecules to the mitochondria for cancer therapy. J Control Release 2015; 240:38-51. [PMID: 26482081 DOI: 10.1016/j.jconrel.2015.10.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022]
Abstract
Mitochondria are organelles that have pivotal functions in producing the energy necessary for life and executing the cell death pathway. Targeting drugs and macromolecules to the mitochondria may provide an effective means of inducing cell death for cancer therapy, and has been actively pursued in the last decade. This review will provide a brief overview of mitochondrial structure and function, how it relates to cancer, and importantly, will discuss different strategies of mitochondrial delivery including delivery using small molecules, peptides, genes encoding proteins and MTSs, and targeting polymers/nanoparticles with payloads to the mitochondria. The advantages and disadvantages for each strategy will be discussed. Specific examples using the latest strategies for mitochondrial targeting will be evaluated, as well as potential opportunities for specific mitochondrial compartment localization, which may lead to improvements in mitochondrial therapeutics. Future perspectives in mitochondrial targeting of drugs and macromolecules will be discussed. Currently this is an under-explored area that is prime for new discoveries in cancer therapeutics.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin J Bruno
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA
| | - Malena Rabenau
- Department of Pharmaceutics and Biopharmacy, Phillips-Universität, 35037 Marburg, Germany
| | - Carol S Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Schmitt C, Sako N, Bagot M, Bensussan A. Lack of evidence that HACE1 is not a tumor suppressor gene in NKTCL: to the editor-in-chief. Authors' reply. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1168. [PMID: 25794711 DOI: 10.1016/j.ajpath.2015.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Christian Schmitt
- INSERM, U976, Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 976, Paris, France
| | - Nouhoum Sako
- INSERM, U976, Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 976, Paris, France
| | - Martine Bagot
- INSERM, U976, Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 976, Paris, France; AP-HP, Department of Dermatology, Hop Saint-Louis, Paris, France
| | - Armand Bensussan
- INSERM, U976, Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 976, Paris, France
| |
Collapse
|
8
|
Matissek KJ, Okal A, Mossalam M, Lim CS. Delivery of a monomeric p53 subdomain with mitochondrial targeting signals from pro-apoptotic Bak or Bax. Pharm Res 2014; 31:2503-15. [PMID: 24633417 DOI: 10.1007/s11095-014-1346-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/24/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE p53 targeted to the mitochondria is the fastest and most direct pathway for executing p53 death signaling. The purpose of this work was to determine if mitochondrial targeting signals (MTSs) from pro-apoptotic Bak and Bax are capable of targeting p53 to the mitochondria and inducing rapid apoptosis. METHODS p53 and its DNA-binding domain (DBD) were fused to MTSs from Bak (p53-BakMTS, DBD-BakMTS) or Bax (p53-BaxMTS, DBD-BaxMTS). Mitochondrial localization was tested via fluorescence microscopy in 1471.1 cells, and apoptosis was detected via 7-AAD in breast (T47D), non-small cell lung (H1373), ovarian (SKOV-3) and cervical (HeLa) cancer cells. To determine that apoptosis is via the intrinsic apoptotic pathway, TMRE and caspase-9 assays were conducted. Finally, the involvement of p53/Bak specific pathway was tested. RESULTS MTSs from Bak and Bax are capable of targeting p53 to the mitochondria, and p53-BakMTS and p53-BaxMTS cause apoptosis through the intrinsic apoptotic pathway. Additionally, p53-BakMTS, DBD-BakMTS, p53-BaxMTS and DBD-BaxMTS caused apoptosis in T47D, H1373, SKOV-3 and HeLa cells. The apoptotic mechanism of p53-BakMTS and DBD-BakMTS was Bak dependent. CONCLUSION Our data demonstrates that p53-BakMTS (or BaxMTS) and DBD-BakMTS (or BaxMTS) cause apoptosis at the mitochondria and can be used as a potential gene therapeutic in cancer.
Collapse
Affiliation(s)
- Karina J Matissek
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
9
|
Therapy of chronic myeloid leukemia: twilight of the imatinib era? ISRN ONCOLOGY 2014; 2014:596483. [PMID: 24634785 PMCID: PMC3929284 DOI: 10.1155/2014/596483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022]
Abstract
Chronic myeloid leukemia (CML) results from the clonal expansion of pluripotent hematopoietic stem cells containing the active BCR/ABL fusion gene produced by a reciprocal translocation of the ABL1 gene to the BCR gene. The BCR/ABL protein displays a constitutive tyrosine kinase activity and confers on leukemic cells growth and proliferation advantage and resistance to apoptosis. Introduction of imatinib (IM) and other tyrosine kinase inhibitors (TKIs) has radically improved the outcome of patients with CML and some other diseases with BCR/ABL expression. However, a fraction of CML patients presents with resistance to this drug. Regardless of clinical profits of IM, there are several drawbacks associated with its use, including lack of eradication of the malignant clone and increasing relapse rate resulting from long-term therapy, resistance, and intolerance. Second and third generations of TKIs have been developed to break IM resistance. Clinical studies revealed that the introduction of second-generation TKIs has improved the overall survival of CML patients; however, some with specific mutations such as T315I remain resistant. Second-generation TKIs may completely replace imatinib in perspective CML therapy, and addition of third-generation inhibitors may overcome resistance induced by every form of point mutations.
Collapse
|
10
|
Matissek KJ, Mossalam M, Okal A, Lim CS. The DNA Binding Domain of p53 Is Sufficient To Trigger a Potent Apoptotic Response at the Mitochondria. Mol Pharm 2013; 10:3592-602. [DOI: 10.1021/mp400380s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karina J. Matissek
- Department
of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Utah 84112, United States
- Department
of Pharmaceutics and Biopharmacy, Philipps-Universität, D-35032 Marburg, Germany
| | - Mohanad Mossalam
- Department
of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Utah 84112, United States
| | - Abood Okal
- Department
of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Utah 84112, United States
| | - Carol S. Lim
- Department
of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Utah 84112, United States
| |
Collapse
|
11
|
Zhang M, Liu H, Chen L, Yan M, Ge L, Ge S, Yu J. A disposable electrochemiluminescence device for ultrasensitive monitoring of K562 leukemia cells based on aptamers and ZnO@carbon quantum dots. Biosens Bioelectron 2013; 49:79-85. [PMID: 23722045 DOI: 10.1016/j.bios.2013.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 01/26/2023]
Abstract
We developed a new electrochemiluminescence (ECL) platform for ultrasensitive and selective detection of leukemia cells. In order to construct the platform, the nonporous gold with controllable three-dimensional porosity and good conductivity was used to modify the screen-printed carbon electrode. The carbon quantum dots (CQDs) coated ZnO nanosphere (ZnO@CQDs) were used as good ECL label with low cytotoxicity and good biocompatibility. Structure characterization was obtained by means of transmission electron microscopy and scanning electron microscopy images. The aptamer was used for cell capture and the concanavalin A conjugated ZnO@CQDs was used for selective recognition of the cell surface carbohydrate. The proposed method showed a good analytical performance for the detection of K562 cells ranging from 1.0 × 10(2) to 2.0 × 10(7) cells mL(-1) with a detection limit of 46 cells mL(-1). The as-proposed device has the advantages of high sensitivity, nice specificity and good stability and could offer great promise for sensitive detection of leukemia cells in response to therapy.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | | | | | | | | | | | | |
Collapse
|