1
|
Tseng YH, Lin HP, Lin SY, Chen BM, Vo TNN, Yang SH, Lin YC, Prijovic Z, Czosseck A, Leu YL, Roffler SR. Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs. J Control Release 2024; 369:179-198. [PMID: 38368947 DOI: 10.1016/j.jconrel.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Engineering human enzymes for therapeutic applications is attractive but introducing new amino acids may adversely affect enzyme stability and immunogenicity. Here we used a mammalian membrane-tethered screening system (ECSTASY) to evolve human lysosomal beta-glucuronidase (hBG) to hydrolyze a glucuronide metabolite (SN-38G) of the anticancer drug irinotecan (CPT-11). Three human beta-glucuronidase variants (hBG3, hBG10 and hBG19) with 3, 10 and 19 amino acid substitutions were identified that display up to 40-fold enhanced enzymatic activity, higher stability than E. coli beta-glucuronidase in human serum, and similar pharmacokinetics in mice as wild-type hBG. The hBG variants were two to three orders of magnitude less immunogenic than E. coli beta-glucuronidase in hBG transgenic mice. Intravenous administration of an immunoenzyme (hcc49-hBG10) targeting a sialyl-Tn tumor-associated antigen to mice bearing human colon xenografts significantly enhanced the anticancer activity of CPT-11 as measured by tumor suppression and mouse survival. Our results suggest that genetically-modified human enzymes represent a good alternative to microbially-derived enzymes for therapeutic applications.
Collapse
Affiliation(s)
- Yi-Han Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Pei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sung-Yao Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | - Shih-Hung Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Zeljko Prijovic
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11001, Serbia
| | - Andreas Czosseck
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Martin H, Lázaro LR, Gunnlaugsson T, Scanlan EM. Glycosidase activated prodrugs for targeted cancer therapy. Chem Soc Rev 2022; 51:9694-9716. [DOI: 10.1039/d2cs00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this review glycosidase activated prodrugs that target cancer cells are discussed.
Collapse
Affiliation(s)
- Harlei Martin
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Laura Ramírez Lázaro
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| |
Collapse
|
3
|
Jukes Z, Morais GR, Loadman PM, Pors K. How can the potential of the duocarmycins be unlocked for cancer therapy? Drug Discov Today 2020; 26:577-584. [PMID: 33232841 DOI: 10.1016/j.drudis.2020.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022]
Abstract
The duocarmycins belong to a class of agent that has fascinated scientists for over four decades. Their exquisite potency, unique mechanism of action, and efficacy in multidrug-resistant tumour models makes them attractive to medicinal chemists and drug hunters. However, despite great advances in fine-tuning biological activity through structure-activity relationship studies (SARS), no duocarmycin-based therapeutic has reached clinical approval. In this review, we provide an overview of the most promising strategies currently used and include both tumour-targeted prodrug approaches and antibody-directed technologies.
Collapse
Affiliation(s)
- Zoë Jukes
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
4
|
Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses 2020; 141:109723. [DOI: 10.1016/j.mehy.2020.109723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023]
|
5
|
Ryan AT, Pulukuri AJ, Davaritouchaee M, Abbasi A, Hendricksen AT, Opp LK, Burt AJ, Nielsen AE, Mancini RJ. Comparing the immunogenicity of glycosidase-directed resiquimod prodrugs mediated by cancer cell metabolism. Acta Pharmacol Sin 2020; 41:995-1004. [PMID: 32451412 PMCID: PMC7470892 DOI: 10.1038/s41401-020-0432-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
We have recently developed an enzyme-directed immunostimulant (EDI) prodrug motif, which is metabolized to active immunostimulant by cancer cells and, following drug efflux, activates nearby immune cells, resulting in immunogenicity. In this study, we synthesized several EDI prodrugs featuring an imidazoquinoline immunostimulant resiquimod (a Toll-like receptor 7/8 agonist) covalently modified with glycosidase enzyme-directing groups selected from substrates of β-glucuronidase, α-mannosidase, or β-galactosidase. We compared the glycosidase-dependent immunogenicity elicited by each EDI in RAW-Blue macrophages following conversion to active immunostimulant by complementary glycosidase. At a cellular level, we examined EDI metabolism across three cancer cell lines (B16 melanoma, TC2 prostate, and 4T1 breast cancer). Comparing the relative immunogenicity elicited by each EDI/cancer cell combination, we found that B16 cells produced the highest EDI prodrug immunogenicity, achieving >95% of that elicited by unmodified resiquimod, followed by TC2 and 4T1 cells (40% and 30%, respectively). Immunogenicity elicited was comparable for a given cell type and independent of the glycosidase substrate in the EDIs or differences in functional glycosidase activity between cell lines. Measuring drug efflux of the immunostimulant payload and efflux protein expression revealed that EDI/cancer cell-mediated immunogenicity was governed by efflux potential of the cancer cells. We determined that, following EDI conversion, immunostimulant efflux occurred through both P-glycoprotein-dependent and P-glycoprotein-independent transport mechanisms. Overall, this study highlights the broad ability of EDIs to couple immunogenicity to the metabolism of many cancers that exhibit drug efflux and suggests that designing future generations of EDIs with immunostimulant payloads that are optimized for drug efflux could be particularly beneficial.
Collapse
|
6
|
López Rivas P, Müller C, Breunig C, Hechler T, Pahl A, Arosio D, Belvisi L, Pignataro L, Dal Corso A, Gennari C. β-Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Org Biomol Chem 2020; 17:4705-4710. [PMID: 31020985 DOI: 10.1039/c9ob00617f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A non-internalizing αvβ3 integrin ligand was conjugated to the anticancer drug MMAE through a β-glucuronidase-responsive linker. In the presence of β-glucuronidase, only the conjugate bearing a PEG4 spacer inhibited the proliferation of integrin-expressing cancer cells at low nanomolar concentrations, indicating important structural requirements for the efficacy of these therapeutics.
Collapse
Affiliation(s)
- Paula López Rivas
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi, 19 I-20133, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Synthesis and evaluation of pyrrolobenzodiazepine dimer antibody-drug conjugates with dual β-glucuronide and dipeptide triggers. Eur J Med Chem 2019; 179:591-607. [DOI: 10.1016/j.ejmech.2019.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
|
8
|
De Ford C, Penchalaiah K, Kreft A, Humar M, Heydenreuter W, Kangani M, Sieber SA, Tietze LF, Merfort I. Bifunctional Duocarmycin Analogues as Inhibitors of Protein Tyrosine Kinases. JOURNAL OF NATURAL PRODUCTS 2019; 82:16-26. [PMID: 30620194 DOI: 10.1021/acs.jnatprod.8b00233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bifunctional duocarmycin analogues are highly cytotoxic compounds that have been shown to be irreversible aldehyde dehydrogenase 1 inhibitors. Interestingly, cells with low aldehyde dehydrogenase 1 expression are also sensitive to bifunctional duocarmycin analogues, suggesting the existence of another target. Through in silico approaches, including principal component analysis, structure-similarity search, and docking calculations, protein tyrosine kinases, and especially the vascular endothelial growth factor receptor 2 (VEGFR-2), were predicted as targets of bifunctional duocarmycin analogues. Biochemical validation was performed in vitro, confirming the in silico results. Structural optimization was performed to mainly target VEGFR-2, but not aldehyde dehydrogenase 1. The optimized bifunctional duocarmycin analogue was synthesized. In vitro assays revealed this bifunctional duocarmycin analogue as a strong inhibitor of VEGFR-2, with low residual aldehyde dehydrogenase 1 activity. Altogether, studies revealed bifunctional duocarmycin analogues as a new class of naturally derived compounds that express a very high cytotoxicity to cancer cells overexpressing aldehyde dehydrogenase 1 as well as VEGFR-2.
Collapse
Affiliation(s)
- Christian De Ford
- Department of Pharmaceutical Biology and Biotechnology , Albert Ludwigs University Freiburg , Stefan-Meier-Strasse 19 , D-79104 Freiburg , Germany
- Spemann Graduate School of Biology and Medicine (SGBM) , Albert Ludwigs University Freiburg , Albertstrasse 19a , 79104 Freiburg , Germany
| | - Kamala Penchalaiah
- Institute of Organic and Biomolecular Chemistry , Georg-August University , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Alexander Kreft
- Institute of Organic and Biomolecular Chemistry , Georg-August University , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Matjaz Humar
- Department of Pharmaceutical Biology and Biotechnology , Albert Ludwigs University Freiburg , Stefan-Meier-Strasse 19 , D-79104 Freiburg , Germany
| | - Wolfgang Heydenreuter
- Institute of Organic Chemistry II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Mehrnoush Kangani
- Institute of Organic and Biomolecular Chemistry , Georg-August University , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Stephan A Sieber
- Institute of Organic Chemistry II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Lutz F Tietze
- Institute of Organic and Biomolecular Chemistry , Georg-August University , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology , Albert Ludwigs University Freiburg , Stefan-Meier-Strasse 19 , D-79104 Freiburg , Germany
- Spemann Graduate School of Biology and Medicine (SGBM) , Albert Ludwigs University Freiburg , Albertstrasse 19a , 79104 Freiburg , Germany
| |
Collapse
|
9
|
Burnouf PA, Leu YL, Su YC, Wu K, Lin WC, Roffler SR. Reversible glycosidic switch for secure delivery of molecular nanocargos. Nat Commun 2018; 9:1843. [PMID: 29748577 PMCID: PMC5945669 DOI: 10.1038/s41467-018-04225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Therapeutic drugs can leak from nanocarriers before reaching their cellular targets. Here we describe the concept of a chemical switch which responds to environmental conditions to alternate between a lipid-soluble state for efficient cargo loading and a water-soluble state for stable retention of cargos inside liposomes. A cue-responsive trigger allows release of the molecular cargo at specific cellular sites. We demonstrate the utility of a specific glycosidic switch for encapsulation of potent anticancer drugs and fluorescent compounds. Stable retention of drugs in liposomes allowed generation of high tumor/blood ratios of parental drug in tumors after enzymatic hydrolysis of the glycosidic switch in the lysosomes of cancer cells. Glycosidic switch liposomes could cure mice bearing human breast cancer tumors without significant weight loss. The chemical switch represents a general method to load and retain cargos inside liposomes, thereby offering new perspectives in engineering safe and effective liposomes for therapy and imaging. Retention of drugs loaded into liposomes is a major challenge to effective targeted drug delivery. Here, the authors report on the modification of drugs with a glycosidic pH sensitive switch to improve encapsulation and retention of drugs and demonstrate application in an in vivo cancer model.
Collapse
Affiliation(s)
- Pierre-Alain Burnouf
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Yu-Cheng Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kenneth Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Chi Lin
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
10
|
Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017; 142:393-415. [DOI: 10.1016/j.ejmech.2017.08.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
|
11
|
Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev 2017; 118:65-77. [PMID: 28676386 DOI: 10.1016/j.addr.2017.06.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Prodrugs are cunning derivatives of therapeutic agents designed to improve the pharmacokinetics profile of the drug. Within a prodrug, pharmacological activity of the drug is masked and is recovered within the human body upon bioconversion of the prodrug, a process that is typically mediated by enzymes. This concept is highly successful and a significant fraction of marketed therapeutic formulations is based on prodrugs. An advanced subset of prodrugs can be engineered such as to achieve site-specific bioconversion of the prodrug - to comprise the highly advantageous "enzyme prodrug therapy", EPT. Design of prodrugs for EPT is similar to the prodrugs in general medicinal use in that the pharmacological activity of the drug is masked, but differs significantly in that site-specific bioconversion is a prime consideration, and the enzymes typically used for EPT are non-mammalian and/or with low systemic abundance in the human body. This review focuses on the design of prodrugs for EPT in terms of the choice of an enzyme and the corresponding prodrug for bioconversion. We also discuss the recent success of "self immolative linkers" which significantly empower and diversify the prodrug design, and present methodologies for the design of prodrugs with extended blood residence time. The review aims to be of specific interest for medicinal chemists, biomedical engineers, and pharmaceutical scientists.
Collapse
|
12
|
Sharma SK, Bagshawe KD. Antibody Directed Enzyme Prodrug Therapy (ADEPT): Trials and tribulations. Adv Drug Deliv Rev 2017; 118:2-7. [PMID: 28916498 DOI: 10.1016/j.addr.2017.09.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
Abstract
Antibody directed enzyme prodrug therapy has the potential to be an effective therapy for most common solid cancers. Clinical studies with CPG2 system have shown the feasibility of this approach. The key limitation has been immunogenicity of the enzyme. Technologies now exist to eliminate this problem. Non-immunogenic enzymes in combination with prodrugs that generate potent cytotoxic drugs can provide a powerful approach to cancer therapy. ADEPT has the potential to be non -toxic to normal tissue and can therefore be combined with other modalities including immunotherapy for greater clinical benefit.
Collapse
|
13
|
Renoux B, Raes F, Legigan T, Péraudeau E, Eddhif B, Poinot P, Tranoy-Opalinski I, Alsarraf J, Koniev O, Kolodych S, Lerondel S, Le Pape A, Clarhaut J, Papot S. Targeting the tumour microenvironment with an enzyme-responsive drug delivery system for the efficient therapy of breast and pancreatic cancers. Chem Sci 2017; 8:3427-3433. [PMID: 28507714 PMCID: PMC5417048 DOI: 10.1039/c7sc00472a] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
The development of novel therapeutic strategies allowing the destruction of tumour cells while sparing healthy tissues is one of the main challenges of cancer chemotherapy. Here, we report on the design and antitumour activity of a low-molecular-weight drug delivery system programmed for the selective release of the potent monomethylauristatin E in the tumour microenvironment of solid tumours. After intravenous administration, this compound binds covalently to plasmatic albumin through Michael addition, thereby enabling its passive accumulation in tumours where extracellular β-glucuronidase initiates the selective release of the drug. This targeting device produces outstanding therapeutic efficacy on orthotopic triple-negative mammary and pancreatic tumours in mice (50% and 33% of mice with the respective tumours cured), leading to impressive reduction or even disappearance of tumours without inducing side effects.
Collapse
Affiliation(s)
- Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS , Groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| | - Florian Raes
- UPS no. 44 PHENOMIN TAAM-CIPA , CNRS , 3B rue de la Férollerie , F-45071 Orléans , France
| | - Thibaut Legigan
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS , Groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| | - Elodie Péraudeau
- Université de Poitiers , CNRS , ERL 7368, 1 rue Georges Bonnet, TSA 51106 , F-86073 Poitiers , France
- CHU de Poitiers , 2 rue de la Miléterie, CS 90577 , F-86021 Poitiers , France
| | - Balkis Eddhif
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS , Equipe Eau, Géochimie Organique, Santé (EGS), 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France
| | - Pauline Poinot
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS , Equipe Eau, Géochimie Organique, Santé (EGS), 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France
| | - Isabelle Tranoy-Opalinski
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS , Groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| | - Jérôme Alsarraf
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS , Groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| | - Oleksandr Koniev
- Syndivia SAS , 650 Bd Gonthier d'Andernach , 67400 Illkirch , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Bd Gonthier d'Andernach , 67400 Illkirch , France
| | - Stéphanie Lerondel
- UPS no. 44 PHENOMIN TAAM-CIPA , CNRS , 3B rue de la Férollerie , F-45071 Orléans , France
| | - Alain Le Pape
- UPS no. 44 PHENOMIN TAAM-CIPA , CNRS , 3B rue de la Férollerie , F-45071 Orléans , France
| | - Jonathan Clarhaut
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS , Groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
- CHU de Poitiers , 2 rue de la Miléterie, CS 90577 , F-86021 Poitiers , France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS , Groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| |
Collapse
|
14
|
Guillen KP, Ruben EA, Virani N, Harrison RG. Annexin-directed β-glucuronidase for the targeted treatment of solid tumors. Protein Eng Des Sel 2017; 30:85-94. [PMID: 27986920 PMCID: PMC5241760 DOI: 10.1093/protein/gzw063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023] Open
Abstract
Enzyme prodrug therapy has the potential to remedy the lack of selectivity associated with the systemic administration of chemotherapy. However, most current systems are immunogenic and constrained to a monotherapeutic approach. We developed a new class of fusion proteins centered about the human enzyme β-glucuronidase (βG), capable of converting several innocuous prodrugs into chemotherapeutics. We targeted βG to phosphatidylserine on tumor cells, tumor vasculature and metastases via annexin A1/A5. Phosphatidylserine shows promise as a universal marker for solid tumors and allows for tumor type-independent targeting. To create fusion proteins, human annexin A1/A5 was genetically fused to the activity-enhancing 16a3 mutant of human βG, expressed in chemically defined, fed-batch suspension culture, and chromatographically purified. All fusion constructs achieved >95% purity with yields up to 740 μg/l. Fusion proteins displayed cancer selective cell-surface binding with cell line-dependent binding stability. One fusion protein in combination with the prodrug SN-38 glucuronide was as effective as the drug SN-38 on Panc-1 pancreatic cancer cells and HAAE-1 endothelial cells, and demonstrated efficacy against MCF-7 breast cancer cells. βG fusion proteins effectively enable localized combination therapy that can be tailored to each patient via prodrug selection, with promising clinical potential based on their near fully human design.
Collapse
Affiliation(s)
- Katrin P Guillen
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
| | - Eliza A Ruben
- Protein Production Core, Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Needa Virani
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
| | - Roger G Harrison
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
- Stephenson Cancer Center, Health Sciences Center, University of Oklahoma, 800 Northeast 10th St., Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Chagas MBO, Cordeiro NCC, Marques KMR, Rocha Pitta MG, Rêgo MJBM, Lima MCA, Pitta MGR, Pitta IR. New thiazacridine agents: Synthesis, physical and chemical characterization, and in vitro anticancer evaluation. Hum Exp Toxicol 2016; 36:1059-1070. [DOI: 10.1177/0960327116680274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of new thiazacridine agents were synthesized and evaluated as antitumor agents, in terms of not only their cytotoxicity but also their selectivity. The cytotoxicity assay confirmed that all compounds showed cytotoxic activity and selectivity. The new compound, 3-acridin-9-ylmethyl-5-(5-bromo-1 H-indol-3-ylmethylene)-thiazolidine-2,4-dione (LPSF/AA29 – 7a), proved to be the most promising compound as it presents lower half-maximal inhibitory concentration (IC50) values (ranging from 0.25 to 68.03 µM) depending on cell lineage. In HepG2 cells, the lowest IC50 value was exhibited by 3-acridin-9-ylmethyl-5-(4-piperidin-1-yl-benzylidene)-thiazolidine-2,4-dione (LPSF/AA36 – 7b; 46.95 µM). None of the synthesized compounds showed cytotoxic activity against normal cells (IC50 > 100 µM). The mechanism of death induction and cell cycle effects was also evaluated. Flow cytometric analysis revealed that the compounds LPSF/AA29 – 7a and LPSF/AA36 – 7b significantly increased the percentage of apoptotic cells and induced G2/M arrest in the cell cycle progression. Therefore, these new thiazacridine derivatives constitute promising antitumor agents whose cytotoxicity and selectivity properties indicate they have potential to contribute to or serve as a basis for the development of new cancer drugs in the future.
Collapse
Affiliation(s)
- MBO Chagas
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - NCC Cordeiro
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - KMR Marques
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MG Rocha Pitta
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MJBM Rêgo
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MCA Lima
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - MGR Pitta
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - IR Pitta
- Laboratory for Immunomodulation and New Therapeutic Approaches, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
- Laboratory for Planning and Drug Synthesis, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| |
Collapse
|
16
|
Sharma SK, Bagshawe KD. Translating antibody directed enzyme prodrug therapy (ADEPT) and prospects for combination. Expert Opin Biol Ther 2016; 17:1-13. [DOI: 10.1080/14712598.2017.1247802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Surinder K. Sharma
- Research Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | | |
Collapse
|
17
|
Hsieh YT, Lin HP, Chen BM, Huang PT, Roffler SR. Effect of Cellular Location of Human Carboxylesterase 2 on CPT-11 Hydrolysis and Anticancer Activity. PLoS One 2015; 10:e0141088. [PMID: 26509550 PMCID: PMC4624787 DOI: 10.1371/journal.pone.0141088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/03/2015] [Indexed: 01/08/2023] Open
Abstract
CPT-11 is an anticancer prodrug that is clinically used for the treatment of metastatic colorectal cancer. Hydrolysis of CPT-11 by human carboxylesterase 2 (CE2) generates SN-38, a topoisomerase I inhibitor that is the active anti-tumor agent. Expression of CE2 in cancer cells is under investigation for the tumor-localized activation of CPT-11. CE2 is normally expressed in the endoplasmic reticulum of cells but can be engineered to direct expression of active enzyme on the plasma membrane or as a secreted form. Although previous studies have investigated different locations of CE2 expression in cancer cells, it remains unclear if CE2 cellular location affects CPT-11 anticancer activity. In the present study, we directly compared the influence of CE2 cellular location on substrate hydrolysis and CPT-11 cytotoxicity. We linked expression of CE2 and enhanced green fluorescence protein (eGFP) via a foot-and-mouth disease virus 2A (F2A) peptide to facilitate fluorescence-activated cell sorting to achieve similar expression levels of ER-located, secreted or membrane-anchored CE2. Soluble CE2 was detected in the medium of cells that expressed secreted and membrane-anchored CE2, but not in cells that expressed ER-retained CE2. Cancer cells that expressed all three forms of CE2 were more sensitive to CPT-11 as compared to unmodified cancer cells, but the membrane-anchored and ER-retained forms of CE2 were consistently more effective than secreted CE2. We conclude that expression of CE2 in the ER or on the membrane of cancer cells is suitable for enhancing CPT-11 anticancer activity.
Collapse
Affiliation(s)
- Yuan-Ting Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Pei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ping-Ting Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Tranoy-Opalinski I, Legigan T, Barat R, Clarhaut J, Thomas M, Renoux B, Papot S. β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update. Eur J Med Chem 2014; 74:302-13. [PMID: 24480360 DOI: 10.1016/j.ejmech.2013.12.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023]
Abstract
The design of novel antitumor agents allowing the destruction of malignant cells while sparing healthy tissues is one of the major challenges in medicinal chemistry. In this context, the use of non-toxic prodrugs programmed to be selectively activated by beta-glucuronidase present at high concentration in the microenvironment of most solid tumors has attracted considerable attention. This review summarizes the major progresses that have been realized in this field over the past ten years. This includes the new prodrugs that have been designed to target a wide variety of anticancer drugs, the prodrugs employed in the course of a combined therapy, the dendritic glucuronide prodrugs and the concept of β-glucuronidase-responsive albumin binding prodrugs.
Collapse
Affiliation(s)
- Isabelle Tranoy-Opalinski
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Thibaut Legigan
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Romain Barat
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Jonathan Clarhaut
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France; INSERM CIC 0802, CHU de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Mikaël Thomas
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Brigitte Renoux
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Sébastien Papot
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France.
| |
Collapse
|
19
|
Lin YC, Chen BM, Lu WC, Su CI, Prijovich ZM, Chung WC, Wu PY, Chen KC, Lee IC, Juan TY, Roffler SR. The B7-1 cytoplasmic tail enhances intracellular transport and mammalian cell surface display of chimeric proteins in the absence of a linear ER export motif. PLoS One 2013; 8:e75084. [PMID: 24073236 PMCID: PMC3779271 DOI: 10.1371/journal.pone.0075084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Membrane-tethered proteins (mammalian surface display) are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids) and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells.
Collapse
Affiliation(s)
- Yi-Chieh Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Cheng Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-I Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Wen-Chuan Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Yu Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kai-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Chiao Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Yi Juan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Twum EA, Woodman TJ, Wang W, Threadgill MD. Observation by NMR of cationic Wheland-like intermediates in the deiodination of protected 1-iodonaphthalene-2,4-diamines in acidic media. Org Biomol Chem 2013; 11:6208-14. [DOI: 10.1039/c3ob41386a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|