1
|
Zhang L, Shi J, Zhu MH, Huang Y, Lu Q, Sun P, Chen HZ, Lai X, Fang C. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 2025; 313:122801. [PMID: 39236630 DOI: 10.1016/j.biomaterials.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.
Collapse
Affiliation(s)
- Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
2
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
3
|
Paun RA, Jurchuk S, Tabrizian M. A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors. Bioeng Transl Med 2024; 9:e10601. [PMID: 38435821 PMCID: PMC10905562 DOI: 10.1002/btm2.10601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024] Open
Abstract
Lipid nanoparticles (LNPs) are biocompatible drug delivery systems that have found numerous applications in medicine. Their versatile nature enables the encapsulation and targeting of various types of medically relevant molecular cargo, including oligonucleotides, proteins, and small molecules for the treatment of diseases, such as cancer. Cancers that form solid tumors are particularly relevant for LNP-based therapeutics due to the enhanced permeation and retention effect that allows nanoparticles to accumulate within the tumor tissue. Additionally, LNPs can be formulated for both locoregional and systemic delivery depending on the tumor type and stage. To date, LNPs have been used extensively in the clinic to reduce systemic toxicity and improve outcomes in cancer patients by encapsulating chemotherapeutic drugs. Next-generation lipid nanoparticles are currently being developed to expand their use in gene therapy and immunotherapy, as well as to enable the co-encapsulation of multiple drugs in a single system. Other developments include the design of targeted LNPs to specific cells and tissues, and triggerable release systems to control cargo delivery at the tumor site. This review paper highlights recent developments in LNP drug delivery formulations and focuses on the treatment of solid tumors, while also discussing some of their current translational limitations and potential opportunities in the field.
Collapse
Affiliation(s)
- Radu A. Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Jurchuk
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Faculty of Dentistry and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Minnar CM, Lui G, Gulley JL, Schlom J, Gameiro SR. Preclinical and clinical studies of a tumor targeting IL-12 immunocytokine. Front Oncol 2024; 13:1321318. [PMID: 38260854 PMCID: PMC10802843 DOI: 10.3389/fonc.2023.1321318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
The clinical success of immune checkpoint inhibitors (ICIs) has demonstrated the promise and challenges of cancer immunotherapy. There is an unmet need to develop novel cancer therapies that can provide clinical benefit for most patients with solid malignancies, which harbor innate or acquired resistance to ICIs. Interleukin-12 (IL-12) is a promising cytokine for cancer therapy given its direct stimulatory effects on innate and adaptive immunity. However, unfavorable pharmacokinetics and a narrow therapeutic index render recombinant IL-12 (rIL-12) less attractive as a cancer therapy. NHS-IL12 is a fusion protein of IL-12 and NHS76 (human IgG1) antibody engineered to target single and double stranded DNA present in necrotic areas solid tumors. In preclinical tumor models, NHS-IL12 elicited significant Th1 immune activation and tumor suppressive effects, primarily mediated by NK and CD8+ T lymphocytes, with engagement of myeloid immunity. NHS-IL12 is currently being evaluated clinically in combination with various therapeutic modalities, including chemotherapy, radiation therapy, immune checkpoint inhibition, vaccines, and epigenetic modulation. Here we review the preclinical and clinical studies involving NHS-IL12 for the treatment of solid malignancies.
Collapse
|
5
|
Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, Kanoujiya S, Gupta AK, Sinha S, Ruokolainen J, Kesari KK, Gupta PK. Recent Updates on Viral Oncogenesis: Available Preventive and Therapeutic Entities. Mol Pharm 2023; 20:3698-3740. [PMID: 37486263 PMCID: PMC10410670 DOI: 10.1021/acs.molpharmaceut.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Collapse
Affiliation(s)
- Shivam Chowdhary
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh India
| | - Rahul Deka
- Department
of Bioengineering and Biotechnology, Birla
Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kingshuk Panda
- Department
of Applied Microbiology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Abhishikt David Solomon
- Department
of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Jimli Das
- Centre
for
Biotechnology and Bioinformatics, Dibrugarh
University, Assam 786004, India
| | - Supriya Kanoujiya
- School
of
Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Kumar Gupta
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi 110029, India
| | - Somya Sinha
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, Punjab, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
6
|
Walsh MJ, Stump CT, Kureshi R, Lenehan P, Ali LR, Dougan M, Knipe DM, Dougan SK. IFNγ is a central node of cancer immune equilibrium. Cell Rep 2023; 42:112219. [PMID: 36881506 PMCID: PMC10214249 DOI: 10.1016/j.celrep.2023.112219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Tumors in immune equilibrium are held in balance between outgrowth and destruction by the immune system. The equilibrium phase defines the duration of clinical remission and stable disease, and escape from equilibrium remains a major clinical problem. Using a non-replicating HSV-1 vector expressing interleukin-12 (d106S-IL12), we developed a mouse model of therapy-induced immune equilibrium, a phenomenon previously seen only in humans. This immune equilibrium was centrally reliant on interferon-γ (IFNγ). CD8+ T cell direct recognition of MHC class I, perforin/granzyme-mediated cytotoxicity, and extrinsic death receptor signaling such as Fas/FasL were all individually dispensable for equilibrium. IFNγ was critically important and played redundant roles in host and tumor cells such that IFNγ sensing in either compartment was sufficient for immune equilibrium. We propose that these redundant mechanisms of action are integrated by IFNγ to protect from oncogenic or chronic viral threats and establish IFNγ as a central node in therapy-induced immune equilibrium.
Collapse
Affiliation(s)
- Michael J Walsh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Program in Virology, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Courtney T Stump
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Rakeeb Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Patrick Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Wang H, Tran TT, Duong KT, Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm 2022; 19:4487-4505. [PMID: 36305753 DOI: 10.1021/acs.molpharmaceut.2c00775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.
Collapse
Affiliation(s)
- Hongbin Wang
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States.,Master of Pharmaceutical Sciences College of Graduate Study, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Tuan T Tran
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Katherine T Duong
- CVS Pharmacy, 18872 Beach Boulevard, Huntington Beach, California 92648, United States
| | - Trieu Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Uyen M Le
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| |
Collapse
|
8
|
Abstract
Cancer is one of the leading causes of death in the world, which is the second after heart diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for cancer treatment. The objective of this review is to discuss current advances in the applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be engineered in different ways so as to change the tumor microenvironment from cold tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for tumor suppressor gene (p53) and other proteins whose expression result in cell cycle arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are replication-defective recombinant human p53 adenoviral vectors that have been shown to be effective against several types of cancer. Gendicine was approved for treatment of squamous cell carcinoma of the head and neck by the Chinese Food and Drug Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective against some types of cancer. The Chiness FDA agency has also approved Oncorin for the treatment of head and neck cancer. Ads that were engineered to express immune-stimulatory cytokines and other immune-modulatory molecules such as TNF-α, IL-2, BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1-MVA and Ad-transduced Dendritic cells) that were tested as anticancer vaccines have been demonstrated to induce strong antitumor immune response. However, the use of adenoviral vectors in gene therapy is limited by several factors such as pre-existing immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative strategies must be continually developed so as to overcome the obstacles of using adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Sintayehu Tsegaye Tseha
- Lecturer of Biomedical Sciences, Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Bhattacharya S, Saindane D, Prajapati BG. Liposomal Drug Delivery And Its Potential Impact On Cancer Research. Anticancer Agents Med Chem 2022; 22:2671-2683. [PMID: 35440318 DOI: 10.2174/1871520622666220418141640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Liposomes are one of the most versatile drug carriers due to their functional properties, such as higher biocompatibility, the ability to encapsulate hydrophilic and hydrophobic products, and higher biodegradability. Liposomes are a better and more significant nanocarrier for cancer therapy. The key to developing a better cancer-targeted nanocarrier is the development of targeted liposomes using various approaches. Several traditional and novel liposome preparation methods are briefly discussed in this mini-review. The current state of liposome targeting, active and passive liposome targeting in cancer therapy, ligand directed targeting (antibody, aptamer, and protein/peptide-mediated targeting), and other miscellaneous approaches such as stimuli-responsive liposome-based targeting, autophagy inhibition mediated targeting, and curcumin loaded liposomal targeting are all discussed within. All of this gathered and compiled information will shed new light on liposome targeting strategies in cancer treatment and will pique the interest of aspiring researchers and academicians.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405
| | - Dnyanesh Saindane
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405
| | | |
Collapse
|
10
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B 2021; 9:1208-1237. [PMID: 33393582 DOI: 10.1039/d0tb02168g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanocarrier delivery systems have been widely studied to carry unique or dual chemical drugs. The major challenge of chemotherapies is to overcome the multidrug-resistance (MDR) of cells to antineoplastic medicines. In this context, nano-scale technology has allowed researchers to develop biocompatible nano-delivery systems to overcome the limitation of chemical agents. The development of nano-vehicles may also be directed to co-deliver different agents such as drugs and genetic materials. The delivery of nucleic acids targeting specific cells is based on gene therapy principles to replace the defective gene, correct genome errors or knock-down a particular gene. Co-delivery systems are attractive strategies due to the possibility of achieving synergistic therapeutic effects, which are more effective in overcoming the MDR of cancer cells. These combined therapies can provide better outcomes than separate delivery approaches carrying either siRNA, miRNA, pDNA, or drugs. This article reviews the main design features that need to be associated with nano-vehicles to co-deliver drugs, genes, and gene-drug combinations with efficacy. The advantages and disadvantages of co-administration approaches are also overviewed and compared with individual nanocarrier systems. Herein, future trends and perspectives in designing novel nano-scale platforms to co-deliver therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Franciele F Vit
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo, Center for Cell and Molecular Therapy, São Paulo, Brazil
| | - Lucimara G de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
11
|
Advances in Lipid-Based Nanoparticles for Cancer Chemoimmunotherapy. Pharmaceutics 2021; 13:pharmaceutics13040520. [PMID: 33918635 PMCID: PMC8069739 DOI: 10.3390/pharmaceutics13040520] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomedicines have shown great potential in cancer therapy; in particular, the combination of chemotherapy and immunotherapy (namely chemoimmunotherapy) that is revolutionizing cancer treatment. Currently, most nanomedicines for chemoimmunotherapy are still in preclinical and clinical trials. Lipid-based nanoparticles, the most widely used nanomedicine platform in cancer therapy, is a promising delivery platform for chemoimmunotherapy. In this review, we introduce the commonly used immunotherapy agents and discuss the opportunities for chemoimmunotherapy mediated by lipid-based nanoparticles. We summarize the clinical trials involving lipid-based nanoparticles for chemoimmunotherapy. We also highlight different chemoimmunotherapy strategies based on lipid-based nanoparticles such as liposomes, nanodiscs, and lipid-based hybrid nanoparticles in preclinical research. Finally, we discuss the challenges that have hindered the clinical translation of lipid-based nanoparticles for chemoimmunotherapy, and their future perspectives.
Collapse
|
12
|
Xiao X, Oswald JT, Wang T, Zhang W, Li W. Use of Anticancer Platinum Compounds in Combination Therapies and Challenges in Drug Delivery. Curr Med Chem 2020; 27:3055-3078. [PMID: 30394206 DOI: 10.2174/0929867325666181105115849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Abstract
As one of the leading and most important metal-based drugs, platinum-based pharmaceuticals are widely used in the treatment of solid malignancies. Despite significant side effects and acquired drug resistance have limited their clinical applications, platinum has shown strong inhibitory effects for a wide assortment of tumors. Drug delivery systems using emerging technologies such as liposomes, dendrimers, polymers, nanotubes and other nanocompositions, all show promise for the safe delivery of platinum-based compounds. Due to the specificity of nano-formulations; unwanted side-effects and drug resistance can be largely averted. In addition, combinational therapy has been shown to be an effective way to improve the efficacy of platinum based anti-tumor drugs. This review first introduces drug delivery systems used for platinum and combinational therapeutic delivery. Then we highlight some of the recent advances in the field of drug delivery for combinational therapy; specifically progress in leveraging the cytotoxic nature of platinum-based drugs, the combinational effect of other drugs with platinum, while evaluating the drug targeting, side effect reducing and sitespecific nature of nanotechnology-based delivery platforms.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, 132013, China
| | - James Trevor Oswald
- School of Nanotechnology Engineering, University Of Waterloo, Waterloo, Canada
| | - Ting Wang
- Department of the Gastrointestinal Surgery, The first Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Weina Zhang
- Common Subjects Department, Shangqiu Medical College, Henan 476100, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, 132013, China
| |
Collapse
|
13
|
Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019; 11:E129. [PMID: 30893852 PMCID: PMC6471246 DOI: 10.3390/pharmaceutics11030129] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Routes of drug administration and the corresponding physicochemical characteristics of a given route play significant roles in therapeutic efficacy and short term/long term biological effects. Each delivery method has favorable aspects and limitations, each requiring a specific delivery vehicles design. Among various routes, oral delivery has been recognized as the most attractive method, mainly due to its potential for solid formulations with long shelf life, sustained delivery, ease of administration and intensified immune response. At the same time, a few challenges exist in oral delivery, which have been the main research focus in the field in the past few years. The present work concisely reviews different administration routes as well as the advantages and disadvantages of each method, highlighting why oral delivery is currently the most promising approach. Subsequently, the present work discusses the main obstacles for oral systems and explains the most recent solutions proposed to deal with each issue.
Collapse
Affiliation(s)
- Bahman Homayun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Xueting Lin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
14
|
Ongaro T, Matasci M, Cazzamalli S, Gouyou B, De Luca R, Neri D, Villa A. A novel anti-cancer L19-interleukin-12 fusion protein with an optimized peptide linker efficiently localizes in vivo at the site of tumors. J Biotechnol 2019; 291:17-25. [DOI: 10.1016/j.jbiotec.2018.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
|
15
|
Li Y, Shi S, Ming Y, Wang L, Li C, Luo M, Li Z, Li B, Chen J. Specific cancer stem cell-therapy by albumin nanoparticles functionalized with CD44-mediated targeting. J Nanobiotechnology 2018; 16:99. [PMID: 30501644 PMCID: PMC6271611 DOI: 10.1186/s12951-018-0424-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are highly proliferative and tumorigenic, which contributes to chemotherapy resistance and tumor occurrence. CSCs specific therapy may achieve excellent therapeutic effects, especially to the drug-resistant tumors. RESULTS In this study, we developed a kind of targeting nanoparticle system based on cationic albumin functionalized with hyaluronic acid (HA) to target the CD44 overexpressed CSCs. All-trans-retinoic acid (ATRA) was encapsulated in the nanoparticles with ultrahigh encapsulation efficiency (EE%) of 93% and loading content of 8.37%. TEM analysis showed the nanoparticles were spherical, uniform-sized and surrounded by a coating layer consists of HA. Four weeks of continuously measurements of size, PDI and EE% revealed the high stability of nanoparticles. Thanks to HA conjugation on the surface, the resultant nanoparticles (HA-eNPs) demonstrated high affinity and specific binding to CD44-enriched B16F10 cells. In vivo imaging revealed that HA-eNPs can targeted accumulate in tumor-bearing lung of mouse. The cytotoxicity tests illustrated that ATRA-laden HA-eNPs possessed better killing ability to B16F10 cells than free drug or normal nanoparticles in the same dose, indicating its good targeting property. Moreover, HA-eNPs/ATRA treatment decreased side population of B16F10 cells significantly in vitro. Finally, tumor growth was significantly inhibited by HA-eNPs/ATRA in lung metastasis tumor mice. CONCLUSIONS These results demonstrate that the HA functionalized albumin nanoparticles is an efficient system for targeted delivery of antitumor drugs to eliminate the CSCs.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Sanjun Shi
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Yue Ming
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Linli Wang
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Chenwen Li
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Minghe Luo
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Ziwei Li
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Bin Li
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Jianhong Chen
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| |
Collapse
|
16
|
Pishavar E, Attaranzadeh A, Alibolandi M, Ramezani M, Hashemi M. Modified PAMAM vehicles for effective TRAIL gene delivery to colon adenocarcinoma: in vitro and in vivo evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S503-S513. [PMID: 30095012 DOI: 10.1080/21691401.2018.1500372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) gene therapy is considered as one of the promising approaches for cancer treatment. Polyamidoamine (PAMAM) is one of the most extensively applied polymeric vector in gene delivery. In the current study, PAMAM (G4 and G5) dendrimers were modified with alkyl-carboxylate chain, PEG and cholesteryl chloroformate in order to enhance transfection efficiency through overcoming extracellular and intracellular barriers while reducing PAMAM cytotoxicity. Gene delivery efficiency of synthetized vectors was evaluated by both GFP (green fluorescent protein) reporter gene and TRAIL plasmid in colon cancer cells, in vitro and in vivo. The obtained results demonstrated that PAMAM G4-alkyl-PEG (3%)-Chol (5%)-TRAIL complexes at C/P ratio 4 could significantly increase cell death (29.45%) in comparison with unmodified PAMAM vector (15.5%). Moreover, in vivo study in C26 tumor-bearing BALB/c mice suggested that the prepared non-toxic safe vector could inhibit the tumor growth. This study represented the potent vehicle based on cholesterol-grafted PAMAM dendrimers with alkyl-PEG modification for efficient gene delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Elham Pishavar
- a Pharmacutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Armin Attaranzadeh
- b Department of Molecular Pathology and Cytogenetics , Mashhad University of Medical Sciences, Imam Reza Hospital , Mashhad , Iran
| | - Mona Alibolandi
- a Pharmacutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- a Pharmacutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran.,c Department of Biotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Hashemi
- d Nanotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
17
|
Li Y, Liu M, Cui J, Yang K, Zhao L, Gong M, Wang Y, He Y, He T, Bi Y. Hepa1-6-FLuc cell line with the stable expression of firefly luciferase retains its primary properties with promising bioluminescence imaging ability. Oncol Lett 2018; 15:6203-6210. [PMID: 29616102 PMCID: PMC5876459 DOI: 10.3892/ol.2018.8132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/01/2018] [Indexed: 01/10/2023] Open
Abstract
Reliable animal models are required for the in vivo study of the molecular mechanisms and effects of chemotherapeutic drugs in hepatocarcinoma. In vivo tracing techniques based on firefly luciferase (FLuc) may optimize the non-invasive monitoring of experimental animals. The present study established a murine Hepa1-6-FLuc cell line that stably expressed a retrovirus-delivered FLuc protein gene. The cell morphology, proliferation, migration and invasion ability of Hepa1-6-FLuc cells were the same as that of the Hepa1-6 cells, and thus is suitable to replace Hepa1-6 cells in the construction of hepatocarcinoma animal models. No differences in subcutaneous tumor mass and its pathomorphology from implanted Hepa1-6-FLuc cells were observed compared with Hepa1-6 control tumors. Bioluminescence imaging indicated that the Luc signal of the Hepa1-6-FLuc cells was consistently strengthened with increases in tumor mass; however, the Luc signal of Hepa1-6-AdFLuc became weaker and eventually disappeared during tumor development. Therefore, compared with the transient expression by adenovirus, stable expression of the FLuc gene in Hepa1-6 cells may better reflect cell proliferation and survival in vivo, and provide a reliable source for the establishment of hepatocarcinoma models.
Collapse
Affiliation(s)
- Yasha Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mengnan Liu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jiejie Cui
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ke Yang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mengjia Gong
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yi Wang
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yun He
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Tongchuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
18
|
Lin CZ, Xiang GL, Zhu XH, Xiu LL, Sun JX, Zhang XY. Advances in the mechanisms of action of cancer-targeting oncolytic viruses. Oncol Lett 2018. [PMID: 29541169 DOI: 10.3892/ol.2018.7829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer virotherapy mediated by oncolytic viruses (OV), has emerged as a novel and effective strategy in cancer therapeutics. Preclinical models have demonstrated anticancer activity against numerous types of cancer. Currently, a number of recombinant viruses are in late phase clinical trials, many of which have demonstrated promising results regarding the safety and reliability of the treatments, particularly when combined with standard antineoplastic therapies. In addition to molecular-targeted therapeutics, genetic engineering of the viruses allows functional complementation to chemotherapy or radiotherapy agents. Co-administration of chemotherapy or radiotherapy is imperative for an effective treatment regime. Additionally, these approaches may be used in combination with current treatments to assist in cancer management. The near future may reveal whether this renewed interest in oncological virotherapy will result in meaningful therapeutic effects in patients. The aim of the present review was to highlight how the knowledge of oncolytic viral specificity and cytotoxicity has advanced in recent years, with a view to discuss OV in clinical application and the future directions of this field.
Collapse
Affiliation(s)
- Cun-Zhi Lin
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Gui-Ling Xiang
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xin-Hong Zhu
- Department of General Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Lu-Lu Xiu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jia-Xing Sun
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiao-Yuan Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
19
|
Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1327-1341. [DOI: 10.1016/j.msec.2016.11.073] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
|
20
|
Teo PY, Cheng W, Hedrick JL, Yang YY. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev 2016; 98:41-63. [PMID: 26529199 DOI: 10.1016/j.addr.2015.10.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022]
Abstract
Cancer is an extremely complex disease involving multiple signaling pathways that enable tumor cells to evade programmed cell death, thus making cancer treatment extremely challenging. The use of combination therapy involving both gene therapy and chemotherapy has resulted in enhanced anti-cancer effects and has become an increasingly important strategy in medicine. This review will cover important design parameters that are incorporated into delivery systems for the co-administration of drug and plasmid-based nucleic acids (pDNA and shRNA), with particular emphasis on polymers as delivery materials. The unique challenges faced by co-delivery systems and the strategies to overcome such barriers will be discussed. In addition, the advantages and disadvantages of combination therapy using separate carrier systems versus the use of a single carrier will be evaluated. Finally, future perspectives in the design of novel platforms for the combined delivery of drugs and genes will be presented.
Collapse
|
21
|
Hernandez-Alcoceba R, Poutou J, Ballesteros-Briones MC, Smerdou C. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy 2016; 8:179-98. [PMID: 26786809 DOI: 10.2217/imt.15.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine.
Collapse
Affiliation(s)
- Ruben Hernandez-Alcoceba
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Joanna Poutou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - María Cristina Ballesteros-Briones
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Cristian Smerdou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| |
Collapse
|
22
|
Liu CK, Dou Q, Liow SS, Kumar JN, Loh XJ. Cationic Micelles Based on Polyhedral Oligomeric Silsesquioxanes for Enhanced Gene Transfection. Aust J Chem 2016. [DOI: 10.1071/ch15636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis and gene transfection efficiency of a series of amphiphilic copolymers, poly(2-(dimethylamino)ethyl methacrylate)-poly (methacrylate isobutyl polyhedral oligomeric silsesquioxane) (PDMAEMA-POSS) copolymers are reported. The hydrophobic POSS interior allows a cell-sensitizing drug such as paclitaxel to be incorporated, whereas the cationic and hydrophilic PDMAEMA corona allows the complexation of anionic DNA to form a nano-sized polyplex. These drug-encapsulated copolymers display excellent gene transfection efficiency compared with polyethylenimine or PDMAEMA homopolymers.
Collapse
|
23
|
Recent advances in targeted nanoparticles drug delivery to melanoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:769-94. [PMID: 25555352 DOI: 10.1016/j.nano.2014.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/31/2014] [Accepted: 11/15/2014] [Indexed: 12/30/2022]
Abstract
Melanoma is one of the most aggressive skin cancers, notorious for its high multidrug resistance and low survival rate. Conventional therapies (e.g., dacarbazine, interferon-alpha-2b and interleukin-2) are limited by low response rate and demonstrate no overall survival benefit. Novel targeted therapies (e.g., vemurafenib, dabrafenib and trametinib) have higher initial response rate and clear impact on the overall survival, but relapse usually occurs within 6 to 9 months. Although immunotherapy (e.g., ipilimumab, pembrolizumab and nivolumab) can achieve long-term and durable response, rate of adverse events is extremely high. With the development of nanotechnology, the applications of nanocarriers are widely expected to change the landscape of melanoma therapy for foreseeable future. In this review, we will relate recent advances in the application of multifunctional nanocarriers for targeted drug delivery to melanoma, in melanoma nanotheranostics and combination therapy, and nanopharmaceutical associated melanoma clinical trials, followed by challenges and perspectives. From the clinical editor: The team of authors describes the current treatment regimes of malignant melanoma emphasizing the importance of achieving a better efficacy and the need to develop a better understanding of melanoma tumorigenesis.
Collapse
|
24
|
New insights into IL-12-mediated tumor suppression. Cell Death Differ 2014; 22:237-46. [PMID: 25190142 DOI: 10.1038/cdd.2014.134] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects.
Collapse
|
25
|
Lasek W, Zagożdżon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother 2014; 63:419-35. [PMID: 24514955 PMCID: PMC3994286 DOI: 10.1007/s00262-014-1523-1] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022]
Abstract
Interleukin 12 (IL-12) seemed to represent the ideal candidate for tumor immunotherapy, due to its ability to activate both innate (NK cells) and adaptive (cytotoxic T lymphocytes) immunities. However, despite encouraging results in animal models, very modest antitumor effects of IL-12 in early clinical trials, often accompanied by unacceptable levels of adverse events, markedly dampened hopes of the successful use of this cytokine in cancer patients. Recently, several clinical studies have been initiated in which IL-12 is applied as an adjuvant in cancer vaccines, in gene therapy including locoregional injections of IL-12 plasmid and in the form of tumor-targeting immunocytokines (IL-12 fused to monoclonal antibodies). The near future will show whether this renewed interest in the use of IL-12 in oncology will result in meaningful therapeutic effects in a select group of cancer patients.
Collapse
Affiliation(s)
- Witold Lasek
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1a, "F" Bldg, 02-097, Warsaw, Poland,
| | | | | |
Collapse
|