1
|
Thomas TA, Francis RO, Zimring JC, Kao JP, Nemkov T, Spitalnik SL. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants (Basel) 2024; 13:717. [PMID: 38929156 PMCID: PMC11200860 DOI: 10.3390/antiox13060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation. This yields reactive oxygen species that participate in Fenton chemistry, ultimately damaging their membranes and cytosolic constituents. Fortunately, red blood cells contain robust antioxidant systems to enable them to circulate and perform their physiological functions, particularly delivering oxygen and removing carbon dioxide. Nonetheless, if red blood cells have insufficient antioxidant reserves (e.g., due to genetics, diet, disease, or toxin exposure), this can induce hemolysis in vivo or enhance susceptibility to a "storage lesion" in vitro, when blood donations are refrigerator-stored for transfusion purposes. Ergothioneine, a small molecule not synthesized by mammals, is obtained only through the diet. It is absorbed from the gut and enters cells using a highly specific transporter (i.e., SLC22A4). Certain cells and tissues, particularly red blood cells, contain high ergothioneine levels. Although no deficiency-related disease has been identified, evidence suggests ergothioneine may be a beneficial "nutraceutical." Given the requirements of red blood cells to resist oxidative stress and their high ergothioneine content, this review discusses ergothioneine's potential importance in protecting these cells and identifies knowledge gaps regarding its relevance in enhancing red blood cell circulatory, storage, and transfusion quality.
Collapse
Affiliation(s)
- Tiffany A. Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - Richard O. Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joseph P. Kao
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Denver, CO 80203, USA
| | - Steven L. Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| |
Collapse
|
2
|
Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217:60-67. [PMID: 38492784 DOI: 10.1016/j.freeradbiomed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
We propose that the diet-derived compound ergothioneine (ET) is an important nutrient in the human body, especially for maintenance of normal brain function, and that low body ET levels predispose humans to significantly increased risks of neurodegenerative (cognitive impairment, dementia, Parkinson's disease) and possibly other age-related diseases (including frailty, cardiovascular disease, and eye disease). Hence, restoring ET levels in the body could assist in mitigating these risks, which are rapidly increasing due to ageing populations globally. Prevention of neurodegeneration is especially important, since by the time dementia is usually diagnosed damage to the brain is extensive and likely irreversible. ET and vitamin E from the diet may act in parallel or even synergistically to protect different parts of the brain; both may be "neuroprotective vitamins". The present article reviews the substantial scientific basis supporting these proposals about the role of ET.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
3
|
Mayayo-Vallverdú C, López de Heredia M, Prat E, González L, Espino Guarch M, Vilches C, Muñoz L, Asensi MA, Serra C, Llebaria A, Casado M, Artuch R, Garrabou G, Garcia-Roves PM, Pallardó FV, Nunes V. The antioxidant l-Ergothioneine prevents cystine lithiasis in the Slc7a9 -/- mouse model of cystinuria. Redox Biol 2023; 64:102801. [PMID: 37418888 PMCID: PMC10359938 DOI: 10.1016/j.redox.2023.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
The high recurrence rate of cystine lithiasis observed in cystinuria patients highlights the need for new therapeutic options to address this chronic disease. There is growing evidence of an antioxidant defect in cystinuria, which has led to test antioxidant molecules as new therapeutic approaches. In this study, the antioxidant l-Ergothioneine was evaluated, at two different doses, as a preventive and long-term treatment for cystinuria in the Slc7a9-/- mouse model. l-Ergothioneine treatments decreased the rate of stone formation by more than 60% and delayed its onset in those mice that still developed calculi. Although there were no differences in metabolic parameters or urinary cystine concentration between control and treated mice, cystine solubility was increased by 50% in the urines of treated mice. We also demonstrate that l-Ergothioneine needs to be internalized by its transporter OCTN1 (Slc22a4) to be effective, as when administrated to the double mutant Slc7a9-/-Slc22a4-/- mouse model, no effect on the lithiasis phenotype was observed. In kidneys, we detected a decrease in GSH levels and an impairment of maximal mitochondrial respiratory capacity in cystinuric mice that l-Ergothioneine treatment was able to restore. Thus, l-Ergothioneine administration prevented cystine lithiasis in the Slc7a9-/- mouse model by increasing urinary cystine solubility and recovered renal GSH metabolism and mitochondrial function. These results support the need for clinical trials to test l-Ergothioneine as a new treatment for cystinuria.
Collapse
Affiliation(s)
- Clara Mayayo-Vallverdú
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain.
| | - Miguel López de Heredia
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Prat
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain
| | - Laura González
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Espino Guarch
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Immunology Department, Sidra Medicine, Doha, Qatar
| | - Clara Vilches
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Lourdes Muñoz
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Miguel A Asensi
- Departamento de Fisiología. Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Carmen Serra
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Amadeu Llebaria
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Mercedes Casado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain; Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain; Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Gloria Garrabou
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain; Muscle Research and Mitochondrial Function Laboratory, Cellex-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Internal Medicine Department-Hospital Clínic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Pablo M Garcia-Roves
- Department of Physiological Sciences, School of Medicine and Health Sciences, Nutrition, Metabolism and Gene therapy Group Diabetes and Metabolism Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain; Departamento de Fisiología. Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Virginia Nunes
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Wu LY, Cheah IK, Chong JR, Chai YL, Tan JY, Hilal S, Vrooman H, Chen CP, Halliwell B, Lai MKP. Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free Radic Biol Med 2021; 177:201-211. [PMID: 34673145 DOI: 10.1016/j.freeradbiomed.2021.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022]
Abstract
Ergothioneine (ET) is a dietary amino-thione with strong antioxidant and cytoprotective properties and has possible therapeutic potential for neurodegenerative and vascular diseases. Decreased blood concentrations of ET have been found in patients with mild cognitive impairment, but its status in neurodegenerative and vascular dementias is currently unclear. To address this, a cross-sectional study was conducted on 496 participants, consisting of 88 with no cognitive impairment (NCI), 201 with cognitive impairment, no dementia (CIND) as well as 207 with dementia, of whom 160 have Alzheimer's Disease (AD) and 47 have vascular dementia. All subjects underwent blood-draw, neuropsychological assessments, as well as neuroimaging assessments of cerebrovascular diseases (CeVD) and brain atrophy. Plasma ET as well as its metabolite l-hercynine were measured using high sensitivity liquid chromatography tandem-mass spectrometry (LC-MS/MS). Plasma ET concentrations were lowest in dementia (p < 0.001 vs. NCI and CIND), with intermediate levels in CIND (p < 0.001 vs. NCI). A significant increase in l-hercynine to ET ratio was also observed in dementia (p < 0.01 vs. NCI). In multivariate models adjusted for demographic and vascular risk factors, lower levels of ET were significantly associated with dementia both with or without CeVD, while ET associations with CIND were significant only in the presence of CeVD. Furthermore, lower ET levels were also associated with white matter hyperintensities and brain atrophy markers (reduced global cortical thickness and hippocampal volumes). The incremental decreases in ET levels along the CIND-dementia clinical continuum suggest that low levels of ET are associated with disease severity and could be a potential biomarker for cognitive impairment. Deficiency of ET may contribute towards neurodegeneration- and CeVD-associated cognitive impairments, possibly via the exacerbation of oxidative stress in these conditions.
Collapse
Affiliation(s)
- Liu-Yun Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - Joyce Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Jia Yun Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henri Vrooman
- Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore.
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.
| |
Collapse
|
5
|
Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol 2021; 42:101868. [PMID: 33558182 PMCID: PMC8113028 DOI: 10.1016/j.redox.2021.101868] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
There has been a recent surge of interest in the unique low molecular weight dietary thiol/thione, ergothioneine. This compound can accumulate at high levels in the body from diet and may play important physiological roles in human health and development, and possibly in prevention and treatment of disease. Blood levels of ergothioneine decline with age and onset of various diseases. Here we highlight recent advances in our knowledge of ergothioneine.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore.
| |
Collapse
|
6
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
7
|
Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients. Cells 2019; 8:cells8050404. [PMID: 31052430 PMCID: PMC6563043 DOI: 10.3390/cells8050404] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is not well-understood; however, increased and persistent intestinal inflammation, due to inappropriate immune responses that are caused by interactions between genetic factors, gut microbiota, and environmental factors, are thought to lead to IBD. Various studies have identified more than 240 genetic variants related to IBD. These genetic variants are involved in innate and adaptive immunity, autophagy, defective bacterial handing, interleukin-23 and 10 signaling, and so on. According to several epidemiological and clinical studies, the phenotypes and clinical course of IBD differ between Asians and Europeans. Although the risk loci for IBD typically overlap between Asians and Westerners, genetic heterogeneity has been detected in many loci/genes, such as NOD2/CARD15, TNFSF15 and human leukocyte antigen, contributing to the risk of IBD. Thus, although common pathways exist between Westerners and Asians in the development of IBD, their significance may differ for individual pathways. Although genetic studies are not universally applicable in the clinical field, they may be useful for diagnosing and categorizing IBD, predicting therapeutic responses and toxicity to drugs, and assessing prognosis by risk modeling, thereby enabling precision medicine for individual patients.
Collapse
|
8
|
Pochini L, Galluccio M, Scalise M, Console L, Indiveri C. OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS DISCOVERY 2018; 24:89-110. [PMID: 30523710 DOI: 10.1177/2472555218812821] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OCTN is a small subfamily of membrane transport proteins that belongs to the larger SLC22 family. Two of the three members of the subfamily, namely, OCTN2 and OCTN1, are present in humans. OCTN2 plays a crucial role in the absorption of carnitine from diet and in its distribution to tissues, as demonstrated by the occurrence of severe pathologies caused by malfunctioning or altered expression of this transporter. These findings suggest avoiding a strict vegetarian diet during pregnancy and in childhood. Other roles of OCTN2 are related to the traffic of carnitine derivatives in many tissues. The role of OCTN1 is still unclear, despite the identification of some substrates such as ergothioneine, acetylcholine, and choline. Plausibly, the transporter acts on the control of inflammation and oxidative stress, even though knockout mice do not display phenotypes. A clear role of both transporters has been revealed in drug interaction and delivery. The polyspecificity of the OCTNs is at the base of the interactions with drugs. Interestingly, OCTN2 has been recently exploited in the prodrug approach and in diagnostics. A promising application derives from the localization of OCTN2 in exosomes that represent a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Lorena Pochini
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,2 CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
9
|
Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 2018; 8:jpm8020014. [PMID: 29659532 PMCID: PMC6023491 DOI: 10.3390/jpm8020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
An important aspect of modern medicine is its orientation to achieve more personalized pharmacological treatments. In this context, transporters involved in drug disposition have gained well-justified attention. Owing to its broad spectrum of substrate specificity, including endogenous compounds and xenobiotics, and its strategical expression in organs accounting for drug disposition, such as intestine, liver and kidney, the SLC22 family of transporters plays an important role in physiology, pharmacology and toxicology. Among these carriers are plasma membrane transporters for organic cations (OCTs) and anions (OATs) with a marked overlap in substrate specificity. These two major clades of SLC22 proteins share a similar membrane topology but differ in their degree of genetic variability. Members of the OCT subfamily are highly polymorphic, whereas OATs have a lower number of genetic variants. Regarding drug disposition, changes in the activity of these variants affect intestinal absorption and target tissue uptake, but more frequently they modify plasma levels due to enhanced or reduced clearance by the liver and secretion by the kidney. The consequences of these changes in transport-associated function markedly affect the effectiveness and toxicity of the treatment in patients carrying the mutation. In solid tumors, changes in the expression of these transporters and the existence of genetic variants substantially determine the response to anticancer drugs. Moreover, chemoresistance usually evolves in response to pharmacological and radiological treatment. Future personalized medicine will require monitoring these changes in a dynamic way to adapt the treatment to the weaknesses shown by each tumor at each stage in each patient.
Collapse
|
10
|
Abstract
Ergothioneine (ESH), the betaine of 2-mercapto-L-histidine, is a water-soluble naturally occurring amino acid with antioxidant properties. ESH accumulates in several human and animal tissues up to millimolar concentration through its high affinity transporter, namely the organic cation transporter 1 (OCTN1). ESH, first isolated from the ergot fungus (Claviceps purpurea), is synthesized only by Actinomycetales and non-yeast-like fungi. Plants absorb ESH via symbiotic associations between their roots and soil fungi, whereas mammals acquire it solely from dietary sources. Numerous evidence demonstrated the antioxidant and cytoprotective effects of ESH, including protection against cardiovascular diseases, chronic inflammatory conditions, ultraviolet radiation damages, and neuronal injuries. Although more than a century after its discovery has gone by, our understanding on the in vivo ESH mechanism is limited and this compound still intrigues researchers. However, recent evidence about differences in chemical redox behavior between ESH and alkylthiols, such as cysteine and glutathione, has opened new perspectives on the role of ESH during oxidative damage. In this short review, we discuss the role of ESH in the complex machinery of the cellular antioxidant defense focusing on the current knowledge on its chemical mechanism of action in the protection against cardiovascular disease.
Collapse
|
11
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
12
|
Cheah IK, Tang RMY, Yew TSZ, Lim KHC, Halliwell B. Administration of Pure Ergothioneine to Healthy Human Subjects: Uptake, Metabolism, and Effects on Biomarkers of Oxidative Damage and Inflammation. Antioxid Redox Signal 2017; 26:193-206. [PMID: 27488221 DOI: 10.1089/ars.2016.6778] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM We investigated the uptake and pharmacokinetics of l-ergothioneine (ET), a dietary thione with free radical scavenging and cytoprotective capabilities, after oral administration to humans, and its effect on biomarkers of oxidative damage and inflammation. RESULTS After oral administration, ET is avidly absorbed and retained by the body with significant elevations in plasma and whole blood concentrations, and relatively low urinary excretion (<4% of administered ET). ET levels in whole blood were highly correlated to levels of hercynine and S-methyl-ergothioneine, suggesting that they may be metabolites. After ET administration, some decreasing trends were seen in biomarkers of oxidative damage and inflammation, including allantoin (urate oxidation), 8-hydroxy-2'-deoxyguanosine (DNA damage), 8-iso-PGF2α (lipid peroxidation), protein carbonylation, and C-reactive protein. However, most of the changes were non-significant. INNOVATION This is the first study investigating the administration of pure ET to healthy human volunteers and monitoring its uptake and pharmacokinetics. This compound is rapidly gaining attention due to its unique properties, and this study lays the foundation for future human studies. CONCLUSION The uptake and retention of ET by the body suggests an important physiological function. The decreasing trend of oxidative damage biomarkers is consistent with animal studies suggesting that ET may function as a major antioxidant but perhaps only under conditions of oxidative stress. Antioxid. Redox Signal. 26, 193-206.
Collapse
Affiliation(s)
- Irwin K Cheah
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore .,3 Centre for Life Sciences, National University of Singapore, Singapore
| | - Richard M Y Tang
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore .,3 Centre for Life Sciences, National University of Singapore, Singapore
| | - Terry S Z Yew
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore .,3 Centre for Life Sciences, National University of Singapore, Singapore
| | - Keith H C Lim
- 2 Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital , Singapore
| | - Barry Halliwell
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore .,3 Centre for Life Sciences, National University of Singapore, Singapore
| |
Collapse
|
13
|
Advances in drug metabolism and pharmacogenetics research in Australia. Pharmacol Res 2017; 116:7-19. [DOI: 10.1016/j.phrs.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/04/2023]
|
14
|
Gastrolatathioneine, an unusual ergothioneine derivative from an aqueous extract of “tian ma”: A natural product co-produced by plant and symbiotic fungus. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.06.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun 2016; 478:162-167. [DOI: 10.1016/j.bbrc.2016.07.074] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
|
16
|
Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y. L503F variant of carnitine/organic cation transporter 1 efficiently transports metformin and other biguanides. J Pharm Pharmacol 2016; 68:1160-9. [DOI: 10.1111/jphp.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 12/26/2022]
Abstract
Abstract
Objectives
Carnitine/organic cation transporter 1 (OCTN1) is involved in gastrointestinal absorption and mitochondrial toxicity of biguanides in rodents, but its pharmacokinetic roles in humans are largely unknown. The purpose of this study was to clarify the transport activities of two major OCTN1 variants, L503F and I306T, for gabapentin and three biguanide drugs, metformin, buformin and phenformin.
Methods
HEK293 cells were transfected with OCTN1 gene, its variants, or vector alone, and the uptake and cytotoxicity of each drug were examined.
Key findings
Buformin was identified to be an OCTN1 substrate. Uptake of biguanides, especially metformin, mediated by OCTN1 variant L503F, which is commonly found in Caucasians, was much higher than that by the wild-type transporter (WT-OCTN1). Cytotoxicity of metformin was also greater in HEK293 cells expressing the L503F variant, compared with WT-OCTN1. Uptake of gabapentin mediated by OCTN1 variant I306T, which is commonly found in both Asians and Caucasians, was lower than that by WT-OCTN1, although uptake of the typical OCTN1 substrate ergothioneine was similar.
Conclusion
Organic cation transporter 1 variant L503F transports biguanides, especially metformin, more efficiently than WT-OCTN1, whereas the I306T variant transports gabapentin less efficiently than WT-OCTN1, suggesting that the common OCTN1 variants may alter pharmacokinetics of these drugs.
Collapse
Affiliation(s)
- Azusa Futatsugi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiori Kawabata
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Zheng J, Chan T, Zhu L, Yan X, Cao Z, Wang Y, Zhou F. The inhibitory effects of camptothecin (CPT) and its derivatives on the substrate uptakes mediated by human solute carrier transporters (SLCs). Xenobiotica 2016; 46:831-40. [DOI: 10.3109/00498254.2015.1129080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Zheng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, P.R. China,
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia,
| | - Ting Chan
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia,
| | - Ling Zhu
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia, and
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, P.R. China,
| | - Zhisong Cao
- The CHRISTUS Stehlin Foundation for Cancer Research, Houston, TX, USA
| | - Yang Wang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, P.R. China,
| | - Fanfan Zhou
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia,
| |
Collapse
|
18
|
Halliwell B, Cheah IK, Drum CL. Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis. Biochem Biophys Res Commun 2016; 470:245-250. [PMID: 26772879 DOI: 10.1016/j.bbrc.2015.12.124] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/30/2022]
Abstract
Ergothioneine (ET) is a diet-derived, thiolated derivative of histidine with antioxidant properties. Although ET is produced only by certain fungi and bacteria, it can be found at high concentrations in certain human and animal tissues and is absorbed through a specific, high affinity transporter (OCTN1). In liver, heart, joint and intestinal injury, elevated ET concentrations have been observed in injured tissues. The physiological role of ET remains unclear. We thus review current literature to generate a specific hypothesis: that the accumulation of ET in vivo is an adaptive mechanism, involving the regulated uptake and concentration of an exogenous natural compound to minimize oxidative damage.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore.
| | - Irwin K Cheah
- Department of Biochemistry, National University of Singapore, Singapore
| | - Chester L Drum
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Translational Laboratory in Genetic Medicine, 8A Biomedical Grove, Immunos, Level 5, 138648, Singapore
| |
Collapse
|
19
|
Lu X, Chan T, Xu C, Zhu L, Zhou QT, Roberts KD, Chan HK, Li J, Zhou F. Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J Antimicrob Chemother 2015; 71:403-12. [PMID: 26494147 DOI: 10.1093/jac/dkv340] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/20/2015] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Polymyxins are a last-line therapy to treat MDR Gram-negative bacterial infections. Nephrotoxicity is the dose-limiting factor for polymyxins and recent studies demonstrated significant accumulation of polymyxins in renal tubular cells. However, little is known about the mechanism of polymyxin uptake into these cells. Oligopeptide transporter 2 (PEPT2) is a solute carrier transporter (SLC) expressed at the apical membrane of renal proximal tubular cells and facilitates drug reabsorption in the kidney. In this study, we examined the role of PEPT2 in polymyxin uptake into renal tubular cells. METHODS We investigated the inhibitory effects of colistin and polymyxin B on the substrate uptake mediated through 15 essential SLCs in overexpressing HEK293 cells. The inhibitory potency of both polymyxins on PEPT2-mediated substrate uptake was measured. Fluorescence imaging was employed to investigate PEPT2-mediated uptake of the polymyxin fluorescent probe MIPS-9541 and a transport assay was conducted with MIPS-9541 and [(3)H]polymyxin B1. RESULTS Colistin and polymyxin B potently inhibited PEPT2-mediated [(3)H]glycyl-sarcosine uptake (IC50 11.4 ± 3.1 and 18.3 ± 4.2 μM, respectively). In contrast, they had no or only mild inhibitory effects on the transport activity of the other 14 SLCs evaluated. MIPS-9541 potently inhibited PEPT2-mediated [(3)H]glycyl-sarcosine uptake (IC50 15.9 μM) and is also a substrate of PEPT2 (Km 74.9 μM). [(3)H]polymyxin B1 was also significantly taken up by PEPT2-expressing cells (Km 87.3 μM). CONCLUSIONS Our study provides the first evidence of PEPT2-mediated uptake of polymyxins and contributes to a better understanding of the accumulation of polymyxins in renal tubular cells.
Collapse
Affiliation(s)
- Xiaoxi Lu
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Ting Chan
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Chenghao Xu
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Ling Zhu
- Retinal Therapeutics Research Group, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907-2091, USA
| | - Kade D Roberts
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Hak-Kim Chan
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
20
|
Galluccio M, Pochini L, Peta V, Iannì M, Scalise M, Indiveri C. Functional and molecular effects of mercury compounds on the human OCTN1 cation transporter: C50 and C136 are the targets for potent inhibition. Toxicol Sci 2014; 144:105-13. [PMID: 25490951 DOI: 10.1093/toxsci/kfu259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The effect of mercury compounds has been tested on the organic cation transporter, hOCTN1. MeHg(+), Hg(2+), or Cd(2+) caused strong inhibition of transport. 1,4-Dithioerythritol (DTE), cysteine (Cys), and N-acetyl-l-cysteine reversed (NAC) the inhibition at different extents. 2-Aminoethyl methanethiosulfonate hydrobromide (MTSEA), a prototype SH reagent, exerted inhibition of transport similar to that observed for the mercurial agents. To investigate the mechanism of action of mercurials, mutants of hOCTN1 in which each of the Cys residues was substituted by Ala have been constructed, over-expressed in Escherichia coli, and purified. Tetraethylammonium chloride (TEA) uptake mediated by each mutant in proteoliposomes was comparable to that of wild type (WT). IC50 values of the WT and mutants for the mercury compounds were derived from dose-response analyses. The mutants C50A and C136A showed significant increase of IC50 indicating that the 2 Cys residues were involved in the interaction with the mercury compounds and inhibition of the transporter. The double mutant C50A/C136A was constructed; the lack of inhibition confirmed that the 2 Cys residues are the targets of mercury compounds. MTSEA showed similar behavior with respect to the mercurial reagents with the difference that increased IC50 was observed also in the C81A mutant. Similar results were obtained when transport was measured as acetylcholine uptake. Ethyl mercury (Thimerosal) inhibited hOCTN1 as well. C50A, C50A/C136A and, at very lower extent, C136A showed increased IC50 indicating that C50 was the major target of this mercury compound. The homology model of hOCTN1 was built using as template PiPT and validated by the experimental data on mutant proteins.
Collapse
Affiliation(s)
- Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Valentina Peta
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Maria Iannì
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
21
|
Zheng J, Chan T, Cheung FSG, Zhu L, Murray M, Zhou F. PDZK1 and NHERF1 regulate the function of human organic anion transporting polypeptide 1A2 (OATP1A2) by modulating its subcellular trafficking and stability. PLoS One 2014; 9:e94712. [PMID: 24728453 PMCID: PMC3984249 DOI: 10.1371/journal.pone.0094712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (Vmax: 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)−1 in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability.
Collapse
Affiliation(s)
- Jian Zheng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Ting Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Ling Zhu
- Retinal Therapeutics Research Group, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
22
|
Chan T, Li Z, Zheng J, Cheung FSG, Zhu L, Zhou F. Inhibitory effects of apigenin and kaempferol on the essential solute carrier transporters. World J Pharmacol 2013; 2:115-121. [DOI: 10.5497/wjp.v2.i4.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/17/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the inhibitory effects of apigenin and kaempferol on the uptake of several important solute carrier (SLC) transporters.
METHODS: Various SLC transporters including the essential human organic anion transporter 1 (OAT1), OAT2, OAT3 and OAT4 as well as the important organic cation transporter 1 (OCTN1) and OCTN2, were over-expressed in human embryonic kidney (HEK)-293 cells, a well-established cell model of transporter studies. Transport uptake assay was performed 24 h after the transfection. The transport activity was assessed with the uptake of previously determined transporter model substrates and the inhibitory effect of apigenin and kaempferol was evaluated with the substrate uptake in the presence of 10 μmol/L of each compound. Uptake measurements with varying concentrations of inhibitors (ranged from 0.0001 to 50 μmol/L) were performed to further characterize the inhibitory potency of apigenin and kaempferol. The IC50 value (the concentration that inhibits 50% of the transporter function) of each compound was then calculated by the nonlinear regression model of Graphpad Prism 6.0 software.
RESULTS: Our data indicated that apigenin could potently inhibit the uptake of estrone-3-sulfate (ES) mediated by the HEK-293 cells expressing OAT2, OAT3 and OAT4 as well as the L-ergothioneine uptake via OCTN1-expressing HEK-293 cells. Among these transporters, the most prominent inhibition of apigenin was observed in the case of OAT3. Kaempferol showed significant inhibitory effects on the uptake of ES mediated through OAT2 and OAT3. Impaired L-ergothioneine uptake due to the presence of kaempferol was also observed in OCTN1-expressing HEK-293 cells. Similar to apigenin, kaempferol showed the most potent inhibitory effect on OAT3 as well. To further assess the inhibitory potencies of these two compounds on the uptake of ES mediated by OAT3-expressing HEK-293 cells, their IC50 values were then determined. Both chemicals showed pronounced inhibitory potencies on OAT3 with the IC50 values of 1.7 ± 0.1 and 1.0 ± 0.1 μmol/L (P < 0.01) for apigenin and kaempferol, respectively.
CONCLUSION: Both apigenin and kaempferol are potent inhibitors of OAT3; precautions will be necessary when co-administrating them with drugs that are substrates of OAT3.
Collapse
|
23
|
Li Z, Cheung FSG, Zheng J, Chan T, Zhu L, Zhou F. Interaction of the Bioactive Flavonol, Icariin, with the Essential Human Solute Carrier Transporters. J Biochem Mol Toxicol 2013; 28:91-7. [DOI: 10.1002/jbt.21540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/13/2013] [Accepted: 10/25/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Li
- Faculty of Pharmacy; University of Sydney; Sydney New SouthWales Australia
| | | | - Jian Zheng
- Faculty of Pharmacy; University of Sydney; Sydney New SouthWales Australia
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field; Ministry of Education; Harbin People's Republic of China
| | - Ting Chan
- Faculty of Pharmacy; University of Sydney; Sydney New SouthWales Australia
| | - Ling Zhu
- Retinal Therapeutics Research Group; Save Sight Institute, The University of Sydney; Sydney New SouthWales Australia
| | - Fanfan Zhou
- Faculty of Pharmacy; University of Sydney; Sydney New SouthWales Australia
| |
Collapse
|