1
|
Kong S, Peng Y, Liu Q, Xie Q, Qiu L, Lin J, Xie M. Preclinical Evaluation of a PSMA Aptamer-Based Bifunctional PET and Fluorescent Probe. Bioconjug Chem 2024; 35:1352-1362. [PMID: 39187748 DOI: 10.1021/acs.bioconjchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Prostate cancer is the most prevalent malignant tumor affecting male individuals worldwide. The accurate early detection of prostate cancer is crucial to preventing unnecessary diagnosis and subsequent excessive treatment. Prostate-specific membrane antigen (PSMA) has emerged as a promising biomarker for the diagnosis of prostate cancer. In this study, a dual-modality imaging probe utilizing aptamer technology was developed for positron emission tomography/near-infrared fluorescence (PET/NIRF) imaging, and the specificity and sensitivity of the probe toward PSMA were evaluated both in vitro and in vivo. The probe precursor NOTA-PSMA-Cy5 was synthesized via automated solid-phase oligonucleotide synthesis. Subsequently, the PET/NIRF dual-modality probe [68Ga]Ga-NOTA-PSMA-Cy5 was successfully prepared and exhibited favorable fluorescence properties and stability in vitro. The binding specificity of [68Ga]Ga-NOTA-PSMA-Cy5 to PSMA was assessed through flow cytometry, fluorescence imaging, and cellular uptake experiments in LNCaP cells and PC-3 cells. In vivo PET/NIRF imaging studies demonstrated the sensitive and specific binding of [68Ga]Ga-NOTA-PSMA-Cy5 to PSMA. Overall, the PET/NIRF dual-modality probe [68Ga]Ga-NOTA-PSMA-Cy5 shows promise for the diagnosis of prostate cancer and for the fluorescence-guided identification of PSMA-positive cancer lesions during surgical procedures.
Collapse
Affiliation(s)
- Sudong Kong
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Suzhou Biosyntech Co., Ltd., Suzhou 215300, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Quan Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
2
|
Ho KV, Tatum DS, Watkinson L, Carmack T, Jia F, Mascioni A, Maitz CA, Magda D, Anderson CJ. Single Chelator-Minibody Theranostic Agents for 89Zr PET Imaging and 177Lu Radiopharmaceutical Therapy of PSMA-Expressing Prostate Cancer. J Nucl Med 2024; 65:1435-1442. [PMID: 39142831 PMCID: PMC11372255 DOI: 10.2967/jnumed.124.267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
Here we describe an anti-prostate-specific membrane antigen (PSMA) minibody (IAB2MA) conjugated to an octadentate, macrocyclic chelator based on four 1-hydroxypyridin-2-one coordinating units (Lumi804 [L804]) labeled with 89Zr (PET imaging) and 177Lu (radiopharmaceutical therapy), with the goal of developing safer and more efficacious treatment options for prostate cancer. Methods: L804 was compared with the current gold standard chelators, DOTA and deferoxamine (DFO), conjugated to IAB2MA for radiolabeling with 177Lu and 89Zr in cell binding, preclinical biodistribution, imaging, dosimetry, and efficacy studies in the PSMA-positive PC3-PIP tumor-bearing mouse model of prostate cancer. Results: Quantitative radiolabeling (>99% radiochemical yield) of L804-IAB2MA with 177Lu or 89Zr was achieved at ambient temperature in under 30 min, comparable to 89Zr labeling of DFO-IAB2MA. In contrast, DOTA-IAB2MA was radiolabeled with 177Lu for 30 min at 37°C in approximately 90% radiochemical yield, requiring further purification. Using europium(III) as a luminescent surrogate, high binding affinity of Eu-L804-IAB2MA to PSMA was demonstrated in PC3-PIP cells (dissociation constant, 4.6 ± 0.6 nM). All 4 radiolabeled constructs showed significantly higher levels of internalization after 30 min in the PC3-PIP cells than in PSMA-negative PC3-FLU cells. The accumulation of 177Lu- and 89Zr-L804-IAB2MA in PC3-PIP tumors and all organs examined (i.e., heart, liver, spleen, kidney, muscle, salivary glands, lacrimal glands, carcass, and bone) was significantly lower than that of 177Lu-DOTA-IAB2MA and 89Zr-DFO-IAB2MA at 96 and 72 h after injection, respectively. Generally, SPECT/CT and PET/CT imaging data showed no significant difference in the SUVmean of the tumors or muscle between the radiotracers. Dosimetry analysis via both organ-level and voxel-level dose calculation methods indicated significantly higher absorbed doses of 177Lu-DOTA-IAB2MA in tumors, kidney, liver, muscle, and spleen than of 177Lu-L804-IAB2MA. PC3-PIP tumor-bearing mice treated with single doses of 177Lu-L804-IAB2MA (18.4 or 22.2 MBq) exhibited significantly prolonged survival and reduced tumor volume compared with unlabeled minibody control. No significant difference in survival was observed between groups of mice treated with 177Lu-L804-IAB2MA or 177Lu-DOTA-IAB2MA (18.4 or 22.2 MBq). Treatment with 177Lu-L804-IAB2MA resulted in lower absorbed doses in tumors and less toxicity than that of 177Lu-DOTA-IAB2MA. Conclusion: 89Zr- and 177Lu-L804-IAB2MA may be a promising theranostic pair for imaging and therapy of prostate cancer.
Collapse
Affiliation(s)
- Khanh-Van Ho
- Department of Chemistry, University of Missouri, Columbia, Missouri
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
| | | | - Lisa Watkinson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Terry Carmack
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Fang Jia
- ImaginAb Inc., Inglewood, California
| | | | - Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri
- MU Research Reactor, University of Missouri, Columbia, Missouri
| | | | - Carolyn J Anderson
- Department of Chemistry, University of Missouri, Columbia, Missouri;
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
- Department of Radiology, University of Missouri, Columbia, Missouri; and
- Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
3
|
Wood JL, Ghosh S, Houston ZH, Fletcher NL, Humphries J, Mardon K, Akhter DT, Tieu W, Ivashkevich A, Wheatcroft MP, Thurecht KJ, Codd R. A first-in-class dual-chelator theranostic agent designed for use with imaging-therapy radiometal pairs of different elements. Chem Sci 2024; 15:11748-11760. [PMID: 39092114 PMCID: PMC11290327 DOI: 10.1039/d4sc02851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024] Open
Abstract
A covalent adduct of DFOB and DOTA separated by a l-lysine residue (DFOB-l-Lys-N 6-DOTA) exhibited remarkable regioselective metal binding, with {1H}-13C NMR spectral shifts supporting Zr(iv) coordinating to the DFOB unit, and Lu(iii) coordinating to the DOTA unit. This first-in-class, dual-chelator theranostic design could enable the use of imaging-therapy radiometal pairs of different elements, such as 89Zr for positron emission tomography (PET) imaging and 177Lu for low-energy β--particle radiation therapy. DFOB-l-Lys-N 6-DOTA was elaborated with an amine-terminated polyethylene glycol extender unit (PEG4) to give DFOB-N 2-(PEG4)-l-Lys-N 6-DOTA (compound D2) to enable installation of a phenyl-isothiocyanate group (Ph-NCS) for subsequent monoclonal antibody (mAb) conjugation (mAb = HuJ591). D2-mAb was radiolabeled with 89Zr or 177Lu to produce [89Zr]Zr-D2-mAb or [177Lu]Lu-D2-mAb, respectively, and in vivo PET/CT imaging and in vivo/ex vivo biodistribution properties measured with the matched controls [89Zr]Zr-DFOB-mAb or [177Lu]Lu-DOTA-mAb in a murine LNCaP prostate tumour xenograft model. The 89Zr-immuno-PET imaging function of [89Zr]Zr-D2-mAb and [89Zr]Zr-DFOB-mAb showed no significant difference in tumour accumulation at 48 or 120 h post injection. [89Zr]Zr-D2-mAb and [177Lu]Lu-D2-mAb showed similar ex vivo biodistribution properties at 120 h post-injection. Tumour uptake of [177Lu]Lu-D2-mAb shown by SPECT/CT imaging at 48 h and 120 h post-injection supported the therapeutic function of D2, which was corroborated by similar therapeutic efficacy between [177Lu]Lu-D2-mAb and [177Lu]Lu-DOTA-mAb, both showing a sustained reduction in tumour volume (>80% over 65 d) compared to vehicle. The work identifies D2 as a trifunctional chelator that could expand capabilities in mixed-element radiometal theranostics to improve dosimetry and the clinical outcomes of molecularly targeted radiation.
Collapse
Affiliation(s)
- James L Wood
- The University of Sydney, School of Medical Sciences New South Wales 2006 Australia
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Zachary H Houston
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - James Humphries
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Karine Mardon
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Dewan T Akhter
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute (SAHMRI) Adelaide Australia
| | | | | | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Rachel Codd
- The University of Sydney, School of Medical Sciences New South Wales 2006 Australia
| |
Collapse
|
4
|
Rezazadeh F, Ramos N, Saliganan AD, Al-Hallak N, Chen K, Mohamad B, Wiesend WN, Viola NT. Detection of IL12/23p40 via PET Visualizes Inflammatory Bowel Disease. J Nucl Med 2023; 64:1806-1814. [PMID: 37474270 PMCID: PMC10626378 DOI: 10.2967/jnumed.123.265649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes both Crohn disease and ulcerative colitis, is a relapsing inflammatory disease of the gastrointestinal tract. Long-term chronic inflammatory conditions elevate the patient's risk of colorectal cancer (CRC). Currently, diagnosis requires endoscopy with biopsy. This procedure is invasive and requires a bowel-preparatory regimen, adding to patient burden. Interleukin 12 (IL12) and interleukin 23 (IL23) play key roles in inflammation, especially in the pathogenesis of IBD, and are established therapeutic targets. We propose that imaging of IL12/23 and its p40 subunit in IBD via immuno-PET potentially provides a new noninvasive diagnostic approach. Methods: Our aim was to investigate the potential of immuno-PET to image inflammation in a chemically induced mouse model of colitis using dextran sodium sulfate by targeting IL12/23p40 with a 89Zr-radiolabeled anti-IL12/23p40 antibody. Results: High uptake of the IL12/23p40 immuno-PET agent was exhibited by dextran sodium sulfate-administered mice, and this uptake correlated with increased IL12/23p40 present in the sera. Competitive binding studies confirmed the specificity of the radiotracer for IL12/23p40 in the gastrointestinal tract. Conclusion: These promising results demonstrate the utility of this radiotracer as an imaging biomarker of IBD. Moreover, IL12/23p40 immuno-PET can potentially guide treatment decisions for IBD management.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Nicholas Ramos
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Allen-Dexter Saliganan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Kang Chen
- Departments of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Bashar Mohamad
- Department of Gastroenterology, Wayne State University, Detroit, Michigan; and
| | - Wendy N Wiesend
- Department of Anatomic Pathology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan
| | - Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan;
| |
Collapse
|
5
|
Olkowski C, Fernandes B, Griffiths GL, Lin F, Choyke PL. Preclinical Imaging of Prostate Cancer. Semin Nucl Med 2023; 53:644-662. [PMID: 36882335 PMCID: PMC10440231 DOI: 10.1053/j.semnuclmed.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 03/07/2023]
Abstract
Prostate cancer remains a major cause of mortality and morbidity, affecting millions of men, with a large percentage expected to develop the disease as they reach advanced ages. Treatment and management advances have been dramatic over the past 50 years or so, and one aspect of these improvements is reflected in the multiple advances in diagnostic imaging techniques. Much attention has been focused on molecular imaging techniques that offer high sensitivity and specificity and can now more accurately assess disease status and detect recurrence earlier. During development of molecular imaging probes, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) must be evaluated in preclinical models of the disease. If such agents are to be translated to the clinic, where patients undergoing these imaging modalities are injected with a molecular imaging probe, these agents must first be approved by the FDA and other regulatory agencies prior to their adoption in clinical practice. Scientists have worked assiduously to develop preclinical models of prostate cancer that are relevant to the human disease to enable testing of these probes and related targeted drugs. Challenges in developing reproducible and robust models of human disease in animals are beset with practical issues such as the lack of natural occurrence of prostate cancer in mature male animals, the difficulty of initiating disease in immune-competent animals and the sheer size differences between humans and conveniently smaller animals such as rodents. Thus, compromises in what is ideal and what can be achieved have had to be made. The workhorse of preclinical animal models has been, and remains, the investigation of human xenograft tumor models in athymic immunocompromised mice. Later models have used other immunocompromised models as they have been found and developed, including the use of directly derived patient tumor tissues, completely immunocompromised mice, orthotopic methods for inducing prostate cancer within the mouse prostate itself and metastatic models of advanced disease. These models have been developed in close parallel with advances in imaging agent chemistries, radionuclide developments, computer electronics advances, radiometric dosimetry, biotechnologies, organoid technologies, advances in in vitro diagnostics, and overall deeper understandings of disease initiation, development, immunology, and genetics. The combination of molecular models of prostatic disease with radiometric-based studies in small animals will always remain spatially limited due to the inherent resolution sensitivity limits of PET and SPECT decay processes, fundamentally set at around a 0.5 cm resolution limit. Nevertheless, it is central to researcher's efforts and to successful clinical translation that the best animal models are adopted, accepted, and scientifically verified as part of this truly interdisciplinary approach to addressing this important disease.
Collapse
Affiliation(s)
- Colleen Olkowski
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD
| | - Bruna Fernandes
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD
| | - Gary L Griffiths
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Frank Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD.
| |
Collapse
|
6
|
Pakula RJ, Scott PJH. Applications of radiolabeled antibodies in neuroscience and neuro-oncology. J Labelled Comp Radiopharm 2023; 66:269-285. [PMID: 37322805 DOI: 10.1002/jlcr.4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Positron emission tomography (PET) is a powerful tool in medicine and drug development, allowing for non-invasive imaging and quantitation of biological processes in live organisms. Targets are often probed with small molecules, but antibody-based PET is expanding because of many benefits, including ease of design of new antibodies toward targets, as well as the very strong affinities that can be expected. Application of antibodies to PET imaging of targets in the central nervous system (CNS) is a particularly nascent field, but one with tremendous potential. In this review, we discuss the growth of PET in imaging of CNS targets, present the promises and progress in antibody-based CNS PET, explore challenges faced by the field, and discuss questions that this promising approach will need to answer moving forward for imaging and perhaps even radiotherapy.
Collapse
Affiliation(s)
- Ryan J Pakula
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Rezazadeh F, Ramos N, Saliganan AD, Barr S, Peraino N, Schomburg F, Rancour D, Viola NT. Evaluation and selection of a lead diabody for interferon-γ PET imaging. Nucl Med Biol 2022; 114-115:162-167. [PMID: 35753939 DOI: 10.1016/j.nucmedbio.2022.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Interferon-γ (IFN-γ) is an appealing target to evaluate immune response in cancer immunotherapy as it is a hallmark of an active immune system. Imaging and detection via immunopositron emission tomography (immunoPET) of this soluble cytokine has been made feasible using a 89Zr-labeled (t 1/2 ~ 3.27 d) monoclonal antibody (mAb). Because of its size, using a full-length mAb as an imaging vector is not ideal for repeat serial imaging because of its prolonged blood pool residency and tumor accumulation resulting in lengthier wait times between administration and imaging. This consequently impacts the potential to image a dynamic immune response in real time. This work compares 89Zr-labeled diabodies (Db) designed with variable linker lengths between the VH and VL regions with the goal of selecting a lead Db for future studies. METHODS AND RESULTS Four Db fragments with various linker lengths (HL-n, n = 7-13 amino acids) were each conjugated to desferrioxamine (DFO). The number of attached chelates was analyzed via mass spectrometry with all immunoconjugates exhibiting one unit of DFO attached. Db-DFO conjugates were subsequently radiolabeled with zirconium-89. All constructs radiolabeled with high yields. Each radioimmunoconjugate was tested for reactivity to IFN-γ. All tracers except for [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-9 exhibited comparable immunoreactivities (>90 %) to the radiolabeled parent mAb (95.8 %). At 24 h post-labeling, the IRF values were retained except for the HL-13 construct. Imaging scans and tissue distribution studies acquired in mice bearing CT26 syngeneic colorectal tumors between 1 and 24 h post-tracer administration demonstrated variable clearance kinetics and tumor localization of each radiotracer. HL-7 had higher binding in non-tumor tissues compared to HL-11 and HL-13 at 3 h p.i. Competitive binding studies versus unmodified parent mAb (AN-18) demonstrated blocking of radiolabeled HL-11 and HL-13. [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-7 was inadequately blocked. CONCLUSION Despite nuanced differences in linker lengths, our data demonstrates that [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-11 exhibited the best radiotracer properties for the assessment of IFN-γ production in vivo. Work is currently underway to test the potential of using shorter-lived isotopes, like copper-64 (t1/2 ~ 12.7 h) to match pharmacokinetics and half-lives.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States of America
| | - Nicholas Ramos
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States of America
| | - Allen-Dexter Saliganan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States of America
| | - Stephen Barr
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States of America
| | - Nicholas Peraino
- Lumigen Instrument Center, Wayne State University, Detroit, MI 48202, United States of America
| | - Fritz Schomburg
- Lytic Solutions, LLC, Madison, WI 53713, United States of America
| | - David Rancour
- Lytic Solutions, LLC, Madison, WI 53713, United States of America
| | - Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States of America.
| |
Collapse
|
8
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Viola NT, Glassbrook JE, Kalluri JR, Hackett JB, Wicker MN, Sternberg J, Gibson HM. Evaluation of an ImmunoPET Tracer for IL-12 in a Preclinical Model of Inflammatory Immune Responses. Front Immunol 2022; 13:870110. [PMID: 35634303 PMCID: PMC9130849 DOI: 10.3389/fimmu.2022.870110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
The immune cytokine interleukin-12 (IL-12) is involved in cancer initiation and progression, autoimmunity, as well as graft versus host disease. The ability to monitor IL-12 via imaging may provide insight into various immune processes, including levels of antitumor immunity, inflammation, and infection due to its functions in immune signaling. Here, we report the development and preclinical evaluation of an antibody-based IL-12-specific positron emission tomography (PET) tracer. To mimic localized infection and stimulate IL-12 production, BALB/c mice were administered lipopolysaccharide (LPS) intramuscularly. [89Zr]Zr-DFO-αIL12 tracer was given one hour post LPS administration and PET images were taken after 5, 24, 48, and 72 hours. We observed significantly higher uptake in LPS-treated mice as compared to controls. Biodistribution of the tracer was evaluated in a separate cohort of mice, where tracer uptake was elevated in muscle, spleen, lymph nodes, and intestines after LPS administration. To evaluate the utility of [89Zr]Zr-DFO-αIL12 as an indicator of antigen presenting cell activation after cancer immunotherapy, we compared PET imaging with and without intratumoral delivery of oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (Adv/GM-CSF), which we have shown promotes anti-tumor immunity. BALB/c mice were inoculated orthotopically with the mouse mammary carcinoma line TUBO. Once TUBO tumors reached a volume of ~50 mm3, mice were treated with either three intratumoral injections of 108 PFU Adv/GM-CSF or vehicle control, given every other day. Upon the last dose, [89Zr]Zr-DFO-αIL12 was injected intravenously and 72 hours later all mice were imaged via PET. Tumor-specific uptake of [89Zr]Zr-DFO-αIL12 was higher in Adv/GM-CSF treated mice versus controls. Tissues were harvested after imaging, and elevated levels of macrophages and CD8+ Tc cells were detected in Adv/GM-CSF treated tumors by immunohistochemistry. We validated that IL-12 expression was induced after Adv/GM-CSF by qRT-PCR. Importantly, expression of genes activated by IL-12 (IFNγ, TNFα, and IL-18) were unaffected after IL-12 imaging relative to mice receiving an IgG control tracer, suggesting the tracer antibody does not significantly disrupt signaling. Our results indicate that targeting soluble cytokines such as IL-12 by PET imaging with antibody tracers may serve as a noninvasive method to evaluate the function of the immune milieu in situ.
Collapse
Affiliation(s)
- Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - James E Glassbrook
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Department of Biochemistry Microbiology and Immunology, Wayne State University, Detroit, MI, United States
| | - Jhansi R Kalluri
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Justin B Hackett
- Cancer Biology Graduate Program, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Madison N Wicker
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Joshua Sternberg
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Heather M Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
10
|
Compte M, Sanz L, Álvarez-Vallina L. Applications of trimerbodies in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:71-87. [PMID: 35777865 DOI: 10.1016/bs.ircmb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trimerbodies, with their unique structural and functional properties, are the basis of a new generation of therapeutic antibodies, which due to their small size and plasticity are ideal for the generation of novel biological protein drugs with multiple competitive advantages over conventional full-length monoclonal antibodies. Since their emergence, trimerbodies have been used in preclinical cancer diagnosis and therapy. Trimerbodies are highly adaptable molecules, as they allow target-specific modulation of T cell-mediated anti-tumor immunity to enhance preexisting responses or to generate de novo immune responses. In fact, a tumor-specific humanized 4-1BB-agonistic trimerbody has shown a rather impressive safety and efficacy profile in preclinical studies making it a realistic option for clinical development. Moreover, thanks to the avidity effect they are endowed with considerable therapeutic potential as carriers to deliver cytotoxic payloads to tumors. In addition, molecular imaging studies could benefit from some intermediate-sized trivalent trimerbodies as promising candidates for targeted therapy and tumor imaging.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis S.L., Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
11
|
Vlachostergios PJ, Niaz MJ, Thomas C, Christos PJ, Osborne JR, Margolis DJA, Khani F, Bander NH, Scherr DS, Tagawa ST. Pilot study of the diagnostic utility of 89 Zr-df-IAB2M and 68 Ga-PSMA-11 PET imaging and multiparametric MRI in localized prostate cancer. Prostate 2022; 82:483-492. [PMID: 34985786 DOI: 10.1002/pros.24294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Accurate diagnosis of localized prostate cancer (PCa) is limited by inadequacy of multiparametric (mp) MRI to fully identify and differentiate localized malignant tissue from benign pathologies. Prostate-specific membrane antigen (PSMA) represents an excellent target for molecular imaging. IAB2M, an 85-kD minibody derived from a de-immunized monoclonal antibody directed at the extracellular domain of human PSMA (huJ591), and PSMA-11, a small molecule ligand have been previously tested as probes for visualization of recurrent/metastatic PCa with PET/CT. This pilot, non-randomized trial studied their diagnostic utility in patients (pts) with localized PCa. METHODS Pts planned for radical prostatectomy (RP) were enrolled and underwent mpMRI and PET/CT imaging with 89 Zr-df-IAB2M and/or 68 Ga-PSMA-PET/CT. Image results were read by a radiologist blinded to clinical information and pathology results, mapped and compared to corresponding histopathology findings from all lesions, both clinically significant and nonsignificant. The detection rates of all three imaging modalities were measured and correlated. RESULTS 20 pts with median age of 64.5 (46-79) years and PSA level of 7.5 (1.6-36.56) ng/ml were enrolled. 19 pts underwent RP and were imaged pre-operatively with 89 Zr-Df-IAB2M PET/CT and mpMRI. Nine of those were imaged using 68 Ga-PSMA-11 as well. Out of 48 intraprostatic lesions verified on surgical pathology, IAB2M PET/CT was able to detect 36 (75%). A similar proportion of pathologically confirmed, clinically significant lesions (22/29, 76%) was detected. IAB2M PET/CT was also able to identify 14/19 (74%) extraprostatic lesions. The performance of mpMRI was inferior, with 24/48 detectable lesions (50%) and 18/29 clinically significant intraprostatic lesions (62%). Compared to the current standard (mpMRI), IAB2M PET/CT had a sensitivity of 88%, specificity 38%, positive predictive value 58%, and accuracy 63%. In 9 pts who underwent Ga-PSMA-11 as well, the latter yielded a detection rate of 70% (14/20), which was also seen in clinically significant lesions (10/14, 71%). Ga-PSMA-11 PET/CT also detected 4/6 (67%) extraprostatic lesions. CONCLUSIONS In this pilot study, the performance of 89 Zr-df-IAB2M was superior to mpMRI and similar to 68 Ga-PSMA-11 PET/CT. The higher detection rate of PSMA-PET supports its use as a diagnostic tool with consequent management change implications in men with localized PCa.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Muhammad J Niaz
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Charlene Thomas
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Paul J Christos
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Joseph R Osborne
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Daniel J A Margolis
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Division of Body Imaging, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Francesca Khani
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Neil H Bander
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Douglas S Scherr
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Scott T Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
El Fakiri M, Geis NM, Ayada N, Eder M, Eder AC. PSMA-Targeting Radiopharmaceuticals for Prostate Cancer Therapy: Recent Developments and Future Perspectives. Cancers (Basel) 2021; 13:cancers13163967. [PMID: 34439121 PMCID: PMC8393521 DOI: 10.3390/cancers13163967] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary One of the most frequently diagnosed cancer in men is adenocarcinoma of the prostate. Once the disease is metastatic, only very limited treatment options are available, resulting in a very short median survival time of 13 months; however, this reality is gradually changing due to the discovery of prostate-specific membrane antigen (PSMA), a protein that is present in cancerous prostate tissue. Researchers have developed pharmaceuticals specific for PSMA, ranging from antibodies (mAb) to low-molecular weight molecules coupled to beta minus and alpha-emitting radionuclides for their use in targeted radionuclide therapy (TRT). TRT offers the possibility of selectively removing cancer tissue via the emission of radiation or radioactive particles within the tumour. In this article, the major milestones in PSMA ligand research and the therapeutic developments are summarised, together with a future perspective on the enhancement of current therapeutic approaches. Abstract Prostate cancer (PC) is the second most common cancer among men, with 1.3 million yearly cases worldwide. Among those cancer-afflicted men, 30% will develop metastases and some will progress into metastatic castration-resistant prostate cancer (mCRPC), which is associated with a poor prognosis and median survival time that ranges from nine to 13 months. Nevertheless, the discovery of prostate specific membrane antigen (PSMA), a marker overexpressed in the majority of prostatic cancerous tissue, revolutionised PC care. Ever since, PSMA-targeted radionuclide therapy has gained remarkable international visibility in translational oncology. Furthermore, on first clinical application, it has shown significant influence on therapeutic management and patient care in metastatic and hormone-refractory prostate cancer, a disease that previously had remained immedicable. In this article, we provide a general overview of the main milestones in the development of ligands for PSMA-targeted radionuclide therapy, ranging from the firstly developed monoclonal antibodies to the current state-of-the-art low molecular weight entities conjugated with various radionuclides, as well as potential future efforts related to PSMA-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nicolas M. Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-761-270-74220
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Bubenshchikov VB, Larenkov AA, Kodina GE. Preparation of 89Zr Solutions for Radiopharmaceuticals Synthesis. RADIOCHEMISTRY 2021. [DOI: 10.1134/s1066362221030152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Niaz MJ, Sun M, Skafida M, Niaz MO, Ivanidze J, Osborne JR, O'Dwyer E. Review of commonly used prostate specific PET tracers used in prostate cancer imaging in current clinical practice. Clin Imaging 2021; 79:278-288. [PMID: 34182326 DOI: 10.1016/j.clinimag.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022]
Abstract
18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) underperforms in detecting prostate cancer (PCa) due to inherent characteristics of primary and metastatic tumors, including relatively low rate of glucose utilization. Consequently, alternate PCa PET imaging agents targeting other aspects of PCa cell biology have been developed for clinical practice. The most common dedicated PET imaging tracers include 68Ga/18F prostate-specific membrane antigen (PSMA), 11C-Choline, and 18F-fluciclovine (Axumin™). This review will describe how these agents target specific inherent characteristics of PCa and explore the current literature for these agents for both primary and recurrent PCa, comparing the advantages and limitations of each tracer. Both 11C-Choline and 18F-Fluciclovine PET have been shown to detect nodal and osseous disease at higher rates compared to FDG-PET but offer no additional benefit in detecting prostate disease, especially in primary staging. As a result, PSMA PET, specifically 68Ga-PSMA-11, has emerged as a key imaging option for both primary and recurrent cancer. PSMA PET may be more sensitive than MRI at the local level and more sensitive than 11C-Choline and 18F-Fluciclovine PET for distant disease. Furthermore, compared to 11C-Choline and 18F-Fluciclovine PET, 68Ga-PSMA-11 PET has higher detection rates at low PSA levels (<2 ng/dL). With improved delineation of disease, PSMA imaging has influenced treatment planning; radiation fields can be narrowed, and patients with isolated or oligo-metastatic disease can be spared systemic therapy. The retrospective nature of many of the studies describing these PCa imaging modalities complicates their assessment and comparison.
Collapse
Affiliation(s)
| | - Michael Sun
- Medicine, Weill Cornell Medical College, New York, United States of America
| | - Myrto Skafida
- Molecular imaging and Therapeutics, Weill Cornell Medical College, New York, United States of America
| | | | - Jana Ivanidze
- Molecular imaging and Therapeutics, Weill Cornell Medical College, New York, United States of America
| | - Joseph R Osborne
- Molecular imaging and Therapeutics, Weill Cornell Medical College, New York, United States of America
| | - Elisabeth O'Dwyer
- Molecular imaging and Therapeutics, Weill Cornell Medical College, New York, United States of America
| |
Collapse
|
15
|
Tsai WTK, Zettlitz KA, Dahlbom M, Reiter RE, Wu AM. Evaluation of [ 131I]I- and [ 177Lu]Lu-DTPA-A11 Minibody for Radioimmunotherapy in a Preclinical Model of PSCA-Expressing Prostate Cancer. Mol Imaging Biol 2020; 22:1380-1391. [PMID: 32661830 PMCID: PMC7688013 DOI: 10.1007/s11307-020-01518-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Radioimmunotherapy uses tumor-specific antibodies to deliver therapeutic radionuclides, but hematological toxicity due to the long serum half-life of intact antibodies remains a challenge. We evaluated a smaller antibody fragment, the minibody, with faster kinetics and a potentially improved therapeutic index. PROCEDURES The anti-prostate stem cell antigen (PSCA) minibody (A11 Mb) was radiolabeled with iodine-124 ([124I]I-A11 Mb) or conjugated with deferoxamine (DFO) and labeled with zirconium-89 ([89Zr]Zr-DFO-A11 Mb) for surrogate immunoPET to profile pharmacokinetics in a human prostate cancer xenograft model. Subsequently, minibodies labeled with two therapeutic beta emitters, directly iodinated [131I]I-A11 Mb (non-residualizing) and 177Lu chelated using DTPA ([177Lu]Lu-DTPA-A11 Mb) (residualizing), were compared for in vitro antigen-specific cytotoxicity. Full biodistribution studies (in 22Rv1-PSCA tumor bearing and hPSCA knock-in mice) were conducted for dosimetry calculations. Finally, the lead candidate [131I]I-A11 Mb was evaluated in a radioimmunotherapy experiment. Escalating single doses (3.7, 11, or 37 MBq) and saline control were administered to 22Rv1-PSCA tumor bearing mice and anti-tumor effects (tumor volume) and toxicity (body weight) were monitored. RESULTS Minibodies radiolabeled with therapeutic beta emitters [131I]I-A11 Mb and [177Lu]Lu-DTPA-A11 Mb exhibited comparable tumor cell growth inhibition in vitro. In vivo surrogate immunoPET imaging using [89Zr]Zr-DFO-A11 Mb showed activity retention in liver and kidney up to 72 h, while [124I]I-A11 Mb cleared from liver, kidney, and blood by 48 h. Based on full biodistribution and dosimetry calculations, administering 37 MBq [131I]I-A11 Mb was predicted to deliver a favorable dose to the tumor (35 Gy), with a therapeutic index of 22 (tumor:bone marrow). For [177Lu]Lu-DTPA-A11 Mb, the kidneys would be dose-limiting, and the maximum tolerated activity (7.4 MBq) was not predicted to deliver an effective radiation dose to tumor. Radioimmunotherapy with a single dose of [131I]I-A11 Mb showed dose-dependent tumor inhibition with minimal off-target toxicity and improved median survival (19 and 24 days, P < 0.001) compared with untreated mice (12 days). CONCLUSIONS These findings show the potential of the anti-PSCA minibody for targeted radioimmunotherapy with minimal toxicity, and the application of immunoPET and dosimetry for personalized treatment.
Collapse
Affiliation(s)
- Wen-Ting K Tsai
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UC Los Angeles, Los Angeles, CA, USA
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kirstin A Zettlitz
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UC Los Angeles, Los Angeles, CA, USA
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Magnus Dahlbom
- Department of Molecular and Medical Pharmacology, Ahmanson Translational Imaging Division, David Geffen School of Medicine, UC Los Angeles, Los Angeles, CA, USA
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine, UC Los Angeles, Los Angeles, CA, USA
| | - Anna M Wu
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UC Los Angeles, Los Angeles, CA, USA.
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
16
|
Pereira PMR, Mandleywala K, Ragupathi A, Lewis JS. Acute Statin Treatment Improves Antibody Accumulation in EGFR- and PSMA-Expressing Tumors. Clin Cancer Res 2020; 26:6215-6229. [PMID: 32998959 DOI: 10.1158/1078-0432.ccr-20-1960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Statins are cholesterol-depleting drugs used to treat patients with hypercholesterolemia. Preclinically, statins disrupt trafficking of receptors present at the cell membrane. Membrane receptors, defined as tumor biomarkers and therapeutic targets, are often internalized by an endocytic pathway. Indeed, receptor endocytosis and recycling are dynamic mechanisms that often affect receptor density at the cell surface. In therapies using monoclonal antibodies (mAb), a downregulation in receptor density at the cell surface decreases antibody binding to the extracellular domain of the membrane receptor. Here, we determined the potential of lovastatin, simvastatin, and rosuvastatin in preclinically modulating epidermal growth factor receptor (EGFR) and prostate-specific membrane antigen (PSMA) receptor density at the tumor cell surface. EXPERIMENTAL DESIGN Small-animal PET was used to study the binding of 89Zr-labeled antibodies in ectopic xenografts. Ex vivo analyses were performed to determine changes in endocytic proteins, EGFR, and PSMA surface levels. RESULTS Acute statin treatment using lovastatin, simvastatin, or rosuvastatin enhanced tumors' avidity for the mAbs panitumumab, cetuximab, and huJ591. Statins temporarily modulated caveolin-1, cavin-1, endophilin, clathrin, and dynamin proteins in EGFR- and PSMA-overexpressing xenografts. CONCLUSIONS These data show the potential of statins as pharmacologic modulators of endocytic proteins for improved tumors' accumulation of mAbs. The translational significance of these findings lies in the potential of statins to temporarily modulate the heterogeneous presence of receptors at the cell membrane, a characteristic often associated with poor response in tumors to therapeutic antibodies.
Collapse
Affiliation(s)
- Patrícia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Engineered Fragments of the PSMA-Specific 5D3 Antibody and Their Functional Characterization. Int J Mol Sci 2020; 21:ijms21186672. [PMID: 32932591 PMCID: PMC7555429 DOI: 10.3390/ijms21186672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022] Open
Abstract
Prostate-Specific Membrane Antigen (PSMA) is an established biomarker for the imaging and experimental therapy of prostate cancer (PCa), as it is strongly upregulated in high-grade primary, androgen-independent, and metastatic lesions. Here, we report on the development and functional characterization of recombinant single-chain Fv (scFv) and Fab fragments derived from the 5D3 PSMA-specific monoclonal antibody (mAb). These fragments were engineered, heterologously expressed in insect S2 cells, and purified to homogeneity with yields up to 20 mg/L. In vitro assays including ELISA, immunofluorescence and flow cytometry, revealed that the fragments retain the nanomolar affinity and single target specificity of the parent 5D3 antibody. Importantly, using a murine xenograft model of PCa, we verified the suitability of fluorescently labeled fragments for in vivo imaging of PSMA-positive tumors and compared their pharmacokinetics and tissue distribution to the parent mAb. Collectively, our data provide an experimental basis for the further development of 5D3 recombinant fragments for future clinical use.
Collapse
|
18
|
Imaging using radiolabelled targeted proteins: radioimmunodetection and beyond. EJNMMI Radiopharm Chem 2020; 5:16. [PMID: 32577943 PMCID: PMC7311618 DOI: 10.1186/s41181-020-00094-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
The use of radiolabelled antibodies was proposed in 1970s for staging of malignant tumours. Intensive research established chemistry for radiolabelling of proteins and understanding of factors determining biodistribution and targeting properties. The use of radioimmunodetection for staging of cancer was not established as common practice due to approval and widespread use of [18F]-FDG, which provided a more general diagnostic use than antibodies or their fragments. Expanded application of antibody-based therapeutics renewed the interest in radiolabelled antibodies. RadioimmunoPET emerged as a powerful tool for evaluation of pharmacokinetics of and target engagement by biotherapeutics. In addition to monoclonal antibodies, new radiolabelled engineered proteins have recently appeared, offering high-contrast imaging of expression of therapeutic molecular targets in tumours shortly after injection. This creates preconditions for noninvasive determination of a target expression level and stratification of patients for targeted therapies. Radiolabelled proteins hold great promise to play an important role in development and implementation of personalised targeted treatment of malignant tumours. This article provides an overview of biodistribution and tumour-seeking features of major classes of targeting proteins currently utilized for molecular imaging. Such information might be useful for researchers entering the field of the protein-based radionuclide molecular imaging.
Collapse
|
19
|
Yoon JK, Park BN, Ryu EK, An YS, Lee SJ. Current Perspectives on 89Zr-PET Imaging. Int J Mol Sci 2020; 21:ijms21124309. [PMID: 32560337 PMCID: PMC7352467 DOI: 10.3390/ijms21124309] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
89Zr is an emerging radionuclide that plays an essential role in immuno-positron emission tomography (PET) imaging. The long half-life of 89Zr (t1/2 = 3.3 days) is favorable for evaluating the in vivo distribution of monoclonal antibodies. Thus, the use of 89Zr is promising for monitoring antibody-based cancer therapies. Immuno-PET combines the sensitivity of PET with the specificity of antibodies. A number of studies have been conducted to investigate the feasibility of 89Zr immuno-PET imaging for predicting the efficacy of radioimmunotherapy and antibody therapies, imaging target expression, detecting target-expressing tumors, and the monitoring of anti-cancer chemotherapies. In this review, we summarize the current status of PET imaging using 89Zr in both preclinical and clinical studies by highlighting the use of immuno-PET for the targets of high clinical relevance. We also present 89Zr-PET applications other than immuno-PET, such as nanoparticle imaging and cell tracking. Finally, we discuss the limitations and the ongoing research being performed to overcome the remaining hurdles.
Collapse
Affiliation(s)
- Joon-Kee Yoon
- Department of Nuclear Medicine & Molecular Imaging, Ajou University School of Medicine, Worldcup-ro 164, Suwon 16499, Korea; (B.-N.P.); (Y.-S.A.); (S.-J.L.)
- Correspondence: ; Tel.: +82-31-219-4303
| | - Bok-Nam Park
- Department of Nuclear Medicine & Molecular Imaging, Ajou University School of Medicine, Worldcup-ro 164, Suwon 16499, Korea; (B.-N.P.); (Y.-S.A.); (S.-J.L.)
| | - Eun-Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, 162, Yeongudanji-ro, Cheongju 28119, Korea;
| | - Young-Sil An
- Department of Nuclear Medicine & Molecular Imaging, Ajou University School of Medicine, Worldcup-ro 164, Suwon 16499, Korea; (B.-N.P.); (Y.-S.A.); (S.-J.L.)
| | - Su-Jin Lee
- Department of Nuclear Medicine & Molecular Imaging, Ajou University School of Medicine, Worldcup-ro 164, Suwon 16499, Korea; (B.-N.P.); (Y.-S.A.); (S.-J.L.)
| |
Collapse
|
20
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
21
|
McKnight BN, Kim S, Boerner JL, Viola NT. Cetuximab PET delineated changes in cellular distribution of EGFR upon dasatinib treatment in triple negative breast cancer. Breast Cancer Res 2020; 22:37. [PMID: 32295603 PMCID: PMC7160960 DOI: 10.1186/s13058-020-01270-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background At least 50% of triple negative breast cancer (TNBC) overexpress the epidermal growth factor receptor, EGFR, which paved the way for clinical trials investigating its blockade. Outcomes remained dismal stemming from mechanisms of resistance particularly the nuclear cycling of EGFR, which is enhanced by Src activation. Attenuation of Src reversed nuclear translocation, restoring EGFR to the cell surface. Herein, we hypothesize that changes in cellular distribution of EGFR upon Src inhibition with dasatinib can be annotated through the EGFR immunopositron emission tomography (immunoPET) radiotracer, [89Zr]Zr-cetuximab. Methods Nuclear and non-nuclear EGFR levels of dasatinib-treated vs. untreated MDA-MB-231 and MDA-MB-468 cells were analyzed via immunoblots. Both treated and untreated cells were exposed to [89Zr]Zr-cetuximab to assess binding at 4 °C and 37 °C. EGFR-positive MDA-MB-231, MDA-MB-468, and a patient-derived xenograft were treated with dasatinib or vehicle followed by cetuximab PET imaging to compare EGFR levels. After imaging, the treated mice were separated into two groups: one cohort continued with dasatinib with the addition of cetuximab while the other cohort received dasatinib alone. Correlations between the radiotracer uptake vs. changes in tumor growth and EGFR expression from immunoblots were analyzed. Results Treated cells displayed higher binding of [89Zr]Zr-cetuximab to the cell membrane at 4 °C and with greater internalized activity at 37 °C vs. untreated cells. In all tumor models, higher accumulation of the radiotracer in dasatinib-treated groups was observed compared to untreated tumors. Treated tumors displayed significantly decreased pSrc (Y416) with retained total Src levels compared to control. In MDA-MB-468 and PDX tumors, the analysis of cetuximab PET vs. changes in tumor volume showed an inverse relationship where high tracer uptake in the tumor demonstrated minimal tumor volume progression. Furthermore, combined cetuximab and dasatinib treatment showed better tumor regression compared to control and dasatinib-only-treated groups. No benefit was achieved in MDA-MB-231 xenografts with the addition of cetuximab, likely due to its KRAS-mutated status. Conclusions Cetuximab PET can monitor effects of dasatinib on EGFR cellular distribution and potentially inform treatment response in wild-type KRAS TNBC.
Collapse
Affiliation(s)
- Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute Wayne State University, 4100 John R Street, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Biostatistics Core, Karmanos Cancer Institute Wayne State University, Detroit, MI, 48201, USA
| | - Julie L Boerner
- Department of Oncology, Karmanos Cancer Institute Wayne State University, 4100 John R Street, Detroit, MI, 48201, USA
| | - Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute Wayne State University, 4100 John R Street, Detroit, MI, 48201, USA.
| |
Collapse
|
22
|
Czerwińska M, Bilewicz A, Kruszewski M, Wegierek-Ciuk A, Lankoff A. Targeted Radionuclide Therapy of Prostate Cancer-From Basic Research to Clinical Perspectives. Molecules 2020; 25:E1743. [PMID: 32290196 PMCID: PMC7181060 DOI: 10.3390/molecules25071743] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related deaths in Western civilization. Although localized prostate cancer can be treated effectively in different ways, almost all patients progress to the incurable metastatic castration-resistant prostate cancer. Due to the significant mortality and morbidity rate associated with the progression of this disease, there is an urgent need for new and targeted treatments. In this review, we summarize the recent advances in research on identification of prostate tissue-specific antigens for targeted therapy, generation of highly specific and selective molecules targeting these antigens, availability of therapeutic radionuclides for widespread medical applications, and recent achievements in the development of new-generation small-molecule inhibitors and antibody-based strategies for targeted prostate cancer therapy with alpha-, beta-, and Auger electron-emitting radionuclides.
Collapse
Affiliation(s)
- Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Aneta Wegierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| | - Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| |
Collapse
|
23
|
Baranowska-Kortylewicz J, Sharp JG, McGuire TR, Joshi S, Coulter DW. Alpha-Particle Therapy for Multifocal Osteosarcoma: A Hypothesis. Cancer Biother Radiopharm 2020; 35:418-424. [PMID: 32073902 DOI: 10.1089/cbr.2019.3112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osteosarcoma (OST) is the most common bone tumor in children and adolescents with a second peak of incidence in elderly adults usually diagnosed as secondary tumors in Paget's disease or irradiated bone. Subjects with metastatic disease or whose disease relapses after the initial therapy have a poor prognosis. Moreover, multifocal OST contains tumor-initiating cells that are resistant to chemotherapy. The use of aggressive therapies in an attempt to eradicate these cells can have long-term negative consequences in these vulnerable patient populations. 227Th-labeled molecular probes based on ligands to OST-associated receptors such as IGF-1R (insulin-like growth factor receptor 1), HER2 (human epidermal growth factor receptor 2), and PSMA (prostate-specific membrane antigen) are expected to detect and treat osseous and nonosseous sites of multifocal OST. Published reports indicate that 227Th has limited myelotoxicity, can be stably chelated to its carriers and, as it decays at targeted sites, 227Th produces 223Ra that is subsequently incorporated into the areas of increased osteoblastic activity, that is, osseous metastatic lesions. Linear energy transfer of α particles emitted by 227Th and its daughter 223Ra is within the range of the optimum relative biological effectiveness. The radiotoxicity of α particles is virtually independent of the phase in the cell cycle, oxygenation, and the dose rate. For these reasons, even resistant OST cells remain susceptible to killing by high-energy α particles, which can also kill adjacent quiescent OST cells or cells with low expression of targeted receptors. Systemic side effects are minimized by the limited range of these intense radiations. Quantitative single-photon emission computed tomography of 227Th and 223Ra is feasible. Additionally, the availability of radionuclide pairs, for example, 89Zr for positron emission tomography and 227Th for therapy, establish a strong basis for the theranostic use of 227Th in the individualized treatment of multifocal OST.
Collapse
Affiliation(s)
- Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John G Sharp
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shantharam Joshi
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Don W Coulter
- Division of Hematology/Oncology, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
24
|
Zirconium-89 radio-nanochemistry and its applications towards the bioimaging of prostate cancer. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Peltek OO, Muslimov AR, Zyuzin MV, Timin AS. Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J Nanobiotechnology 2019; 17:90. [PMID: 31434562 PMCID: PMC6704557 DOI: 10.1186/s12951-019-0524-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Radiopharmaceuticals have proven to be effective agents, since they can be successfully applied for both diagnostics and therapy. Effective application of relevant radionuclides in pre-clinical and clinical studies depends on the choice of a sufficient delivery platform. Herein, we provide a comprehensive review on the most relevant aspects in radionuclide delivery using the most employed carrier systems, including, (i) monoclonal antibodies and their fragments, (ii) organic and (iii) inorganic nanoparticles, and (iv) microspheres. This review offers an extensive analysis of radionuclide delivery systems, the approaches of their modification and radiolabeling strategies with the further prospects of their implementation in multimodal imaging and disease curing. Finally, the comparative outlook on the carriers and radionuclide choice, as well as on the targeting efficiency of the developed systems is discussed.
Collapse
Affiliation(s)
- Oleksii O Peltek
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation
| | - Albert R Muslimov
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation
| | - Mikhail V Zyuzin
- Faculty of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Alexander S Timin
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation.
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russia.
| |
Collapse
|
26
|
Ion Channel Targeting with Antibodies and Antibody Fragments for Cancer Diagnosis. Antibodies (Basel) 2019; 8:antib8020033. [PMID: 31544839 PMCID: PMC6640718 DOI: 10.3390/antib8020033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The antibody era has greatly impacted cancer management in recent decades. Indeed, antibodies are currently applied for both cancer diagnosis and therapy. For example, monoclonal antibodies are the main constituents of several in vitro diagnostics, which are applied at many levels of cancer diagnosis. Moreover, the great improvement provided by in vivo imaging, especially for early-stage cancer diagnosis, has traced the path for the development of a complete new class of antibodies, i.e., engineered antibody fragments. The latter embody the optimal characteristics (e.g., low renal retention, rapid clearance, and small size) which make them ideal for in vivo applications. Furthermore, the present review focuses on reviewing the main applications of antibodies and antibody fragments for solid cancer diagnosis, both in vitro and in vivo. Furthermore, we review the scientific evidence showing that ion channels represent an almost unexplored class of ideal targets for both in vitro and in vivo diagnostic purposes. In particular, we review the applications, in solid cancers, of monoclonal antibodies and engineered antibody fragments targeting the voltage-dependent ion channel Kv 11.1, also known as hERG1.
Collapse
|
27
|
Ivanenkov YA, Machulkin AE, Garanina AS, Skvortsov DA, Uspenskaya AA, Deyneka EV, Trofimenko AV, Beloglazkina EK, Zyk NV, Koteliansky VE, Bezrukov DS, Aladinskaya AV, Vorobyeva NS, Puchinina MM, Riabykh GK, Sofronova AA, Malyshev AS, Majouga AG. Synthesis and biological evaluation of Doxorubicin-containing conjugate targeting PSMA. Bioorg Med Chem Lett 2019; 29:1246-1255. [DOI: 10.1016/j.bmcl.2019.01.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
|
28
|
Diao W, Cai H, Chen L, Jin X, Liao X, Jia Z. Recent Advances in Prostate-Specific Membrane Antigen-Based Radiopharmaceuticals. Curr Top Med Chem 2019; 19:33-56. [PMID: 30706785 DOI: 10.2174/1568026619666190201100739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common sex-related malignancy with high mortality in men worldwide. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most prostate tumor cells and considered a valuable target for both diagnosis and therapy of prostate cancer. A series of radiolabeled agents have been developed based on the featured PSMA ligands in the previous decade and have demonstrated promising outcomes in clinical research of primary and recurrent PCa. Furthermore, the inspiring response and safety of lutetium-177-PSMA-617 (177Lu-PSMA-617) radiotherapy represent the potential for expanded therapeutic options for metastatic castration-resistant PCa. Retrospective cohort studies have revealed that radiolabeled PSMA agents are the mainstays of the current success, especially in detecting prostate cancer with metastasis and biochemical recurrence. OBJECTIVE This review is intended to present a comprehensive overview of the current literature on PSMA ligand-based agents for both radionuclide imaging and therapeutic approaches, with a focus on those that have been clinically adopted. CONCLUSION PSMA-based diagnosis and therapy hold great promise for improving the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry & Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xi Jin
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xinyang Liao
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| |
Collapse
|
29
|
Bates A, Power CA. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies (Basel) 2019; 8:E28. [PMID: 31544834 PMCID: PMC6640713 DOI: 10.3390/antib8020028] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Since the licensing of the first monoclonal antibody therapy in 1986, monoclonal antibodies have become the largest class of biopharmaceuticals with over 80 antibodies currently approved for a variety of disease indications. The development of smaller, antigen binding antibody fragments, derived from conventional antibodies or produced recombinantly, has been growing at a fast pace. Antibody fragments can be used on their own or linked to other molecules to generate numerous possibilities for bispecific, multi-specific, multimeric, or multifunctional molecules, and to achieve a variety of biological effects. They offer several advantages over full-length monoclonal antibodies, particularly a lower cost of goods, and because of their small size they can penetrate tissues, access challenging epitopes, and have potentially reduced immunogenicity. In this review, we will discuss the structure, production, and mechanism of action of EMA/FDA-approved fragments and of those in clinical and pre-clinical development. We will also discuss current topics of interest surrounding the potential use of antibody fragments for intracellular targeting and blood-brain barrier (BBB) penetration.
Collapse
Affiliation(s)
- Adam Bates
- Biopharm Molecular Discovery, GlaxoSmithKline, Hertfordshire SG1 2NY, UK.
| | - Christine A Power
- Biopharm Molecular Discovery, GlaxoSmithKline, Hertfordshire SG1 2NY, UK.
| |
Collapse
|
30
|
Sengupta S, Asha Krishnan M, Chattopadhyay S, Chelvam V. Comparison of prostate-specific membrane antigen ligands in clinical translation research for diagnosis of prostate cancer. Cancer Rep (Hoboken) 2019; 2:e1169. [PMID: 32721116 DOI: 10.1002/cnr2.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA), overexpressed on prostate cancer (PCa), is a well-characterized cell surface protein to selectively diagnose PCa. PSMA's unique characteristics and its 1000-fold higher expression in PCa compared with other tissues renders it as a suitable biomarker for detection of PCa in its early stage. In this report, we critically analyze and recommend the requirements needed for the development of variety of PSMA-targeted molecular imaging agents based on antibodies, small molecule ligands, peptides, and aptamers. The targeting moieties are either conjugated to radionuclear isotopes or near-infrared agents for efficient diagnosis of PCa. RECENT FINDINGS From the analysis, it was found that several small molecule-derived PCa imaging agents are approved for clinical trials in Europe and the United States, and few are already in the clinical use for diagnosis of PCa. Even though 111In-labeled capromab pendetide was approved by the Food and Drug Administration (FDA) and other engineered antibodies are available for detection of PCa, but high production cost, low shelf life (less than 1 month at 4°C), possibility of human immuno reactions, and low blood clearance rate necessitated a need for developing new imaging agents, which are serum stable, cost-effective, and possesses longer shelf life (6 months), have fast clearance rate from nontargeted tissues during the diagnosis process. It is found that small molecule ligand-derived imaging agents possesses most of the desired properties expected for an ideal diagnostic agent when compared with other targeting moieties. CONCLUSION This report discusses in detail the homing moieties used in the development of targeted diagnostic tools for detection of PCa. The merits and demerits of monoclonal antibodies, small molecule ligands, peptides, and aptamers for imaging of PCa and intraoperative guided surgery are extensively analyzed. Among all, urea-based ligands were found to be most successful in preclinical and clinical trials and show a major promise for future commercialization.
Collapse
Affiliation(s)
- Sagnik Sengupta
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India
| | - Mena Asha Krishnan
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sudeshna Chattopadhyay
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India.,Discipline of Physics, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India.,Discipline of Metallurgy Engineering and Material Science, School of Engineering, Indian Institute of Technology Indore, Indore, India
| | - Venkatesh Chelvam
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India.,Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
31
|
Rios X, Compte M, Gómez-Vallejo V, Cossío U, Baz Z, Morcillo MÁ, Ramos-Cabrer P, Alvarez-Vallina L, Llop J. Immuno-PET Imaging and Pharmacokinetics of an Anti-CEA scFv-based Trimerbody and Its Monomeric Counterpart in Human Gastric Carcinoma-Bearing Mice. Mol Pharm 2019; 16:1025-1035. [PMID: 30726099 DOI: 10.1021/acs.molpharmaceut.8b01006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoclonal antibodies (mAbs) are currently used as therapeutic agents in different types of cancer. However, mAbs and antibody fragments developed so far show suboptimal properties in terms of circulation time and tumor penetration/retention. Here, we report the radiolabeling, pharmacokinetic evaluation, and determination of tumor targeting capacity of the previously validated anti-CEA MFE23-scFv-based N-terminal trimerbody (MFE23N-trimerbody), and the results are compared to those obtained for the monomeric MFE23-scFv. Dissection and gamma-counting studies performed with the 131I-labeled protein scaffolds in normal mice showed slower blood clearance for the trimerbody, and accumulation in the kidneys, the spleen, and the liver for both species. These, together with a progressive uptake in the small intestine, confirm a combined elimination scheme with hepatobiliary and urinary excretion. Positron emission tomography studies performed in a xenograft mouse model of human gastric adenocarcinoma, generated by subcutaneous administration of CEA-positive human MKN45 cells, showed higher tumor accumulation and tumor-to-muscle (T/M) ratios for 124I-labeled MFE23N-trimerbody than for MFE23-scFv. Specific uptake was not detected with PET imaging in CEA negative xenografts as indicated by low T/M ratios. Our data suggest that engineered intermediate-sized trivalent antibody fragments could be promising candidates for targeted therapy and imaging of CEA-positive tumors.
Collapse
Affiliation(s)
- Xabier Rios
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Marta Compte
- Molecular Immunology Unit , Hospital Universitario Puerta de Hierro Majadahonda , Manuel de Falla 1, 28222 Majadahonda, Madrid , Spain
| | | | - Unai Cossío
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Zuriñe Baz
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Miguel Ángel Morcillo
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit , CIEMAT , 28040 Madrid , Spain
| | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa Spain.,Ikerbasque, The Basque Foundation for Science , 48013 Bilbao , Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Group, Department of Engineering , Aarhus University , Gustav WiedsVej 10 , 8000 C Aarhus , Denmark
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| |
Collapse
|
32
|
Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem 2018; 13:2466-2478. [PMID: 30246488 PMCID: PMC6587488 DOI: 10.1002/cmdc.201800624] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Antibodies have long been recognised as potent vectors for carrying diagnostic medical radionuclides, contrast agents and optical probes to diseased tissue for imaging. The area of ImmunoPET combines the use of positron emission tomography (PET) imaging with antibodies to improve the diagnosis, staging and monitoring of diseases. Recent developments in antibody engineering and PET radiochemistry have led to a new wave of experimental ImmunoPET imaging agents that are based on a range of antibody fragments and affibodies. In contrast to full antibodies, engineered affibody proteins and antibody fragments such as minibodies, diabodies, single-chain variable region fragments (scFvs), and nanobodies are much smaller but retain the essential specificities and affinities of full antibodies in addition to more desirable pharmacokinetics for imaging. Herein, recent key developments in the PET radiolabelling strategies of antibody fragments and related affibody molecules are highlighted, along with the main PET imaging applications of overexpressed antigen-associated tumours and immune cells.
Collapse
Affiliation(s)
- Ruisi Fu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Gokhan Yahioglu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Antikor Biopharma Ltd.StevenageSG1 2FXUK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Philip W. Miller
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
| |
Collapse
|
33
|
McKnight BN, Viola-Villegas NT. Monitoring Src status after dasatinib treatment in HER2+ breast cancer with 89Zr-trastuzumab PET imaging. Breast Cancer Res 2018; 20:130. [PMID: 30359299 PMCID: PMC6203283 DOI: 10.1186/s13058-018-1055-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023] Open
Abstract
Background De novo or acquired resistance in breast cancer leads to treatment failures and disease progression. In human epidermal growth factor receptor 2 (HER2)-positive (HER2+) breast cancer, Src, a non-receptor tyrosine kinase, is identified as a major mechanism of trastuzumab resistance, with its activation stabilizing aberrant HER2 signaling, thus making it an attractive target for inhibition. Here, we explored the causal relationship between Src and HER2 by examining the potential of 89Zr-trastuzumab as a surrogate imaging marker of Src activity upon inhibition with dasatinib in HER2+ breast cancer. Methods HER2+ primary breast cancer cell lines BT-474 and trastuzumab-resistant JIMT-1 were treated with dasatinib and assessed for expression and localization of HER2, Src, and phosphorylated Src (pSrc) (Y416) through western blots and binding assays. Mice bearing BT-474 or JIMT-1 tumors were treated for 7 or 14 days with dasatinib. At the end of each treatment, tumors were imaged with 89Zr-trastuzumab. The results of 89Zr-trastuzumab positron emission tomography (PET) was compared against tumor uptake of fluorodeoxyglucose (18F-FDG) obtained the day before in the same group of mice. Ex vivo western blots and immunohistochemical staining (IHC) were performed for validation. Results In BT-474 and JIMT-1 cells, treatment with dasatinib resulted in a decrease in internalized 89Zr-trastuzumab. Confirmation with immunoblots displayed abrogation of pSrc (Y416) signaling; binding assays in both cell lines demonstrated a decrease in cell surface and internalized HER2-bound tracer. In xenograft models, dasatinib treatment for 7 days (BT-474, 11.05 ± 2.10 % injected dose per gram of tissue %(ID)/g; JIMT-1, 3.88 ± 1.47 %ID/g)) or 14 days (BT-474, 9.20 ± 1.85 %ID/g; JIMT-1, 4.45 ± 1.23 %ID/g) resulted in a significant decrease in 89Zr-trastuzumab uptake on PET compared to untreated control (BT-474, 17.88 ± 2.18 %ID/g; JIMT-1, 8.04 ± 1.47 %ID/g). No difference in 18F-FDG uptake was observed between control and treated cohorts. A parallel decrease in membranous HER2 and pSrc (Y416) staining was observed in tumors post treatment on IHC. Immunoblots further validated the 89Zr-trastuzumab-PET readout. Positive correlation was established between 89Zr-trastuzumab tumor uptake versus tumor regression, pSrc and pHER2 expression. Conclusions 89Zr-trastuzumab can potentially assess tumor response to dasatinib in HER2+ breast cancer and could be used as a surrogate tool to monitor early changes in Src signaling downstream of HER2. Electronic supplementary material The online version of this article (10.1186/s13058-018-1055-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA
| | | |
Collapse
|
34
|
Gibson HM, McKnight BN, Malysa A, Dyson G, Wiesend WN, McCarthy CE, Reyes J, Wei WZ, Viola-Villegas NT. IFNγ PET Imaging as a Predictive Tool for Monitoring Response to Tumor Immunotherapy. Cancer Res 2018; 78:5706-5717. [PMID: 30115693 PMCID: PMC6443251 DOI: 10.1158/0008-5472.can-18-0253] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/15/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022]
Abstract
IFNγ is an attractive target for imaging active antitumor immunity due to its function in the T-cell signaling axis. Here, we test an IFNγ immuno-PET (immunoPET) probe for its capacity to identify adaptive immunotherapy response after HER2/neu vaccination in both spontaneous salivary and orthotopic neu+ mouse mammary tumors. IFNγ immunoPET detected elevated cytokine levels in situ after vaccination, which inversely correlated with tumor growth rate, an indicator of response to therapy. In a model of induced T-cell anergy where CD8 T cells infiltrate the tumor, but upregulate PD-1, IFNγ tracer uptake was equivalent to isotype control, illustrating a lack of antitumor T-cell activity. The IFNγ immunoPET tracer detected IFNγ protein sequestered on the surface of tumor cells, likely in complex with the IFNγ receptor, which may explain imaging localization of this soluble factor in vivo Collectively, we find that the activation status of cytotoxic T cells is annotated by IFNγ immunoPET, with reduced off-target binding to secondary lymphoid tissues compared with imaging total CD3+ tumor-infiltrating lymphocytes. Targeting of soluble cytokines such as IFNγ by PET imaging may provide valuable noninvasive insight into the function of immune cells in situ Significance: This study presents a novel approach to monitor therapeutic outcomes via IFNγ-targeted positron emission tomography. Cancer Res; 78(19); 5706-17. ©2018 AACR.
Collapse
Affiliation(s)
- Heather M Gibson
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Agnes Malysa
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Greg Dyson
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Wendy N Wiesend
- Department of Anatomic Pathology, Beaumont Health System, Royal Oak, Michigan
| | - Claire E McCarthy
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Joyce Reyes
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Wei-Zen Wei
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan.
| | | |
Collapse
|
35
|
Tsai WTK, Wu AM. Aligning physics and physiology: Engineering antibodies for radionuclide delivery. J Labelled Comp Radiopharm 2018; 61:693-714. [PMID: 29537104 PMCID: PMC6105424 DOI: 10.1002/jlcr.3622] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
The exquisite specificity of antibodies and antibody fragments renders them excellent agents for targeted delivery of radionuclides. Radiolabeled antibodies and fragments have been successfully used for molecular imaging and radioimmunotherapy (RIT) of cell surface targets in oncology and immunology. Protein engineering has been used for antibody humanization essential for clinical applications, as well as optimization of important characteristics including pharmacokinetics, biodistribution, and clearance. Although intact antibodies have high potential as imaging and therapeutic agents, challenges include long circulation time in blood, which leads to later imaging time points post-injection and higher blood absorbed dose that may be disadvantageous for RIT. Using engineered fragments may address these challenges, as size reduction and removal of Fc function decreases serum half-life. Radiolabeled fragments and pretargeting strategies can result in high contrast images within hours to days, and a reduction of RIT toxicity in normal tissues. Additionally, fragments can be engineered to direct hepatic or renal clearance, which may be chosen based on the application and disease setting. This review discusses aligning the physical properties of radionuclides (positron, gamma, beta, alpha, and Auger emitters) with antibodies and fragments and highlights recent advances of engineered antibodies and fragments in preclinical and clinical development for imaging and therapy.
Collapse
Affiliation(s)
- Wen-Ting K Tsai
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
36
|
McKnight BN, Viola-Villegas NT. 89 Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Labelled Comp Radiopharm 2018; 61:727-738. [PMID: 29341222 PMCID: PMC6050145 DOI: 10.1002/jlcr.3605] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
Abstract
Therapeutic monoclonal antibodies have been used in cancer treatment for 30 years, with around 24 mAb and mAb:drug conjugates approved by the FDA to date. Despite their specificity, efficacy has remained limited, which, in part, derails nascent initiatives towards precision medicine. An image-guided approach to reinforce treatment decisions using immune positron emission tomography (immunoPET) companion diagnostic is warranted. This review provides a general overview of current translational research using Zr-89 immunoPET and opportunities for utilizing and harnessing this tool to its full potential. Patient case studies are cited to illustrate immunoPET probes as tools for profiling molecular signatures. Discussions on its utility in reinforcing clinical decisions as it relates to histopathological tumor assessment and standard diagnostic methods, and its potential as predictive biomarkers, are presented. We finally conclude with an overview of practical considerations to its utility in the clinic.
Collapse
Affiliation(s)
- Brooke N. McKnight
- Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
37
|
Carter LM, Poty S, Sharma SK, Lewis JS. Preclinical optimization of antibody-based radiopharmaceuticals for cancer imaging and radionuclide therapy-Model, vector, and radionuclide selection. J Labelled Comp Radiopharm 2018; 61:611-635. [PMID: 29412489 PMCID: PMC6081268 DOI: 10.1002/jlcr.3612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 12/25/2022]
Abstract
Intact antibodies and their truncated counterparts (eg, Fab, scFv fragments) are generally exquisitely specific and selective vectors, enabling recognition of individual cancer-associated molecular phenotypes against a complex and dynamic biomolecular background. Complementary alignment of these advantages with unique properties of radionuclides is a defining paradigm in both radioimmunoimaging and radioimmunotherapy, which remain some of the most adept and promising tools for cancer diagnosis and treatment. This review discusses how translational potency can be maximized through rational selection of antibody-nuclide couples for radioimmunoimaging/therapy in preclinical models.
Collapse
Affiliation(s)
- Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sophie Poty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York, USA
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
38
|
McKnight BN, Kuda-Wedagedara ANW, Sevak KK, Abdel-Atti D, Wiesend WN, Ku A, Selvakumar D, Carlin SD, Lewis JS, Viola-Villegas NT. Imaging EGFR and HER3 through 89Zr-labeled MEHD7945A (Duligotuzumab). Sci Rep 2018; 8:9043. [PMID: 29899472 PMCID: PMC5998059 DOI: 10.1038/s41598-018-27454-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor resistance to treatment paved the way toward the development of single agent drugs that target multiple molecular signatures amplified within the malignancy. The discovered crosstalk between EGFR and HER3 as well as the role of HER3 in mediating EGFR resistance made these two receptor tyrosine kinases attractive targets. MEHD7945A or duligotuzumab is a single immunotherapy agent that dually targets both molecular signatures. In this study, a positron emission tomography (PET) companion diagnostic to MEHD7945A is reported and evaluated in pancreatic cancer. Tumor accretion and whole body pharmacokinetics of 89Zr-MEHD7945A were established. Specificity of the probe for EGFR and/or HER3 was further examined.
Collapse
Affiliation(s)
- Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA
| | | | - Kuntal K Sevak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Wendy N Wiesend
- Department of Anatomic Pathology, Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI, 48073, USA
| | - Anson Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Nerissa T Viola-Villegas
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
39
|
Optimized anion exchange column isolation of zirconium-89 (89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform. J Chromatogr A 2018. [DOI: 10.1016/j.chroma.2018.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Psimadas D, Valotassiou V, Alexiou S, Tsougos I, Georgoulias P. Radiolabeled mAbs as Molecular Imaging and/or Therapy Agents Targeting PSMA. Cancer Invest 2018; 36:118-128. [DOI: 10.1080/07357907.2018.1430816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dimitrios Psimadas
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Varvara Valotassiou
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Sotiria Alexiou
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Tsougos
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
41
|
Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, Eisenberger M, Carducci M, Fan H, Dannals RF, Chen Y, Mease RC, Szabo Z, Pomper MG, Cho SY. PSMA-Based [(18)F]DCFPyL PET/CT Is Superior to Conventional Imaging for Lesion Detection in Patients with Metastatic Prostate Cancer. Mol Imaging Biol 2017; 18:411-9. [PMID: 27080322 DOI: 10.1007/s11307-016-0957-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Current standard of care conventional imaging modalities (CIM) such as X-ray computed tomography (CT) and bone scan can be limited for detection of metastatic prostate cancer and therefore improved imaging methods are an unmet clinical need. We evaluated the utility of a novel second-generation low molecular weight radiofluorinated prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) radiotracer, [(18)F]DCFPyL, in patients with metastatic prostate cancer. PROCEDURES Nine patients with suspected prostate cancer recurrence, eight with CIM evidence of metastatic prostate cancer and one with biochemical recurrence, were imaged with [(18)F]DCFPyL PET/CT. Eight of the patients had contemporaneous CIM for comparison. A lesion-by-lesion comparison of the detection of suspected sites of metastatic prostate cancer was carried out between PET and CIM. Statistical analysis for estimated proportions of inter-modality agreement for detection of metastatic disease was calculated accounting for intra-patient correlation using general estimating equation (GEE) intercept-only regression models. RESULTS One hundred thirty-nine sites of PET positive [(18)F]DCFPyL uptake (138 definite, 1 equivocal) for metastatic disease were detected in the eight patients with available comparison CIM. By contrast, only 45 lesions were identified on CIM (30 definite, 15 equivocal). When lesions were negative or equivocal on CIM, it was estimated that a large portion of these lesions or 0.72 (95 % confidence interval (CI) 0.55-0.84) would be positive on [(18)F]DCFPyL PET. Conversely, of those lesions negative or equivocal on [(18)F]DCFPyL PET, it was estimated that only a very small proportion or 0.03 (95 % CI 0.01-0.07) would be positive on CIM. Delayed 2-h-post-injection time point PET yielded higher tumor radiotracer uptake and higher tumor-to-background ratios than an earlier 1-h-post-injection time point. CONCLUSIONS A novel PSMA-targeted PET radiotracer, [(18)F]DCFPyL, was able to a large number of suspected sites of prostate cancer, many of which were occult or equivocal by CIM. This study provides strong preliminary evidence for the use of this second-generation PSMA-targeted PET radiotracer for detection of metastatic prostate cancer and lends further support for the importance of PSMA-targeted PET imaging in prostate cancer.
Collapse
Affiliation(s)
- Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Katarzyna J Macura
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Esther Mena
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Amanda L Blackford
- Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Rosa Nadal
- Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mario Eisenberger
- Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Carducci
- Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Hong Fan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Robert F Dannals
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ying Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Zsolt Szabo
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Steve Y Cho
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- , Department of Radiology, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR1 Rm 7139, Madison, 53593, WI, USA.
| |
Collapse
|
42
|
ImmunoPET Imaging of αvβ6 Expression Using an Engineered Anti-αvβ6 Cys-diabody Site-Specifically Radiolabeled with Cu-64: Considerations for Optimal Imaging with Antibody Fragments. Mol Imaging Biol 2017; 20:103-113. [DOI: 10.1007/s11307-017-1097-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Flores O, Santra S, Kaittanis C, Bassiouni R, Khaled AS, Khaled AR, Grimm J, Perez JM. PSMA-Targeted Theranostic Nanocarrier for Prostate Cancer. Am J Cancer Res 2017; 7:2477-2494. [PMID: 28744329 PMCID: PMC5525751 DOI: 10.7150/thno.18879] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 11/05/2022] Open
Abstract
Herein, we report the use of a theranostic nanocarrier (Folate-HBPE(CT20p)) to deliver a therapeutic peptide to prostate cancer tumors that express PSMA (folate hydrolase 1). The therapeutic peptide (CT20p) targets and inhibits the chaperonin-containing TCP-1 (CCT) protein-folding complex, is selectively cytotoxic to cancer cells, and is non-toxic to normal tissue. With the delivery of CT20p to prostate cancer cells via PSMA, a dual level of cancer specificity is achieved: (1) selective targeting to PSMA-expressing prostate tumors, and (2) specific cytotoxicity to cancer cells with minimal toxicity to normal cells. The PSMA-targeting theranostic nanocarrier can image PSMA-expressing cells and tumors when a near infrared dye is used as cargo. Meanwhile, it can be used to treat PSMA-expressing tumors when a therapeutic, such as the CT20p peptide, is encapsulated within the nanocarrier. Even when these PSMA-targeting nanocarriers are taken up by macrophages, minimal cell death is observed in these cells, in contrast with doxorubicin-based therapeutics that result in significant macrophage death. Incubation of PSMA-expressing prostate cancer cells with the Folate-HBPE(CT20p) nanocarriers induces considerable changes in cell morphology, reduction in the levels of integrin β1, and lower cell adhesion, eventually resulting in cell death. These results are relevant as integrin β1 plays a key role in prostate cancer invasion and metastatic potential. In addition, the use of the developed PSMA-targeting nanocarrier facilitates the selective in vivo delivery of CT20p to PSMA-positive tumor, inducing significant reduction in tumor size.
Collapse
|
44
|
Pandit-Taskar N, Veach DR, Fox JJ, Scher HI, Morris MJ, Larson SM. Evaluation of Castration-Resistant Prostate Cancer with Androgen Receptor-Axis Imaging. J Nucl Med 2017; 57:73S-78S. [PMID: 27694177 DOI: 10.2967/jnumed.115.170134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the lethal form of prostate cancer, and more than 26,000 men will die from this disease in 2016. The pathophysiology of CRPC is clearly multifactorial, but most often, androgen receptor (AR) upregulation is associated with its earliest beginnings and the AR increase is part of the multimolecular complex including downstream effector proteins linked to AR (AR-axis) responsible for rapid proliferation and malignant features of the malignant cell. In both animal models and patients, glycolysis (Warburg effect) is also an early manifestation of CRPC transformation. At Memorial Sloan Kettering Cancer Center, we have focused our energies on imaging studies of the AR-axis in CRPC, using 18F-FDG, 18F-16β-fluoro-5α-dihydrotestosterone (18F-FDHT), and a variety of radiolabeled antibodies targeting downstream effectors, such as prostate-specific membrane antigen (PSMA). Small-molecular-weight PSMA-targeting agents are not part of this review. In this review, we will focus on molecular imaging of the AR-axis in metastatic CRPC (mCRPC) and discuss our personal experience with these tracers. Our goal is to put these radiopharmaceuticals in the context of mCRPC biology and diagnosis (e.g., 18F-FDHT).
Collapse
Affiliation(s)
- Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Josef J Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| |
Collapse
|
45
|
Gourni E, Henriksen G. Metal-Based PSMA Radioligands. Molecules 2017; 22:molecules22040523. [PMID: 28338640 PMCID: PMC6154343 DOI: 10.3390/molecules22040523] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is one of the most common malignancies for which great progress has been made in identifying appropriate molecular targets that would enable efficient in vivo targeting for imaging and therapy. The type II integral membrane protein, prostate specific membrane antigen (PSMA) is overexpressed on prostate cancer cells in proportion to the stage and grade of the tumor progression, especially in androgen-independent, advanced and metastatic disease, rendering it a promising diagnostic and/or therapeutic target. From the perspective of nuclear medicine, PSMA-based radioligands may significantly impact the management of patients who suffer from prostate cancer. For that purpose, chelating-based PSMA-specific ligands have been labeled with various diagnostic and/or therapeutic radiometals for single-photon-emission tomography (SPECT), positron-emission-tomography (PET), radionuclide targeted therapy as well as intraoperative applications. This review focuses on the development and further applications of metal-based PSMA radioligands.
Collapse
Affiliation(s)
- Eleni Gourni
- Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway.
- Norwegian Medical Cyclotron Centre Ltd., P.O. Box 4950 Nydalen, Oslo 0424, Norway.
| | - Gjermund Henriksen
- Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway.
- Norwegian Medical Cyclotron Centre Ltd., P.O. Box 4950 Nydalen, Oslo 0424, Norway.
- Institute of Physics, University of Oslo, Oslo 0317, Norway.
| |
Collapse
|
46
|
Houghton JL, Membreno R, Abdel-Atti D, Cunanan KM, Carlin S, Scholz WW, Zanzonico PB, Lewis JS, Zeglis BM. Establishment of the In Vivo Efficacy of Pretargeted Radioimmunotherapy Utilizing Inverse Electron Demand Diels-Alder Click Chemistry. Mol Cancer Ther 2016; 16:124-133. [PMID: 28062708 DOI: 10.1158/1535-7163.mct-16-0503] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 12/25/2022]
Abstract
The pretargeting system based on the inverse electron demand Diels-Alder reaction (IEDDA) between trans-cyclooctene (TCO) and tetrazine (Tz) combines the favorable pharmacokinetic properties of radiolabeled small molecules with the affinity and specificity of antibodies. This strategy has proven to be an efficient method for the molecularly targeted delivery of pharmaceuticals, including isotopes for radiological imaging. Despite encouraging results from in vivo PET imaging studies, this promising system has yet to be thoroughly evaluated for pretargeted radioimmunotherapy (PRIT). Toward that end, we synthesized two novel 177Lu-labeled tetrazine-bearing radioligands. Next, we compared the usefulness of our ligands for PRIT when paired with TCO-modified 5B1-a human, anti-CA19.9 mAb-in preclinical murine models of pancreatic cancer. The exemplary ligand, 177Lu-DOTA-PEG7-Tz, showed rapid (4.6 ± 0.8% ID/g at 4 hours) and persistent (16.8 ± 3.9% ID/g at 120 hours) uptake in tumors while concurrently clearing from blood and nontarget tissues. Single-dose therapy studies using 5B1-TCO and varying amounts of 177Lu-DOTA-PEG7-Tz (400, 800, and 1,200 μCi) showed that our system elicits a dose-dependent therapeutic response in mice bearing human xenografts. Furthermore, dosimetry calculations suggest that our approach is amenable to clinical applications with its excellent dosimetric profile in organs of clearance (i.e., liver and kidneys) as well as in dose-limiting tissues, such as red marrow. This study established that a pretargeted methodology utilizing the IEDDA reaction can rapidly and specifically deliver a radiotherapeutic payload to tumor tissue, thus illustrating its excellent potential for clinical translation. Mol Cancer Ther; 16(1); 124-33. ©2016 AACR.
Collapse
Affiliation(s)
- Jacob L Houghton
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rosemery Membreno
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York.,Ph.D. Program in Chemistry of the Graduate Center of the City University of New York, New York, New York
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen M Cunanan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York.,Ph.D. Program in Chemistry of the Graduate Center of the City University of New York, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
47
|
Dobosz M, Haupt U, Scheuer W. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule. MAbs 2016; 9:140-153. [PMID: 27661454 DOI: 10.1080/19420862.2016.1238996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Preclinical efficacy studies of antibodies targeting a tumor-associated antigen are only justified when the expression of the relevant antigen has been demonstrated. Conventionally, antigen expression level is examined by immunohistochemistry of formalin-fixed paraffin-embedded tumor tissue section. This method represents the diagnostic "gold standard" for tumor target evaluation, but is affected by a number of factors, such as epitope masking and insufficient antigen retrieval. As a consequence, variances and discrepancies in histological staining results can occur, which may influence decision-making and therapeutic outcome. To overcome these problems, we have used different fluorescence-labeled therapeutic antibodies targeting human epidermal growth factor receptor (HER) family members and insulin-like growth factor-1 receptor (IGF1R) in combination with fluorescence imaging modalities to determine tumor antigen expression, drug-target interaction, and biodistribution and tumor saturation kinetics in non-small cell lung cancer xenografts. For this, whole-body fluorescence intensities of labeled antibodies, applied as a single compound or antibody mixture, were measured in Calu-1 and Calu-3 tumor-bearing mice, then ex vivo multispectral tumor tissue analysis at microscopic resolution was performed. With the aid of this simple and fast imaging method, we were able to analyze the tumor cell receptor status of HER1-3 and IGF1R, monitor the antibody-target interaction and evaluate the receptor binding sites of anti-HER2-targeting antibodies. Based on this, the most suitable tumor model, best therapeutic antibody, and optimal treatment dosage and application schedule was selected. Predictions drawn from obtained imaging data were in excellent concordance with outcome of conducted preclinical efficacy studies. Our results clearly demonstrate the great potential of combined in vivo and ex vivo fluorescence imaging for the preclinical development and characterization of monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Dobosz
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| | - Ute Haupt
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| | - Werner Scheuer
- a Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich , Penzberg , Germany
| |
Collapse
|
48
|
D'Souza JW, Hensley H, Doss M, Beigarten C, Torgov M, Olafsen T, Yu JQ, Robinson MK. Cerenkov Luminescence Imaging as a Modality to Evaluate Antibody-Based PET Radiotracers. J Nucl Med 2016; 58:175-180. [PMID: 27539844 DOI: 10.2967/jnumed.116.178780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022] Open
Abstract
Antibodies, and engineered antibody fragments, labeled with radioisotopes are being developed as radiotracers for the detection and phenotyping of diseases such as cancer. The development of antibody-based radiotracers requires extensive characterization of their in vitro and in vivo properties, including their ability to target tumors in an antigen-selective manner. In this study, we investigated the use of Cerenkov luminescence imaging (CLI) as compared with PET as a modality for evaluating the in vivo behavior of antibody-based radiotracers. METHODS The anti-prostate-specific membrane antigen (PSMA) huJ591 antibody (IgG; 150 kDa) and its minibody (Mb; 80 kDa) format were functionalized with the chelator 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) and radiolabeled with the positron-emitting radionuclide 64Cu (half-life, 12.7 h). Immunoreactive preparations of the radiolabeled antibodies were injected into NCr nu/nu mice harboring PSMA-positive CWR22Rv1 and PSMA-negative PC-3 tumor xenografts. Tumor targeting was evaluated by both PET and CLI. RESULTS 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb retained the ability to bind cell surface PSMA, and both radiotracers exhibited selective uptake into PSMA-positive tumors. Under the experimental conditions used, PSMA-selective uptake of 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb was observed by CLI as early as 3 h after injection, with tumor-to-background ratios peaking at 24 (IgG) and 16 (Mb) h after injection. Targeting data generated by CLI correlated with that generated by PET and necropsy. CONCLUSION CLI provided a rapid and simple assessment of the targeting specificity and pharmacokinetics of the antibody-based PET radiotracers that correlated well with the behavior observed by standard PET imaging. Moreover, CLI provided clear discrimination between uptake kinetics of an intact IgG and its small-molecular-weight derivative Mb. These data support the use of CLI for the evaluation of radiotracer performance.
Collapse
Affiliation(s)
- Jimson W D'Souza
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harvey Hensley
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mohan Doss
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Nuclear Medicine, Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania; and
| | | | | | | | - Jian Q Yu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Nuclear Medicine, Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania; and
| | - Matthew K Robinson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Pandit-Taskar N, O'Donoghue JA, Ruan S, Lyashchenko SK, Carrasquillo JA, Heller G, Martinez DF, Cheal SM, Lewis JS, Fleisher M, Keppler JS, Reiter RE, Wu AM, Weber WA, Scher HI, Larson SM, Morris MJ. First-in-Human Imaging with 89Zr-Df-IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake. J Nucl Med 2016; 57:1858-1864. [PMID: 27516450 DOI: 10.2967/jnumed.116.176206] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022] Open
Abstract
We conducted a phase I dose-escalation study with 89Zr-desferrioxamine-IAB2M (89Zr-IAB2M), an anti-prostate-specific membrane antigen minibody, in patients with metastatic prostate cancer. METHODS Patients received 185 MBq (5 mCi) of 89Zr-IAB2M and Df-IAB2M at total mass doses of 10 (n = 6), 20 (n = 6), and 50 mg (n = 6). Whole-body and serum clearance, normal-organ and lesion uptake, and radiation absorbed dose were estimated, and the effect of mass escalation was analyzed. RESULTS Eighteen patients were injected and scanned without side effects. Whole-body clearance was monoexponential, with a median biologic half-life of 215 h, whereas serum clearance showed biexponential kinetics, with a median biologic half-life of 3.7 (12.3%/L) and 33.8 h (17.9%/L). The radiation absorbed dose estimates were 1.67, 1.36, and 0.32 mGy/MBq to liver, kidney, and marrow, respectively, with an effective dose of 0.41 mSv/MBq (1.5 rem/mCi). Both skeletal and nodal lesions were detected with 89Zr-IAB2M, most visualized by 48-h imaging. CONCLUSION 89Zr-IAB2M is safe and demonstrates favorable biodistribution and kinetics for targeting metastatic prostate cancer. Imaging with 10 mg of minibody mass provides optimal biodistribution, and imaging at 48 h after injection provides good lesion visualization. Assessment of lesion targeting is being studied in detail in an expansion cohort.
Collapse
Affiliation(s)
- Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Weill Cornell Medical College, New York, New York
| | | | - Shutian Ruan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Serge K Lyashchenko
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge A Carrasquillo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Glenn Heller
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Danny F Martinez
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin Fleisher
- Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Anna M Wu
- ImaginAb, Inc., Inglewood, California; and
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
50
|
Mall S, Yusufi N, Wagner R, Klar R, Bianchi H, Steiger K, Straub M, Audehm S, Laitinen I, Aichler M, Peschel C, Ziegler S, Mustafa M, Schwaiger M, D'Alessandria C, Krackhardt AM. Immuno-PET Imaging of Engineered Human T Cells in Tumors. Cancer Res 2016; 76:4113-23. [PMID: 27354381 DOI: 10.1158/0008-5472.can-15-2784] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/13/2016] [Indexed: 11/16/2022]
Abstract
Sensitive in vivo imaging technologies applicable to the clinical setting are still lacking for adoptive T-cell-based immunotherapies, an important gap to fill if mechanisms of tumor rejection or escape are to be understood. Here, we propose a highly sensitive imaging technology to track human TCR-transgenic T cells in vivo by directly targeting the murinized constant TCR beta domain (TCRmu) with a zirconium-89 ((89)Zr)-labeled anti-TCRmu-F(ab')2 fragment. Binding of the labeled or unlabeled F(ab')2 fragment did not impair functionality of transgenic T cells in vitro and in vivo Using a murine xenograft model of human myeloid sarcoma, we monitored by Immuno-PET imaging human central memory T cells (TCM), which were transgenic for a myeloid peroxidase (MPO)-specific TCR. Diverse T-cell distribution patterns were detected by PET/CT imaging, depending on the tumor size and rejection phase. Results were confirmed by IHC and semiquantitative evaluation of T-cell infiltration within the tumor corresponding to the PET/CT images. Overall, these findings offer a preclinical proof of concept for an imaging approach that is readily tractable for clinical translation. Cancer Res; 76(14); 4113-23. ©2016 AACR.
Collapse
Affiliation(s)
- Sabine Mall
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nahid Yusufi
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Ricarda Wagner
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Richard Klar
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrique Bianchi
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Melanie Straub
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Stefan Audehm
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Iina Laitinen
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Christian Peschel
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. German Cancer Consortium (DKTK), Munich, Germany
| | - Sibylle Ziegler
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Mona Mustafa
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany. German Cancer Consortium (DKTK), Munich, Germany
| | - Calogero D'Alessandria
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Angela M Krackhardt
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. German Cancer Consortium (DKTK), Munich, Germany. Clinical Cooperation Group Antigen Specific T-Cell Therapy, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|