1
|
Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu S, Dey S, Soni AG, Jain V. F3 peptide functionalized liquid crystalline nanoparticles for delivering Salinomycin against breast cancer. Int J Pharm 2023; 643:123226. [PMID: 37451328 DOI: 10.1016/j.ijpharm.2023.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Salinomycin (Sal) is a potent veterinary antibiotic known to offer significant toxicity to the variety of neoplastic cells. Its therapeutic utility is limited due to its higher lipophilicity (logP 7.5) and poor hydrophilicity. Liquid crystalline nanoparticles (LCNPs) known to offer a suitable delivery platform for these kinds of drugs. The overexpressed nucleolin receptor on the cell surface and cytoplasm, could be selected as a target in cancer therapy. The present study involves the development and characterization of the F3 peptide functionalized LCNPs for delivering Sal (F3-Sal-NPs) for selectively targeting to the nucleolin receptor. The optimized LCNPs were characterized for particle size, zeta potential, surface morphology, drug release kinetics and stability. The LCNPs have a structure similar to nematic phases. In vitro drug release studies revealed sustained drug release characteristics (89.5 ± 1.5% at 120 h) with F3-Sal-NPs. The cytotoxicity results demonstrated that F3-Sal-NPs were 4.8, 2.6 and 5.5 folds more effective than naïve drug in MDA-MB-468, MDA-MB-231 and MCF-7 cells, respectively and the cell cycle was arrested in the S and G2/M phases. The expression of the gene responsible for the stemness (CD44 gene), apoptosis (BAX/Bcl-2 ration) and angiogenesis (LCN-2) was reduced by F3-Sal-NPs treatment. Ex vivo hemolytic toxicity was reduced (6.5 ± 1.5%) and the pharmacokinetics and bioavailability of Sal was improved with F3-Sal-NPs. The in vivo antitumor efficacy was tested in EAC bearing mice, where F3-Sal-NPs significantly reduced the tumor growth by 2.8-fold compared to pure Sal and induced necrosis of tumor cells. The results clearly demonstrate the outstanding performance of F3 peptide functionalized LCNPs for delivering Sal against breast cancer.
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - Surajit Dey
- Roseman University of Health Sciences, College of Pharmacy, Henderson, Nevada, USA
| | - Anshita Gupta Soni
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg-491001, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India.
| |
Collapse
|
2
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
3
|
Gonzalez-Obeso C, Jane Hartzell E, Albert Scheel R, Kaplan DL. Delivering on the promise of recombinant silk-inspired proteins for drug delivery. Adv Drug Deliv Rev 2023; 192:114622. [PMID: 36414094 PMCID: PMC9812964 DOI: 10.1016/j.addr.2022.114622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Effective drug delivery is essential for the success of a medical treatment. Polymeric drug delivery systems (DDSs) are preferred over systemic administration of drugs due to their protection capacity, directed release, and reduced side effects. Among the numerous polymer sources, silks and recombinant silks have drawn significant attention over the past decade as DDSs. Native silk is produced from a variety of organisms, which are then used as sources or guides of genetic material for heterologous expression or engineered designs. Recombinant silks bear the outstanding properties of natural silk, such as processability in aqueous solution, self-assembly, drug loading capacity, drug stabilization/protection, and degradability, while incorporating specific properties beneficial for their success as DDS, such as monodispersity and tailored physicochemical properties. Moreover, the on-demand inclusion of sequences that customize the DDS for the specific application enhances efficiency. Often, inclusion of a drug into a DDS is achieved by simple mixing or diffusion and stabilized by non-specific molecular interactions; however, these interactions can be improved by the incorporation of drug-binding peptide sequences. In this review we provide an overview of native sources for silks and silk sequences, as well as the design and formulation of recombinant silk biomaterials as drug delivery systems in a variety of formats, such as films, hydrogels, porous sponges, or particles.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Emily Jane Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Ryan Albert Scheel
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA.
| |
Collapse
|
4
|
Zou M, Yin X, Zhou X, Niu X, Wang Y, Su M. Salinomycin-Loaded High-Density Lipoprotein Exerts Promising Anti-Ovarian Cancer Effects by Inhibiting Epithelial-Mesenchymal Transition. Int J Nanomedicine 2022; 17:4059-4071. [PMID: 36105618 PMCID: PMC9467852 DOI: 10.2147/ijn.s380598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background Effective treatments for ovarian cancer remain elusive, and survival rates have long been considered grim. Ovarian cancer stem cells (OCSCs) and epithelial–mesenchymal transition (EMT) are associated with cancer progression and metastasis, as well as drug resistance and eventual treatment failure. Salinomycin (Sal) has an extensive effect on a variety of cancer stem cells (CSCs); however, its poor water solubility and toxicity to healthy tissues at high doses limit further research into its potential as an anti-cancer drug. We proposed a therapeutic strategy by constructing a tumor-targeting carrier that mimics high-density lipoprotein (HDL) to synthesize salinomycin-loaded high-density lipoprotein (S-HDL). This strategy helps reduce the side effects of salinomycin, thereby improving its clinical benefits. Methods OCSCs were isolated from ovarian cancer cells (OCCs) and the uptake of HDL nanoparticles was observed using laser confocal microscopes. After the cell viability analysis revealed the inhibitory effect of S-HDL on OCCs and OCSCs, the main biological processes influenced by S-HDL were predicted with a transcriptome sequencing analysis and verified in vitro and in vivo. Results Cellular uptake analysis showed that the HDL delivery system was able to significantly enhance the uptake of Sal by OCCs, tentatively validating the targeting role of recombinant HDL, so that S-HDL could reduce the toxicity of Sal and increase its anti-ovarian cancer effects. Conversely, S-HDL could exert anti-ovarian cancer effects by inhibiting the proliferation of OCCs and OCSCs, promoting apoptosis, blocking EMT, and suppressing stemness and angiogenesis-related protein expression in vitro and in vivo. Conclusion S-HDL had stronger anti-ovarian cancer effects than unencapsulated Sal. Thus, it may be a potential agent for ovarian cancer treatment in the future.
Collapse
Affiliation(s)
- Miao Zou
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Xirui Yin
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Xuan Zhou
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Xinhui Niu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| |
Collapse
|
5
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
6
|
Bidwell GL. Novel Protein Therapeutics Created Using the Elastin-Like Polypeptide Platform. Physiology (Bethesda) 2021; 36:367-381. [PMID: 34486397 DOI: 10.1152/physiol.00026.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are bioengineered proteins that have a unique physical property, a thermally triggered inverse phase transition, that can be exploited for drug delivery. ELP-fusion proteins can be used as soluble biologics, thermally targeted drug carriers, self-assembling nanoparticles, and slow-release drug depots. Because of their unique physical characteristics and versatility for delivery of nearly any type of therapeutic, ELP-based drug delivery systems represent a promising platform for biologics development.
Collapse
Affiliation(s)
- Gene L Bidwell
- Departments of Neurology, Cell and Molecular Biology, and Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
7
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
8
|
Wang H, Zhang H, Zhu Y, Wu Z, Cui C, Cai F. Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications. Front Oncol 2021; 11:654428. [PMID: 34381705 PMCID: PMC8350729 DOI: 10.3389/fonc.2021.654428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Breast cancer (BC) is the most frequent cancer among women worldwide and is the leading cause of cancer-related deaths in women. Cancer cells with stem cell-like features and tumor-initiating potential contribute to drug resistance, tumor recurrence, and metastasis. To achieve better clinical outcomes, it is crucial to eradicate both bulk BC cells and breast cancer stem cells (BCSCs). Salinomycin, a monocarboxylic polyether antibiotic isolated from Streptomyces albus, can precisely kill cancer stem cells (CSCs), particularly BCSCs, by various mechanisms, including apoptosis, autophagy, and necrosis. There is increasing evidence that salinomycin can inhibit cell proliferation, invasion, and migration in BC and reverse the immune-inhibitory microenvironment to prevent tumor growth and metastasis. Therefore, salinomycin is a promising therapeutic drug for BC. In this review, we summarize established mechanisms by which salinomycin protects against BC and discuss its future clinical applications.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihao Zhu
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhonghang Wu
- Department of Scientific Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chunhong Cui
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Department of Scientific Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Tefas LR, Barbălată C, Tefas C, Tomuță I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13081120. [PMID: 34452081 PMCID: PMC8401311 DOI: 10.3390/pharmaceutics13081120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are reportedly responsible for the initiation and propagation of cancer. Since CSCs are highly resistant to conventional chemo- and radiotherapy, they are considered the main cause of cancer relapse and metastasis. Salinomycin (Sali), an anticoccidial polyether antibiotic, has emerged as a promising new candidate for cancer therapy, with selective cytotoxicity against CSCs in various malignancies. Nanotechnology provides an efficient means of delivering Sali to tumors in view of reducing collateral damage to healthy tissues and enhancing the therapeutic outcome. This review offers an insight into the most recent advances in cancer therapy using Sali-based nanocarriers.
Collapse
Affiliation(s)
- Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (L.R.T.); (C.B.); (I.T.)
| | - Cristina Barbălată
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (L.R.T.); (C.B.); (I.T.)
| | - Cristian Tefas
- Department of Gastroenterology, “Prof. Dr. Octavian Fodor” Regional Institute for Gastroenterology and Hepatology, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-740836136
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (L.R.T.); (C.B.); (I.T.)
| |
Collapse
|
10
|
Ertas YN, Abedi Dorcheh K, Akbari A, Jabbari E. Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells: A Review of Recent Advances. NANOMATERIALS 2021; 11:nano11071755. [PMID: 34361141 PMCID: PMC8308126 DOI: 10.3390/nano11071755] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells that can initiate, self-renew, and sustain tumor growth. CSCs are responsible for tumor metastasis, recurrence, and drug resistance in cancer therapy. CSCs reside within a niche maintained by multiple unique factors in the microenvironment. These factors include hypoxia, excessive levels of angiogenesis, a change of mitochondrial activity from aerobic aspiration to aerobic glycolysis, an upregulated expression of CSC biomarkers and stem cell signaling, and an elevated synthesis of the cytochromes P450 family of enzymes responsible for drug clearance. Antibodies and ligands targeting the unique factors that maintain the niche are utilized for the delivery of anticancer therapeutics to CSCs. In this regard, nanomaterials, specifically nanoparticles (NPs), are extremely useful as carriers for the delivery of anticancer agents to CSCs. This review covers the biology of CSCs and advances in the design and synthesis of NPs as a carrier in targeting cancer drugs to the CSC subpopulation of cancer cells. This review includes the development of synthetic and natural polymeric NPs, lipid NPs, inorganic NPs, self-assembling protein NPs, antibody-drug conjugates, and extracellular nanovesicles for CSC targeting.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey;
- ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Keyvan Abedi Dorcheh
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran;
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran;
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Correspondence:
| |
Collapse
|
11
|
Li C, Qiu Q, Gao X, Yan X, Fan C, Luo X, Liu X, Wang S, Lai X, Song Y, Deng Y. Sialic acid conjugate-modified liposomal platform modulates immunosuppressive tumor microenvironment in multiple ways for improved immune checkpoint blockade therapy. J Control Release 2021; 337:393-406. [PMID: 34171446 DOI: 10.1016/j.jconrel.2021.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
Immune checkpoint blockade (ICB) treatment is promising for the clinical therapy of numerous malignancies. However, most cancer patients rarely benefit from such single-agent immunotherapies because of the complexity of both the tumor and tumor microenvironment. A tumor-specific liposomal vehicle (DOX-SAL) modified with a sialic acid-cholesterol conjugate (SA-CH) and remotely loaded with doxorubicin (DOX) is herein reported for improving chemoimmunotherapy. The intravenous administration of DOX-SAL dramatically downregulates tumor-associated macrophage (TAM)-mediated immunosuppression, inhibits immunoregulatory functions, and promotes intratumoral infiltration of CD8+ T cells. Compared to conventional liposomes, DOX-SAL-mediated combination therapy with a PD-1-blocking monoclonal antibody (aPD-1 mAb) almost completely eliminates B16F10 tumors and efficiently inhibits 4T1 tumors. Moreover, cancer stem cells exhibit efficient tumor-initiating, tumor-propagating, and immunosuppressive tumor microenvironment-shaping capabilities. To further improve the treatment efficacy of an immunologically "cold" tumor, metformin (MET), which selectively eradicates breast cancer tumor stem cells, is co-encapsulated with DOX into liposomes to develop DOX/MET-SAL. The combination therapy with DOX/MET-SAL and aPD-1 mAb in a 4T1 orthotopic mouse model indicates their synergetic benefit on primary tumor inhibition, metastasis suppression, and survival rate improvement. Thus, the multifunctional liposomal platform has potential value for ICB combination immunotherapy.
Collapse
Affiliation(s)
- Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qiujun Qiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chuizhong Fan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiang Luo
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
12
|
Dong S, Subramanian S, Parent KN, Chen M. Promotion of CTL epitope presentation by a nanoparticle with environment-responsive stability and phagolysosomal escape capacity. J Control Release 2020; 328:653-664. [PMID: 32961248 PMCID: PMC8729261 DOI: 10.1016/j.jconrel.2020.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
Vaccines that induce cytotoxic T lymphocyte (CTL)-mediated immune responses constitute an important class of medical tools to fend off diseases like infections and malignancy. Epitope peptides, as a format of CTL vaccines, are being tested preclinically and clinically. To elicit CTL responses, epitope vaccines go through an epitope presentation pathway in dendritic cells (DCs) that has multiple bottleneck steps and hence is inefficient. Here, we report the development of a strategy to overcome one of these barriers, phagolysosomal escape in DCs. First, we furnished a previously established carrier-an immune-tolerant elastin-like polypeptide nanoparticle (iTEP NP)-with the peptides that are derived from the DNA polymerase of herpes simplex virus 1 (Pol peptides). Pol peptides were reported to facilitate phagolysosomal escape. In this study, while we found that Pol peptides promoted the CTL epitope presentation; we also discovered Pol peptides disrupted the formation of the iTEP NP. Thus, we engineered a series of new iTEPs and identified several iTEPs that could accommodate Pol peptides and maintain their NP structure at the same time. We next optimized one of these NPs so that its stability is responsive to its redox environment. This environment-responsive NP further strengthened the CTL epitope presentation and CTL responses. Lastly, we revealed how this NP and Pol peptides utilized biological cues of phagolysosomes to realize phagolysosomal escape and epitope release. In summary, we developed iTEP NP carriers with a new phagolysosomal escape function. These carriers, with their priorly incorporated functions, resolve three bottleneck issues in the CTL epitope presentation pathway: vaccine uptake, phagolysosomal escape, and epitope release.
Collapse
Affiliation(s)
- Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Wang Z, Sun M, Li W, Fan L, Zhou Y, Hu Z. A Novel CD133- and EpCAM-Targeted Liposome With Redox-Responsive Properties Capable of Synergistically Eliminating Liver Cancer Stem Cells. Front Chem 2020; 8:649. [PMID: 32850663 PMCID: PMC7431664 DOI: 10.3389/fchem.2020.00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells that sit atop the hierarchical ladder in many cancer types. Liver CSCs have been associated with high chemoresistance and recurrence rates in hepatocellular carcinoma (HCC). However, as of yet, no satisfactorily effective liver CSC-targeted treatment is available, which drove us to design and investigate the efficacy of a liposome-based delivery system. Here, we introduce a redox-triggered dual-targeted liposome, CEP-LP@S/D, capable of co-delivering doxorubicin (Dox) and salinomycin (Sal) for the synergistic treatment of liver cancer. This system is based on the association of CD133- and EpCAM-targeted peptides to form Y-shaped CEP ligands that were anchored to the surface of the liposome and allowed the selective targeting of CD133+ EpCAM+ liver CSCs. After arriving to the CSCs, the CEP-LP@S/D liposome undergoes endocytosis to the cytoplasm, where a high concentration of glutathione (GSH) breaks its disulfide bonds, thereby degrading the liposome. This then induces a rapid release of Dox and Sal to synergistically inhibit tumor growth. Notably, this effect occurs through Dox-induced apoptosis and concurrent lysosomal iron sequestration by Sal. Interestingly, both in vitro and in vivo studies indicated that our GSH-responsive co-delivery system not only effectively enhanced CSC targeting but also eliminated the non-CSC faction, thereby exhibiting high antitumor efficacy. We believe that the smart liposome nanocarrier-based co-delivery system is a promising strategy to combat liver cancer, which may also lay the groundwork for more enhanced approaches to target other cancer types as well.
Collapse
Affiliation(s)
- Zihua Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengqi Sun
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Wang Li
- Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ying Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyuan Hu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Dalpiaz A, Paganetto G, Botti G, Pavan B. Cancer stem cells and nanomedicine: new opportunities to combat multidrug resistance? Drug Discov Today 2020; 25:1651-1667. [PMID: 32763499 DOI: 10.1016/j.drudis.2020.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
'Multidrug resistance' (MDR) is a difficult challenge for cancer treatment. The combined role of cytochrome P450 enzymes (CYPs) and active efflux transporters (AETs) in cancer cells appears relevant in inducing MDR. Chemotherapeutic drugs can be substrates of both CYPs and AETs and CYP inducers or inhibitors can produce the same effects on AETs. In addition, a small subpopulation of cancer stem-like cells (CSCs) appears to survive conventional chemotherapy, leading to recurrent disease. Natural products appear efficacious against CSCs; their combinational treatments with standard chemotherapy are promising for cancer eradication, in particular when supported by nanotechnologies.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giada Botti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
15
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
16
|
Santos M, Serrano-Dúcar S, González-Valdivieso J, Vallejo R, Girotti A, Cuadrado P, Arias FJ. Genetically Engineered Elastin-based Biomaterials for Biomedical Applications. Curr Med Chem 2020; 26:7117-7146. [PMID: 29737250 DOI: 10.2174/0929867325666180508094637] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 01/31/2023]
Abstract
Protein-based polymers are some of the most promising candidates for a new generation of innovative biomaterials as recent advances in genetic-engineering and biotechnological techniques mean that protein-based biomaterials can be designed and constructed with a higher degree of complexity and accuracy. Moreover, their sequences, which are derived from structural protein-based modules, can easily be modified to include bioactive motifs that improve their functions and material-host interactions, thereby satisfying fundamental biological requirements. The accuracy with which these advanced polypeptides can be produced, and their versatility, self-assembly behavior, stimuli-responsiveness and biocompatibility, means that they have attracted increasing attention for use in biomedical applications such as cell culture, tissue engineering, protein purification, surface engineering and controlled drug delivery. The biopolymers discussed in this review are elastin-derived protein-based polymers which are biologically inspired and biomimetic materials. This review will also focus on the design, synthesis and characterization of these genetically encoded polymers and their potential utility for controlled drug and gene delivery, as well as in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mercedes Santos
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Sofía Serrano-Dúcar
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | | | - Reinaldo Vallejo
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Alessandra Girotti
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Purificación Cuadrado
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | | |
Collapse
|
17
|
Kouhi A, Yao Z, Zheng L, Li Z, Hu P, Epstein AL, MacKay JA. Generation of a Monoclonal Antibody to Detect Elastin-like Polypeptides. Biomacromolecules 2019; 20:2942-2952. [PMID: 31276401 DOI: 10.1021/acs.biomac.9b00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The identification and use of antibodies dominate the biologic, clinical diagnostic, and therapeutic landscapes. In particular, antibodies have become essential tools in a variety of protein analytical experiments and to study the disposition of biologic therapeutics. One emerging class of peptide biologics is known as the elastin-like polypeptides (ELPs), which are repetitive protein polymers inspired by human tropoelastin. A major limitation in the clinical translation of ELP biologics has been a lack of a monoclonal antibody (mAb) to characterize their identity during expression. To facilitate these studies, we successfully generated a new mAb that is specific toward ELPs and ELP fusion proteins. A purified antibody was evaluated in an ELISA, western blotting, and immunofluorescence assay. The optimal anti-ELP mAb proved to be highly reactive and specific toward ELPs. Moreover, they were able to detect ELPs with a variety of aliphatic guest residues. ELPs phase-separate in response to heating; furthermore, when incubated at a great excess of ELPs, the anti-ELP mAb partially blocks phase separation. These findings are direct evidence that novel murine mAbs can be raised against purified ELPs. This new reagent will enable purification, experimental detection, and characterization of these biopolymers.
Collapse
|
18
|
A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur J Med Chem 2019; 166:48-64. [DOI: 10.1016/j.ejmech.2019.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
|
19
|
Vitamin E-based redox-sensitive salinomycin prodrug-nanosystem with paclitaxel loaded for cancer targeted and combined chemotherapy. Colloids Surf B Biointerfaces 2018; 172:506-516. [PMID: 30212688 DOI: 10.1016/j.colsurfb.2018.08.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) can resist conventional chemotherapy to lead to cancer recurrence. For complete eradication of cancers, an effective CSCs therapeutic strategy should be developed to combine with conventional chemotherapy. In this work, a novel vitamin E-based redox-sensitive salinomycin (SAL, an inhibitor for CSCs) prodrug nanoparticles (TS NPs) and hyaluronic acid (HA)-coated TS NPs (HTS NPs) were fabricated to deliver paclitaxel (PTX) for cancer-targeted and combined chemotherapy. Both TS and HTS prodrug NPs had mean diameter of about 200 nm with uniform size distribution, excellent drug loading capacity for PTX, and glutathione-triggered SAL and PTX release profiles. The HTS prodrug NPs had enhanced cellular uptake efficiency over TS NPs due to CD44 receptor-mediated endocytosis, hence exerting stronger potency of SAL upon CSCs-enriched mammospheres formation and G0/G1 cell phase arresting. Cytotoxicity and 3D tumor spheroids assays demonstrated that both TS and HTS prodrug NPs themself can synergize with loaded PTX to maximize the chemotherapeutic effect. Obviously, the latter demonstrated a more potent anticancer efficacy due to improved intracellular drug delivery efficiency. These results suggested that the designed TS prodrug NPs, especially the coated HTS NPs can serve as an effective anti-CSCs strategy for cancer targeted and combination treatments.
Collapse
|
20
|
Mi Y, Huang Y, Deng J. The enhanced delivery of salinomycin to CD133 + ovarian cancer stem cells through CD133 antibody conjugation with poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles. Oncol Lett 2018; 15:6611-6621. [PMID: 29725407 DOI: 10.3892/ol.2018.8140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and ovarian cancer stem cells (CSCs) serve a pivotal function in the metastasis and recurrence of ovarian cancer. Multiple previous studies have validated CD133 as a marker of ovarian CSCs. Although salinomycin is a promising therapeutic agent that has been demonstrated to kill CSCs in various types of cancer, poor aqueous solubility hampers its clinical application. The present study used salinomycin-loaded poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles conjugated with CD133 antibodies (CD133-SAL-NP) to eliminate CD133+ ovarian CSCs. The results revealed that CD133-SAL-NPs were of an appropriate size (149.2 nm) and exhibited sustained drug release. CD133-SAL-NPs efficiently bound to CD133+ ovarian cancer cells, resulting in an increased cytotoxic effect in CD133+ ovarian cancer cells, compared with the untargeted SAL-NPs and salinomycin. CD133-SAL-NPs reduced the percentage of CD133+ ovarian CSCs in ovarian cells more effectively than treatment with salinomycin or SAL-NPs, suggesting that CD133-SAL-NP targeted CD133+ ovarian CSCs. In nude mice bearing ovarian cancer xenografts, CD133-SAL-NPs exerted improved therapeutic effects compared with SAL-NPs and salinomycin. Thus, CD133 was demonstrated to be a promising target for drug delivery to ovarian CSCs, and may be useful as an agent to inhibit the growth of ovarian cancer by targeting CD133+ ovarian CSCs. CD133-SAL-NPs may therefore represent a promising approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yi Mi
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Yuqin Huang
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China.,Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Deng
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
21
|
Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018; 17:1612-1650. [DOI: 10.1039/c8pp00112j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy is a therapeutic option to treat cancer and other diseases.
Collapse
|
22
|
Codelivery of salinomycin and docetaxel using poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles to target both gastric cancer cells and cancer stem cells. Anticancer Drugs 2017; 28:989-1001. [DOI: 10.1097/cad.0000000000000541] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK, Karri VVSR. Nanocarrier based approaches for targeting breast cancer stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:885-898. [PMID: 28826237 DOI: 10.1080/21691401.2017.1366337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) are heterogeneous subpopulation of tumour initiating cells within breast tumours. They are spared even after chemotherapy and responsible for tumour relapse. Targeting BCSCs is, therefore, necessary to achieve radical cure in breast cancer. Despite the availability of agents targeting BCSCs, their clinical application is limited due to their off-target effects and bioavailability issues. Nanotechnology based drug carriers (nanocarriers) offer various advantages to deliver anti-BCSCs agents specifically to their target sites by overcoming their bioavailability issues. In this review, we describe various strategies for targeting BCSCs using nanocarriers.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Praveen T Krishnamurthy
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Pavan Kumar Chintamaneni
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Veera Venkata Satyanarayana Reddy Karri
- b Department of Pharmaceutics , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| |
Collapse
|
24
|
Singh VK, Saini A, Chandra R. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Front Mol Biosci 2017; 4:52. [PMID: 28785557 PMCID: PMC5520001 DOI: 10.3389/fmolb.2017.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation, and differentiation capabilities, and thus play a significant role in various aspects of cancer. CSCs have significant impacts on the progression of tumors, drug resistance, recurrence and metastasis in different types of malignancies. Due to their primary role, most researchers have focused on developing anti-CSC therapeutic strategies, and tremendous efforts have been put to explore methods for selective eradication of these therapeutically resistant CSCs. In recent years, many reports have shown the use of CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and eradication of the tumor microenvironment. Also, various therapeutic agents such as small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively. Targeted drug delivery holds the key to the success of most of the anti-CSCs based drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various problems. For instance, limited water solubility, small circulation time and inconsistent stability of conventional therapeutic agents have significantly limited their efficacy. Recent advancement in the drug delivery technology has demonstrated that specially designed nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering sufficient amount of drug molecules even in the most interiors of CSCs niches and thus can overcome the limitations associated with the conventional free drug delivery methods. The nanomedicine has also been promising in designing effective therapeutic regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental effects on normal stem cells. Here we focus on the biological processes regulating CSCs' drug resistance and various strategies developed so far to deal with them. We also review the various nanomedicine approaches developed so far to overcome these CSCs related issues and their future perspectives.
Collapse
Affiliation(s)
- Vimal K. Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of DelhiNew Delhi, India
| |
Collapse
|
25
|
Engineering of a self-adjuvanted iTEP-delivered CTL vaccine. Acta Pharmacol Sin 2017; 38:914-923. [PMID: 28414197 DOI: 10.1038/aps.2017.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) epitope peptide-based vaccines are widely used in cancer and infectious disease therapy. We previously generated an immune-tolerant elastin-like polypeptides (iTEPs)-based carrier to deliver a peptide CTL vaccine and enhance the efficiency of the vaccine. To further optimize the vaccine carrier, we intended to potentiate its function by designing an iTEP-based carrier that was able to deliver adjuvant and a vaccine epitope as one molecule. Thus, we fused a 9-mer H100, a peptide derived from the high-mobility group box 1 protein (HMGB1) that could induce activation of dendritic cells (DCs), with an iTEP polymer to generate a new iTEP polymer named H100-iTEP. The H100-iTEP still kept the feature of reversible phase transition of iTEPs and should be able to be used as a polymer carrier to deliver peptide vaccines. The expression levels of CD80/CD86 on DCs were assessed using flow cytometry. The iTEP fusion-stimulated IL-6 secretion by DCs was measured with ELISA. Activation of antigen-specific CD8+ T cells induced by iTEP fusions was examined through a B3Z hybridoma cell activation assay. In vivo CTL activation promoted by iTEP fusions was detected by an IFN-γ-based ELISPOT assay. The iTEP fused with H100 could induce maturation of DCs in vitro as evidenced by increased CD80 and CD86 expression. The iTEP fusion also promoted activation of DCs by increasing secretion of a proinflammatory cytokine IL-6. The N-terminus or C-terminus fusion of H100 to iTEP had a similar effect and a reduced form of cysteine in iTEP fusions was required for DC stimulation. iTEP fusions potentiated a co-administrated CTL vaccine by increasing an antigen-specific CTL response in vitro and in vivo. When the H100-iTEP was fused to a CTL epitope to generate a one-molecule vaccine, this self-adjuvanted vaccine elicited a stronger antigen-specific CTL response than a vaccine adjuvanted by Incomplete Freund's Adjuvant. Thus, we have successfully generated a functional, one-molecule iTEP-based self-adjuvanted vaccine.
Collapse
|
26
|
Zhao P, Atanackovic D, Dong S, Yagita H, He X, Chen M. An Anti-Programmed Death-1 Antibody (αPD-1) Fusion Protein That Self-Assembles into a Multivalent and Functional αPD-1 Nanoparticle. Mol Pharm 2017; 14:1494-1500. [PMID: 28343398 DOI: 10.1021/acs.molpharmaceut.6b01021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer immune checkpoint therapy has achieved remarkable clinical successes in various cancers. However, current immune checkpoint inhibitors block the checkpoint of not only the immune cells that are important to cancer therapy but also the immune cells that are irrelevant to the therapy. Such an indiscriminate blockade limits the efficacy and causes the autoimmune toxicity of the therapy. It might be beneficial to use a carrier to target immune checkpoint inhibitors to cancer-reactive immune cells. Here, we explore a method to load the inhibitors into carriers. We used the anti-programmed death-1 antibody (αPD-1) as a model immune checkpoint inhibitor. First, we generated a recombinant single-chain variable fragment (scFv) of αPD-1. Then, we designed and generated a fusion protein consisting of the scFv and an amphiphilic immune-tolerant elastin-like polypeptide (iTEP). Because of the amphiphilic iTEP, the fusion was able to self-assemble into a nanoparticle (NP). The NP was proved to block the PD-1 immune checkpoint in vitro and in vivo. Particularly, the NP exacerbated diabetes development in nonobese diabetic mice as effectively as natural, intact αPD-1. In summary, we successfully expressed αPD-1 as a recombinant protein and linked αPD-1 to a NP, which lays a foundation to develop a delivery system to target αPD-1 to a subpopulation of immune cells.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Djordje Atanackovic
- University of Utah School of Medicine , Salt Lake City, Utah 84112, United States
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine , Tokyo, Japan
| | - Xiao He
- Department of Pathology, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
27
|
Zhu M, Chen S, Hua L, Zhang C, Chen M, Chen D, Dong Y, Zhang Y, Li M, Song X, Chen H, Zheng H. Self-targeted salinomycin-loaded DSPE-PEG-methotrexate nanomicelles for targeting both head and neck squamous cell carcinoma cancer cells and cancer stem cells. Nanomedicine (Lond) 2017; 12:295-315. [PMID: 28093940 DOI: 10.2217/nnm-2016-0382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To target both head and neck squamous cell carcinoma (HNSCC) cells and cancer stem cells (CSCs) by salinomycin-loaded DSPE-PEG-MTX (synthesized using DSPE-PEG2000-NH2 and methotrexate) nanomicelles (M-SAL-MTX). MATERIALS & METHODS The characterization, antitumor activity and mechanism of M-SAL-MTX were evaluated. RESULTS & CONCLUSION M-SAL-MTX showed enhanced inhibitory effect toward both HNSCC CSCs and non-CSCs compared with a single treatment of methotrexate and salinomycin. In nude mice-bearing HNSCC xenografts, M-SAL-MTX suppressed tumor growth more effectively than other controls including combination of methotrexate and salinomycin. Therefore, M-SAL-MTX may provide a strategy for treating HNSCC by targeting both HNSCC CSCs and HNSCC cells.
Collapse
Affiliation(s)
- Minhui Zhu
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Shicai Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Libo Hua
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Caiyun Zhang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Mengjie Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Donghui Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yinmei Dong
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yingying Zhang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Meng Li
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xianmin Song
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huaiwen Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.,Sunlipo Biotech Research Center for Nanomedicine, 3688 Tingwei Road, Shanghai 201507, China
| | - Hongliang Zheng
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
28
|
He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells. Front Pharmacol 2016; 7:313. [PMID: 27679576 PMCID: PMC5020043 DOI: 10.3389/fphar.2016.00313] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Lee Y Lim
- Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA, Australia
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education Guangzhou, China
| |
Collapse
|
29
|
Jiang J, Chen H, Yu C, Zhang Y, Chen M, Tian S, Sun C. The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA nanoparticles. Nanomedicine (Lond) 2016; 10:1863-79. [PMID: 26139123 DOI: 10.2217/nnm.15.43] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS To develop salinomycin-loaded poly(lactic-co-glycolic acid) nanoparticles conjugated with both CD133 aptamers A15 and EGFR aptamers CL4 (CESN), to target hepatocellular carcinoma (HCC) cells simultaneously expressing EGFR and CD133. MATERIALS & METHODS The antitumor activity and mechanism of CESN were investigated. RESULTS & CONCLUSION The cytotoxicity of CESN in HCC cells and CD133(+) HCC cells was superior to that of A15 or CL4-conjugted or nontargeted salinomycin-loaded nanoparticles. The antitumor assay in mice bearing HCC xenograft tumors confirmed the superior antitumor activity of CESN over other controls. We speculated that the improved therapeutic effect of CESN may be attributed to both targeting a higher percentage of HCC cells and increased delivery of salinomycin to HCC cells.
Collapse
Affiliation(s)
- Jianxin Jiang
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Road, Guizhou 550001, Guiyang, Guizhou, China
| | - Huaiwen Chen
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Road, Guizhou 550001, Guiyang, Guizhou, China.,International Join Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Chao Yu
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Road, Guizhou 550001, Guiyang, Guizhou, China
| | - Yingying Zhang
- College of Pharmacy, The Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Meiyuan Chen
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Road, Guizhou 550001, Guiyang, Guizhou, China
| | - She Tian
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Road, Guizhou 550001, Guiyang, Guizhou, China
| | - Chengyi Sun
- Department of Biliary-Hepatic Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Road, Guizhou 550001, Guiyang, Guizhou, China
| |
Collapse
|
30
|
Roy A, Li SD. Modifying the tumor microenvironment using nanoparticle therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:891-908. [PMID: 27038329 DOI: 10.1002/wnan.1406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Treatment of cancer has come a long way from the initial 'radical surgeries' to the multimodality treatments. For the major part of the last century, cancer was considered as a monocellular disorder, and treatment strategies were designed according to that hypothesis. However, the mortality rate from cancer continued to be high and a comprehensive treatment remained elusive. Recent progress in research has demonstrated that tumors are a complex network of neoplastic and non-neoplastic cells. The non-neoplastic cells, which are collectively called stroma, assist in tumor survival and progression. It has been shown that disrupting the tumor-stromal balance leads to significant effects on the tumor survival, and effective treatment can be achieved by targeting one or more of the stromal components. In this review, we summarize the roles of various stromal components in promoting tumor progression, and discuss innovative nanoparticle-mediated drug targeting strategies for stromal depletion and the subsequent effects on the tumors. Perspectives and the future directions are also provided. WIREs Nanomed Nanobiotechnol 2016, 8:891-908. doi: 10.1002/wnan.1406 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, India.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces 2016; 143:532-546. [PMID: 27045981 DOI: 10.1016/j.colsurfb.2016.03.075] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 12/11/2022]
Abstract
This combinational therapy is mainly aimed for complete eradication of tumor by killing both cancer cells and cancer stem cells. Salinomycin (SLM) was targeted towards cancer stem cells whereas paclitaxel (PTX) was used to kill cancer cells. Drug loaded poly (lactic-co-glycolic acid) nanoparticles were prepared by emulsion solvent diffusion method using cationic stabilizer. Size of the nanoparticles (below 150nm) was determined by dynamic light scattering technique and transmission electron microscopy. In vitro release study confirmed the sustained release pattern of SLM and PTX from nanoparticles more than a month. Cytotoxicity studies on MCF-7 cells revealed the toxicity potential of nanoparticles over drug solutions. Hyaluronic acid (HA) was coated onto the surface of SLM nanoparticles for targeting CD44 receptors over expressed on cancer stem cells and they showed the highest cytotoxicity with minimum IC50 on breast cancer cells. Synergistic cytotoxic effect was also observed with combination of nanoparticles. Cell uptake studies were carried out using FITC loaded nanoparticles. These particles showed improved cellular uptake over FITC solution and HA coating further enhanced the effect by 1.5 folds. CD44 binding efficiency of nanoparticles was studied by staining MDA-MB-231 cells with anti CD44 human antibody and CD44(+) cells were enumerated using flow cytometry. CD44(+) cell count was drastically decreased when treated with HA coated SLM nanoparticles indicating their efficiency towards cancer stem cells. Combination of HA coated SLM nanoparticles and PTX nanoparticles showed the highest cytotoxicity against CD44(+) cells. Hence combinational therapy using conventional chemotherapeutic drug and cancer stem cell inhibitor could be a promising approach in overcoming cancer recurrence due to resistant cell population.
Collapse
Affiliation(s)
- Eameema Muntimadugu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rajendra Kumar
- UGC Centre of Excellence in Applications of Nanomaterials, Nanoparticles, and Nanocomposites, Panjab University, Chandigarh 160014, India
| | - Shantikumar Saladi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Towseef Amin Rafeeqi
- Biochemistry, Cellular and Molecular Biology Laboratories, Central Research Institute of Unani Medicine (CRIUM), Hyderabad 500038, India
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
32
|
Zhao P, Xia G, Dong S, Jiang ZX, Chen M. An iTEP-salinomycin nanoparticle that specifically and effectively inhibits metastases of 4T1 orthotopic breast tumors. Biomaterials 2016; 93:1-9. [PMID: 27060212 DOI: 10.1016/j.biomaterials.2016.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 03/17/2016] [Indexed: 01/24/2023]
Abstract
Cancer stem cell (CSC) inhibitors are a new category of investigational drugs to treat metastasis. Salinomycin (Sali) is one of most studied CSC inhibitors and has reached clinical tests. Several drug carriers have been developed to improve efficacy of Sali. However, Sali has not been shown to inhibit metastasis from orthotopic tumors, the gold standard for metastasis. To fill this gap, we developed an immune-tolerant, elastin-like polypeptide (iTEP)-based nanoparticle (iTEP-Sali-ABA NP) that released 4-(aminomethyl)benzaldehyde-modified Sali (Sali-ABA) under acidic conditions. We found that the NP increased the area under the curve (AUC) of Sali-ABA by 30-fold and the tumor accumulation by 3.4-fold. Furthermore, no metastasis was detected in any of the mice given the NP. However, all the mice died of primary tumor burdens. To overcome primary tumor growth and improve the overall survival, we applied a combination therapy consisting of the iTEP-Sali-ABA NP and iTEP NP-delivered paclitaxel. This therapy effectively retarded primary tumor growth, and most importantly, improved the overall survival. In conclusion, delivery of Sali-ABA by the NP, alone or in combination with paclitaxel, was more effective than free Sali-ABA in decreasing metastasis and increasing survival. This iTEP-Sali-ABA NP represents a novel and clinically promising therapy to combat metastasis.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Guiquan Xia
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zhaong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
33
|
Shi Q, Li Y, Bo S, Li X, Zhao P, Liu Q, Yang Z, Cong H, Deng H, Chen M, Chen S, Zhou X, Ding H, Jiang ZX. Discovery of a (19)F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells. Chem Commun (Camb) 2016; 52:5136-9. [PMID: 26997457 DOI: 10.1039/c6cc01508e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salinomycin is a promising anti-cancer agent which selectively targets cancer stem cells. To improve its potency and selectivity, an analog library of salinomycin was generated by site-specific modification and CuAAc derivatization. Through a cytotoxicity analysis of the library, a fluorinated analog with high potency, selectivity, and (19)F MRI sensitivity was discovered as a novel theranostic agent.
Collapse
Affiliation(s)
- Qiuyan Shi
- School of Pharmaceutical Sciences and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430071, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dong S, Xu T, Zhao P, Parent KN, Chen M. A Comparison Study of iTEP Nanoparticle-Based CTL Vaccine Carriers Revealed a Surprise Relationship between the Stability and Efficiency of the Carriers. Am J Cancer Res 2016; 6:666-78. [PMID: 27022414 PMCID: PMC4805661 DOI: 10.7150/thno.14068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/08/2016] [Indexed: 01/08/2023] Open
Abstract
Vaccine carriers have been shown to enhance cytotoxic T lymphocyte (CTL) epitope peptide vaccines by addressing intrinsic limitations of the vaccines. We have previously developed an immune-tolerant elastin-like polypeptide (iTEP)-based nanoparticle (NP) as an effective and unique CTL vaccine carrier. The NP is unique for its humoral immune tolerance, flexible structure, and ability to deliver CTL vaccines as polypeptide fusions. Here, we aimed to improve the NP by increasing its stability since we found it was not stable. We thus generated a more stable iTEP NP (ST-NP) and used it to deliver a CTL peptide vaccine, SIINFEKL. However, we surprisingly found that the ST-NP had a lower efficiency than the previously developed, marginally stable iTEP NP (MS-NP) in terms of promoting vaccine presentation and vaccine-induced CTL responses. On the other hand, dendritic cells (DCs) showed preferential uptake of the ST-NP but not the MS-NP. To develop an iTEP vaccine carrier that outperforms both the MS-NP and the ST-NP, we devised an iTEP NP that has a changeable stability responsive to a cytosolic, reductive environment, termed reductive environment-dependent NP or RED-NP. The RED-NP showed an intermediate ability to promote vaccine presentation and T cell responses in vitro between the MS-NP and the ST-NP. However, the RED-NP induced the strongest CTL responses in vivo among all three NPs. In conclusion, iTEP NPs that have a dynamically changeable stability are most effective to deliver and enhance CTL peptide vaccines. The work also demonstrated the versatile nature of iTEP vaccine carriers.
Collapse
|
35
|
Gener P, Rafael DFDS, Fernández Y, Ortega JS, Arango D, Abasolo I, Videira M, Schwartz S. Cancer stem cells and personalized cancer nanomedicine. Nanomedicine (Lond) 2016; 11:307-20. [DOI: 10.2217/nnm.15.200] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.
Collapse
Affiliation(s)
- Petra Gener
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Diana Fernandes de Sousa Rafael
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- iMed.ULisboa, Research Institute for Medicines. Faculdade de Farmácia da Universidade de Lisboa, Av Prof Gama Pinto, 1649–003 Lisboa, Portugal
| | - Yolanda Fernández
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Functional Validation & Preclinical Studies (FVPR); CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Joan Sayós Ortega
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Inmunobiology Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Diego Arango
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Molecular Oncology Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Functional Validation & Preclinical Studies (FVPR); CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Mafalda Videira
- iMed.ULisboa, Research Institute for Medicines. Faculdade de Farmácia da Universidade de Lisboa, Av Prof Gama Pinto, 1649–003 Lisboa, Portugal
| | - Simo Schwartz
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| |
Collapse
|
36
|
Rodríguez-Cabello JC, Arias FJ, Rodrigo MA, Girotti A. Elastin-like polypeptides in drug delivery. Adv Drug Deliv Rev 2016; 97:85-100. [PMID: 26705126 DOI: 10.1016/j.addr.2015.12.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented.
Collapse
|
37
|
Shen S, Xia JX, Wang J. Nanomedicine-mediated cancer stem cell therapy. Biomaterials 2015; 74:1-18. [PMID: 26433488 DOI: 10.1016/j.biomaterials.2015.09.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic strategies and the potential direction of nanomedicine-based CSC therapy in the near future is also presented.
Collapse
Affiliation(s)
- Song Shen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jin-Xing Xia
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China.
| | - Jun Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
38
|
Cho S, Dong S, Parent KN, Chen M. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers. J Drug Target 2015; 24:328-39. [PMID: 26307138 PMCID: PMC4813525 DOI: 10.3109/1061186x.2015.1077847] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/27/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. PURPOSE We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. RESULTS Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. DISCUSSION A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. CONCLUSION It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.
Collapse
Affiliation(s)
- S. Cho
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 E 2000 S, Salt Lake City, Utah 84112
| | - S. Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 E 2000 S, Salt Lake City, Utah 84112
| | - K. N. Parent
- Dept. of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| | - M. Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 E 2000 S, Salt Lake City, Utah 84112
| |
Collapse
|
39
|
Polymeric Micelles of PEG-PLA Copolymer as a Carrier for Salinomycin Against Gemcitabine-Resistant Pancreatic Cancer. Pharm Res 2015; 32:3756-67. [DOI: 10.1007/s11095-015-1737-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
|
40
|
Ni M, Xiong M, Zhang X, Cai G, Chen H, Zeng Q, Yu Z. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. Int J Nanomedicine 2015; 10:2537-54. [PMID: 25848270 PMCID: PMC4386781 DOI: 10.2147/ijn.s78498] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Cancer stem cells (CSCs) possess the characteristics associated with normal stem cells and are responsible for cancer initiation, recurrence, and metastasis. CD133 is regarded as a CSCs marker of osteosarcoma, which is the most common primary bone malignancy in childhood and adolescence. Salinomycin, a polyether ionophore antibiotic, has been shown to kill various CSCs, including osteosarcoma CSCs. However, salinomycin displayed poor aqueous solubility that hinders its clinical application. The objective of this study was to develop salinomycin-loaded nanoparticles to eliminate CD133+ osteosarcoma CSCs. Methods The salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with CD133 aptamers (Ap-SAL-NP) were developed by an emulsion/solvent evaporation method, and the targeting and cytotoxicity of Ap-SAL-NP to CD133+ osteosarcoma CSCs were evaluated. Results The nanoparticles are of desired particle size (~150 nm), drug encapsulation efficiency (~50%), and drug release profile. After 48 hours treatment of the Saos-2 CD133+ osteosarcoma cells with drugs formulated in Ap-SAL-NP, SAL-NP, and salinomycin, the concentrations needed to kill 50% of the incubated cells were found to be 2.18, 10.72, and 5.07 μg/mL, respectively, suggesting that Ap-SAL-NP could be 4.92 or 2.33 fold more effective than SAL-NP or salinomycin, respectively. In contrast, Ap-SAL-NP was as effective as SAL-NP, and less effective than salinomycin in Saos-2 CD133− cells, suggesting that Ap-SAL-NP possess specific cytotoxicity toward Saos-2 CD133+ cells. Ap-SAL-NP showed the best therapeutic effect in Saos-2 osteosarcoma xenograft mice, compared with SAL-NP or salinomycin. Significantly, Ap-SAL-NP could selectively kill CD133+ osteosarcoma CSCs both in vitro and in vivo, as reflected by the tumorsphere formation and proportion of Saos-2 CD133+ cells. Conclusion Our results suggest that CD133 is a potential target for drug delivery to osteosarcoma CSCs and that it is possible to significantly inhibit the osteosarcoma growth by killing CD133+ osteosarcoma CSCs. We demonstrated that Ap-SAL-NP have the potential to target and kill CD133+ osteosarcoma CSCs.
Collapse
Affiliation(s)
- Miaozhong Ni
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Min Xiong
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xinchao Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guoping Cai
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Huaiwen Chen
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
| | - Qingmin Zeng
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|