1
|
Taiariol L, Chaix C, Farre C, Moreau E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021; 122:340-384. [PMID: 34705429 DOI: 10.1021/acs.chemrev.1c00484] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, click and bioorthogonal reactions have been the subject of considerable research efforts. These high-performance chemical reactions have been developed to meet requirements not often provided by the chemical reactions commonly used today in the biological environment, such as selectivity, rapid reaction rate, and biocompatibility. Click and bioorthogonal reactions have been attracting increasing attention in the biomedical field for the engineering of nanomedicines. In this review, we study a compilation of articles from 2014 to the present, using the terms "click chemistry and nanoparticles (NPs)" to highlight the application of this type of chemistry for applications involving NPs intended for biomedical applications. This study identifies the main strategies offered by click and bioorthogonal chemistry, with respect to passive and active targeting, for NP functionalization with specific and multiple properties for imaging and cancer therapy. In the final part, a novel and promising approach for "two step" targeting of NPs, called pretargeting (PT), is also discussed; the principle of this strategy as well as all the studies listed from 2014 to the present are presented in more detail.
Collapse
Affiliation(s)
- Ludivine Taiariol
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Carole Chaix
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Farre
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
2
|
Zhang RL, Pratiwi FW, Chen BC, Chen P, Wu SH, Mou CY. Simultaneous Single-Particle Tracking and Dynamic pH Sensing Reveal Lysosome-Targetable Mesoporous Silica Nanoparticle Pathways. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42472-42484. [PMID: 32657564 DOI: 10.1021/acsami.0c07917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticle (NP)-based targeted drug delivery is intended to transport therapeutically active molecules to specific cells and particular intracellular compartments. However, there is limited knowledge regarding the complete route of NPs in this targeting scenario. In this study, simultaneously performing motion and dynamic pH sensing using single-particle tracking (SPT) leads to an alternative method of gaining insights into the mesoporous silica nanoparticle's (MSN) journey in targeting lysosome. Two different pH-sensitive dyes and a reference dye are incorporated into mesoporous silica nanoparticles (MSNs) via co-condensation to broaden the measurable pH range (pH 4-7.5) of the nanoprobe. The phosphonate, amine, and lysosomal sorting peptides (YQRLGC) are conjugated onto the MSN's surface to study intracellular nano-biointeractions of two oppositely charged and lysosome-targetable MSNs. The brightness and stability of these MSNs allow their movement and dynamic pH evolution during their journey to be simultaneously monitored in real time. Importantly, a multidimensional analysis of MSN's movement and local pH has revealed new model intracellular dynamic states and distributions of MSNs, previously inaccessible when using single parameters alone. A key result is that YQRLGC-conjugated MSNs took an alternative route to target lysosomes apart from the traditional one, which sped up to 4 h and enhanced their targeting efficiency (up to 32%). The findings enrich our understanding of the intracellular journey of MSNs. This study offers complementary information on correlating the surface design with the full pathway of nanoparticles to achieve targeted delivery of therapeutic payload.
Collapse
Affiliation(s)
- Rong-Lin Zhang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Feby Wijaya Pratiwi
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu Xinyi Street, Taipei 11031, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu Xinyi Street, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ. Recent Advances in the Generation of Antibody-Nanomaterial Conjugates. Adv Healthc Mater 2018; 7. [PMID: 28961378 DOI: 10.1002/adhm.201700607] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/31/2017] [Indexed: 01/11/2023]
Abstract
Targeted nanomedicines have significantly changed the way new therapeutics are designed to treat disease. Central to successful therapeutics is the ability to control the dynamics of protein-nanomaterial interactions to enhance the therapeutic effect of the nanomedicine. The aim of this review is to illustrate the diversity and versatility of the conjugation approaches involved in the synthesis of antibody-nanoparticle conjugates, and highlight significant new advances in the field of bioconjugation. Such nanomedicines have found utility as both advanced therapeutic agents, as well as more complex imaging contrast agents that can provide both anatomical and functional information of diseased tissue. While such conjugates show significant promise as next generation targeted nanomedicines, it is recognized that there are in fact no clinically approved targeted therapeutics on the market. This fact is reflected upon within this review, and attempts are made to draw some reasoning from the complexities associated with the bioconjugation chemistry approaches that are typically utilized. Present trends, as well as future directions of next generation targeted nanomedicines are also discussed.
Collapse
Affiliation(s)
- Amal J. Sivaram
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology Queensland Node University of Queensland St Lucia 4072 Australia
| | - Andri Wardiana
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Training Centre for Biopharmaceutical Innovation Brisbane University of Queensland QLD 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- ARC Training Centre for Biopharmaceutical Innovation Brisbane University of Queensland QLD 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology Queensland Node University of Queensland St Lucia 4072 Australia
| |
Collapse
|
4
|
Maity AR, Stepensky D. Nuclear and perinuclear targeting efficiency of quantum dots depends on density of peptidic targeting residues on their surface. J Control Release 2017; 257:32-39. [DOI: 10.1016/j.jconrel.2016.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022]
|
5
|
Tian Z, Yu Q, Xie Y, Li F, Lu Y, Dong X, Zhao W, Qi J, Wu W. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology. Pharm Res 2016; 33:1988-97. [DOI: 10.1007/s11095-016-1935-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022]
|
6
|
Maity AR, Stepensky D. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2001-2009. [PMID: 26731220 DOI: 10.1021/acsami.5b10295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organelle-targeted drug delivery can enhance the efficiency of the intracellularly acting drugs and reduce their toxicity. We generated core-shell type CdSe-ZnS quantum dots (QDs) densely decorated with NLS peptidic targeting residues using a 3-stage decoration approach and investigated their endocytosis and nuclear targeting efficiencies. The diameter of the generated QDs increased following the individual decoration stages (16.3, 18.9, and 21.9 nm), the ζ-potential became less negative (-33.2, -17.5, and -11.9 mV), and characteristic changes appeared in the FTIR spectra following decoration with the linker and NLS peptides. Quantitative analysis of the last decoration stage revealed that 37.9% and 33.2% of the alkyne-modified NLS groups that were added to the reaction mix became covalently attached or adsorbed to the QDs surface, respectively. These numbers correspond to 63.6 and 55.7 peptides conjugated or adsorbed to a single QD (the surface density of 42 and 37 conjugated and adsorbed peptides per 1000 nm(2) of the QDs surface), which is higher than in the majority of previous studies that reported decoration efficiencies of formulations intended for nuclear-targeted drug delivery. QDs decorated with NLS peptides undergo more efficient endocytosis, as compared to other investigated QDs formulations, and accumulated to a higher extent in the cell nucleus or in close vicinity to it (11.9%, 14.6%, and 56.1% of the QDs endocytosed by an average cell for the QD-COOH, QD-azide, and QD-NLS formulations, respectively). We conclude that dense decoration of QDs with NLS residues increased their endocytosis and led to their nuclear targeting (preferential accumulation in the cells nuclei or in close vicinity to them). The experimental system and research tools that were used in this study allow quantitative investigation of the mechanisms that govern the QDs nuclear targeting and their dependence on the formulation properties. These findings will contribute to the development of subcellularly targeted DDSs that will deliver specific drugs to the nuclei of the target cells and will enhance efficacy and reduce toxicity of these drugs.
Collapse
Affiliation(s)
- Amit Ranjan Maity
- Department of Clinical Biochemistry and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Maity AR, Stepensky D. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly “Targeted” Drug Delivery Systems. Mol Pharm 2015; 13:1-7. [DOI: 10.1021/acs.molpharmaceut.5b00697] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amit Ranjan Maity
- Department of Clinical Biochemistry
and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - David Stepensky
- Department of Clinical Biochemistry
and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
8
|
Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies. Int J Pharm 2015; 496:268-74. [DOI: 10.1016/j.ijpharm.2015.10.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 01/16/2023]
|
9
|
Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 2015; 97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
|