1
|
Sharma A, Kumar V, Chakraborty S. Micro-Solvation of Propofol in Propylene Glycol-Water Binary Mixtures: Molecular Dynamics Simulation Studies. J Phys Chem B 2023; 127:11011-11022. [PMID: 37972382 DOI: 10.1021/acs.jpcb.3c04932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The water microstructure around propofol plays a crucial role in controlling their solubility in the binary mixture. The unusual nature of such a water microstructure can influence both translational and reorientational dynamics, as well as the water hydrogen bond network near propofol. We have carried out all-atom molecular dynamics simulations of five different compositions of the propylene glycol (PG)/water binary mixture containing propofol (PFL) molecules to investigate the differential behavior of water microsolvation shells around propofol, which is likely to control the propofol solubility. It is evident from the simulation snapshots for various compositions that the PG at high molecular ratio favors the water cluster and extended chainlike network that percolates within the PG matrix, where the propofol is in the dispersed state. We estimated that the radial distribution function indicates higher ordered water microstructure around propofol for high PG content, as compared to the lower PG content in the PG/water mixture. So, the hydrophilic PG regulates the stability of the water micronetwork around propofol and its solubility in the binary mixture. We observed that the translational and rotational mobility of water belonging to the propofol microsolvation shell is hindered for high PG content and relaxed toward the low PG molecular ratio in the PG/water mixture. It has been noticed that the structural relaxation of the hydrogen bond formed between the propofol and the water molecules present in the propofol microsolvation shell for all five compositions is found to be slower for high PG content and becomes faster on the way to low PG content in the mixture. Simultaneously, we calculated the intermittent residence time correlation function of the water molecules belonging to the microsolvation shell around the propofol for five different compositions and found a faster short time decay followed up with long time components. Again, the origin of such long time decay is primarily from the structural relaxation of the microsolvation shell around the propofol, where the high PG content shows the slower structural relaxation that turns faster as the PG content approaches to the other end of the compositions. So, our studies showed that the slower structural relaxation of the microsolvation shell around propofol for a high PG molecular ratio in the PG/water mixture correlate well with the extensive ordering of the water microstructure and restricted water mobility and facilitates the dissolution process of propofol in the binary mixture.
Collapse
Affiliation(s)
- Anupama Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Vishal Kumar
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
2
|
Shamshina JL, Rogers RD. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev 2023; 123:11894-11953. [PMID: 37797342 DOI: 10.1021/acs.chemrev.3c00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, Texas 79409, United States
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|
3
|
Rayinuthala Y, M DR, Srinivasa Reddy M, Sk Md N, Sk Md RA. Investigations on molecular interactions of memantine hydrochloride in aqueous solutions by thermophysical methods and molecular dynamics simulations at different temperatures. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Maarfavi M, Zare M, Noorizadeh S. Structural, Electronic, and Thermochemical Properties of Salicylic Acid-Containing Ionic Liquids as Active Pharmaceutical Ingredients. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Ionic liquid of ketoprofen-piperine modulates the pharmaceutical and therapeutic characters of ketoprofen. Int J Pharm 2022; 620:121724. [DOI: 10.1016/j.ijpharm.2022.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
6
|
Liu C, Chen B, Shi W, Huang W, Qian H. Ionic Liquids for Enhanced Drug Delivery: Recent Progress and Prevailing Challenges. Mol Pharm 2022; 19:1033-1046. [PMID: 35274963 DOI: 10.1021/acs.molpharmaceut.1c00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ionic liquids (ILs) are a class of nonmolecular compounds composed only of ions. Compared with traditional organic solvents, ILs have the advantages of wide chemical space, diverse and flexible structures, negligible vapor pressure, and high thermal stability, which make them widely used in many fields of modern science, such as chemical synthesis and catalytic decomposition, electrochemistry, biomass conversion, and biotransformation biotechnology. Because of their special characteristics, ILs have been favored in the pharmaceutical field recently, especially for the development of efficient drug delivery systems. So far, ILs have been successfully designed to promote the dissolution of poorly soluble drugs and the destruction of physiological barriers, such as the tight junction between the stratum corneum and the intestinal epithelium. In addition, ILs can also be combined with other drug strategies to stabilize the structure of small molecules. This Review mainly introduces the application of ILs in drug delivery, emphasizes the potential mechanism of ILs, and presents the key research directions of ILs in the future.
Collapse
Affiliation(s)
- Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Bin Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
7
|
Shamshina JL, Rogers RD. Are Myths and Preconceptions Preventing us from Applying Ionic Liquid Forms of Antiviral Medicines to the Current Health Crisis? Int J Mol Sci 2020; 21:E6002. [PMID: 32825444 PMCID: PMC7503643 DOI: 10.3390/ijms21176002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/29/2022] Open
Abstract
At the moment, there are no U.S. Food and Drug Administration (U.S. FDA)-approved drugs for the treatment of COVID-19, although several antiviral drugs are available for repurposing. Many of these drugs suffer from polymorphic transformations with changes in the drug's safety and efficacy; many are poorly soluble, poorly bioavailable drugs. Current tools to reformulate antiviral APIs into safer and more bioavailable forms include pharmaceutical salts and cocrystals, even though it is difficult to classify solid forms into these regulatory-wise mutually exclusive categories. Pure liquid salt forms of APIs, ionic liquids that incorporate APIs into their structures (API-ILs) present all the advantages that salt forms provide from a pharmaceutical standpoint, without being subject to solid-state matter problems. In this perspective article, the myths and the most voiced concerns holding back implementation of API-ILs are examined, and two case studies of API-ILs antivirals (the amphoteric acyclovir and GSK2838232) are presented in detail, with a focus on drug property improvement. We advocate that the industry should consider the advantages of API-ILs which could be the genesis of disruptive innovation and believe that in order for the industry to grow and develop, the industry should be comfortable with a certain element of risk because progress often only comes from trying something different.
Collapse
Affiliation(s)
| | - Robin D. Rogers
- 525 Solutions, Inc., P. O. Box 2206, Tuscaloosa, AL 35403, USA
| |
Collapse
|
8
|
How imidazolium‐based ionic liquids solubilize the poorly soluble ibuprofen? A theoretical study. AIChE J 2020. [DOI: 10.1002/aic.16940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Belyaeva EA, Vanin AA, Victorov AI. Distribution of zwitter-ionic tryptophan between the micelles of 1-dodecyl-3-methyl imidazolium and aqueous medium from molecular dynamic simulation. Phys Chem Chem Phys 2018; 20:23747-23753. [PMID: 30198539 DOI: 10.1039/c8cp02488j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids that form micelles have great potential as drug carriers and separating agents for bioactive substances. For such applications, a key issue is the distribution of the target substance between the micelle and its environment. We perform MD simulations to study solubilization of zwitter-ionic tryptophan in micelles of 1-dodecyl-3-methylimidazolium bromide. We found that the distribution of tryptophan depends strongly on the degree of counterion binding. A decrease in binding of bromide counterions leads to a substantial increase of the distribution coefficient. A dense layer of counterions at the micellar surface impedes the solubilization of the zwitter-ionic tryptophan but at the same time the presence of such a dense layer obstructs the washout of the solubilized tryptophan molecules from the micelle. Based on our simulation data, we conclude that an increase of the distribution coefficient of tryptophan between the micelle and water may be achieved by several means: by introducing counterions that bind weakly to the micelle (bulky ions whose charge is not strongly localized) and/or by employing micelle-forming ionic liquids with shorter alkyl chains to diminish the degree of counterion binding.
Collapse
Affiliation(s)
- Elena A Belyaeva
- Saint Petersburg State University 7-9, Universitetskaya Nab., St. Petersburg, 199034, Russia.
| | | | | |
Collapse
|
10
|
Egorova KS, Gordeev EG, Ananikov VP. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem Rev 2017; 117:7132-7189. [PMID: 28125212 DOI: 10.1021/acs.chemrev.6b00562] [Citation(s) in RCA: 911] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia.,Department of Chemistry, Saint Petersburg State University , Stary Petergof 198504, Russia
| |
Collapse
|