1
|
Shi J, Quevillon MJ, Amorim Valença PH, Whitmer JK. Predicting Adhesive Free Energies of Polymer-Surface Interactions with Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37161-37169. [PMID: 35917495 DOI: 10.1021/acsami.2c08891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer-surface interactions are crucial to many biological processes and industrial applications. Here we propose a machine learning method to connect a model polymer's sequence with its adhesion to decorated surfaces. We simulate the adhesive free energies of 20000 unique coarse-grained one-dimensional polymer sequences interacting with functionalized surfaces and build support vector regression models that demonstrate inexpensive and reliable prediction of the adhesive free energy as a function of sequence. Our work highlights the promising integration of coarse-grained simulation with data-driven machine learning methods for the design of functional polymers and represents an important step toward linking polymer compositions with polymer-surface interactions.
Collapse
Affiliation(s)
- Jiale Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Michael J Quevillon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Pedro H Amorim Valença
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Pugsley CE, Isaac RE, Warren NJ, Behra JS, Cappelle K, Dominguez-Espinosa R, Cayre OJ. Protection of Double-Stranded RNA via Complexation with Double Hydrophilic Block Copolymers: Influence of Neutral Block Length in Biologically Relevant Environments. Biomacromolecules 2022; 23:2362-2373. [PMID: 35549247 PMCID: PMC9198985 DOI: 10.1021/acs.biomac.2c00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Indexed: 12/24/2022]
Abstract
Interaction between the anionic phosphodiester backbone of DNA/RNA and polycations can be exploited as a means of delivering genetic material for therapeutic and agrochemical applications. In this work, quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N,N-dimethylacrylamide) (PQDMAEMA-b-PDMAm) double hydrophilic block copolymers (DHBCs) were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization as nonviral delivery vehicles for double-stranded RNA. The assembly of DHBCs and dsRNA forms distinct polyplexes that were thoroughly characterized to establish a relationship between the length of the uncharged poly(N,N-dimethylacrylamide) (PDMA) block and the polyplex size, complexation efficiency, and colloidal stability. Dynamic light scattering reveals the formation of smaller polyplexes with increasing PDMA lengths, while gel electrophoresis confirms that these polyplexes require higher N/P ratio for full complexation. DHBC polyplexes exhibit enhanced stability in low ionic strength environments in comparison to homopolymer-based polyplexes. In vitro enzymatic degradation assays demonstrate that both homopolymer and DHBC polymers efficiently protect dsRNA from degradation by RNase A enzyme.
Collapse
Affiliation(s)
- Charlotte E. Pugsley
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
- School
of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - R. Elwyn Isaac
- School
of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicholas. J. Warren
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Juliette S. Behra
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kaat Cappelle
- Syngenta
Ghent Innovation Center, Technologiepark 30, B-9052 Gent-Zwijnaarde, Belgium
| | - Rosa Dominguez-Espinosa
- Syngenta
Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42
6EY, England
| | - Olivier. J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Abstract
Ion-containing polymers have continued to be an important research focus for several decades due to their use as an electrolyte in energy storage and conversion devices. Elucidation of connections between the mesoscopic structure and multiscale dynamics of the ions and solvent remains incompletely understood. Coarse-grained modeling provides an efficient approach for exploring the structural and dynamical properties of these soft materials. The unique physicochemical properties of such polymers are of broad interest. In this review, we summarize the current development and understanding of the structure-property relationship of ion-containing polymers and provide insights into the design of such materials determined from coarse-grained modeling and simulations accompanying significant advances in experimental strategies. We specifically concentrate on three types of ion-containing polymers: proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs). We posit that insight into the similarities and differences in these materials will lead to guidance in the rational design of high-performance novel materials with improved properties for various power source technologies.
Collapse
Affiliation(s)
- Zhenghao Zhu
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xubo Luo
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Stephen J Paddison
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Sohrabi S, Khedri M, Maleki R, Moraveji MK, Ghasemy E. In‐Silico Tuning of Curcumin Loading on PEG Grafted Chitosan: An Atomistic Simulation. ChemistrySelect 2021. [DOI: 10.1002/slct.202100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Somayeh Sohrabi
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| | - Mohammad Khedri
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| | - Ebrahim Ghasemy
- Centre Énergie Matériaux Télécommunications Institut National De La Recherché Varennes Quebec Canada
| |
Collapse
|
5
|
Mahajan S, Tang T. Polyethylenimine–DNA Ratio Strongly Affects Their Nanoparticle Formation: A Large-Scale Coarse-Grained Molecular Dynamics Study. J Phys Chem B 2019; 123:9629-9640. [DOI: 10.1021/acs.jpcb.9b07031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Subhamoy Mahajan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Song X, Qiao C, Tao J, Bao B, Han X, Zhao S. Interfacial Engineering of Thermoresponsive Microgel Capsules: Polymeric Wetting vs Colloidal Adhesion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Song X, Bao B, Tao J, Zhao S, Han X, Liu H. Deswelling Dynamics of Thermoresponsive Microgel Capsules and Their Ultrasensitive Sensing Applications: A Mesoscopic Simulation Study. THE JOURNAL OF PHYSICAL CHEMISTRY C 2019; 123:1828-1838. [DOI: 10.1021/acs.jpcc.8b09998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Wu H, Li Y, Kadirov D, Zhao S, Lu X, Liu H. Efficient Molecular Approach to Quantifying Solvent-Mediated Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11817-11824. [PMID: 28937769 DOI: 10.1021/acs.langmuir.7b02629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The solvent-mediated interaction, or equivalently the depletion force, play a pivotal role in the processes, by which two objects in solution such as lock and key particles, antibody and antigen, macromolecule and substrate, are attracted to each other. The quantification of this interaction is important yet challenging since it depends on the microscopic solvent structure in the surrounding. Here, we report an efficient molecular approach for predicting the solvent-mediated interaction by combining the classical density functional theory with a reversible solvation thermodynamic circle. For demonstration, the solvent-mediated interactions between two nanoparticles and between a nanoparticle and a rough wall are examined, and good agreements compared with the simulation results are illustrated. This approach is thereafter employed to interpret the reported self-assembly phenomena of lock and key colloidal particles. We show that the binding probability between the lock and key colloids can be successfully characterized at different depletant concentrations and system temperatures. This approach provides a potential route for identifying the coarse-graining interaction between two objects in fluid systems.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | | |
Collapse
|
9
|
Shen JW, Li J, Zhao Z, Zhang L, Peng G, Liang L. Molecular dynamics study on the mechanism of polynucleotide encapsulation by chitosan. Sci Rep 2017; 7:5050. [PMID: 28698591 PMCID: PMC5506017 DOI: 10.1038/s41598-017-05197-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/25/2017] [Indexed: 11/13/2022] Open
Abstract
The safe and effective delivery of therapeutic genes into target cell interiors is of great importance in gene therapy. Chitosan has been extensively studied as a gene delivery carrier due to its good biocompatibility and biodegradability. Understanding the atomic interaction mechanism between chitosan and DNA is important in the design and application of chitosan-based drug and gene delivery systems. In this work, the interactions between single-stranded polynucleotides and different types of chitosan were systematically investigated by using molecular dynamics (MD) simulation. Our results demonstrate that the functional groups of chitosan, the types of base and length of polynucleotides regulate the interaction behavior between chitosan and polynucleotides. The encapsulation capacity of polynucleotide by chitosan is mainly balanced by two factors: the strength of polynucleotide binding to chitosan and the tendency of self-aggregation of polynucleotide in the solution. For -NH3+ chitosan, due to the strong electrostatic interaction, especially the H-bond between -NH3+ groups in chitosan and phosphate groups in polynucleotide, the aggregation effect could be partially eliminated. The good dispersal capacity of polynucleotides may improve the encapsulation of polynucleotides by chitosan, and hence increase the delivery and transfection efficiency of chitosan-based gene carrier.
Collapse
Affiliation(s)
- Jia-Wei Shen
- School of Medicine, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China.
| | - Jiachen Li
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhennan Zhao
- School of Medicine, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Li Zhang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Guoteng Peng
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Lijun Liang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
10
|
Abstract
Gene therapy is an important therapeutic strategy in the treatment of a wide range of genetic disorders. Polymers forming stable complexes with nucleic acids (NAs) are non-viral gene carriers. The self-assembly of polymers and nucleic acids is typically a complex process that involves many types of interaction at different scales. Electrostatic interaction, hydrophobic interaction, and hydrogen bonds are three important and prevalent interactions in the polymer/nucleic acid system. Electrostatic interactions and hydrogen bonds are the main driving forces for the condensation of nucleic acids, while hydrophobic interactions play a significant role in the cellular uptake and endosomal escape of polymer-nucleic acid complexes. To design high-efficiency polymer candidates for the DNA and siRNA delivery, it is necessary to have a detailed understanding of the interactions between them in solution. In this chapter, we survey the roles of the three important interactions between polymers and nucleic acids during the formation of polyplexes and summarize recent understandings of the linear polyelectrolyte-NA interactions and dendrimer-NA interactions. We also review recent progress optimizing the gene delivery system by tuning these interactions.
Collapse
|
11
|
Song X, Zhao S, Fang S, Ma Y, Duan M. Mesoscopic Simulations of Adsorption and Association of PEO-PPO-PEO Triblock Copolymers on a Hydrophobic Surface: From Mushroom Hemisphere to Rectangle Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11375-11385. [PMID: 27762563 DOI: 10.1021/acs.langmuir.6b02414] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The dissipative particle dynamics (DPD) method is used to investigate the adsorption behavior of PEO-PPO-PEO triblock copolymers at the liquid/solid interface. The effect of molecular architecture on the self-assembled monolayer adsorption of PEO-PPO-PEO triblock copolymers on hydrophobic surfaces is elucidated by the adsorption process, film properties, and adsorption morphologies. The adsorption thicknesses on hydrophobic surfaces and the diffusion coefficient as well as the aggregation number of Pluronic copolymers in aqueous solution observed in our simulations agree well with previous experimental and numerical observations. The radial distribution function revealed that the ability of self-assembly on hydrophobic surfaces is P123 > P84 > L64 > P105 > F127, which increased with the EO ratio of the Pluronic copolymers. Moreover, the shape parameter and the degree of anisotropy increase with increasing molecular weight and mole ratio of PO of the Pluronic copolymers. Depending on the conformation of different Pluronic copolymers, the morphology transition of three regimes on hydrophobic surfaces is present: mushroom or hemisphere, progressively semiellipsoid, and rectangle brush regimes induced by decreasing molecular weight and mole ratio of EO of Pluronic copolymers.
Collapse
Affiliation(s)
- Xianyu Song
- Department of Mechanical and Electrical Engineering, Dazhou Vocational and Technical College , Dazhou, Sichuan 635000, P. R. China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Shenwen Fang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University , Chengdu 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Yongzhang Ma
- Sichuan Province Academy of Industrial Environmental Monitoring, Chengdu 610500, P. R. China
| | - Ming Duan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University , Chengdu 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| |
Collapse
|
12
|
Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BYM, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1688-709. [PMID: 26930298 DOI: 10.1016/j.bbamem.2016.02.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
Most therapeutic agents suffer from poor solubility, rapid clearance from the blood stream, a lack of targeting, and often poor translocation ability across cell membranes. Drug/gene delivery systems (DDSs) are capable of overcoming some of these barriers to enhance delivery of drugs to their right place of action, e.g. inside cancer cells. In this review, we focus on nanoparticles as DDSs. Complementary experimental and computational studies have enhanced our understanding of the mechanism of action of nanocarriers and their underlying interactions with drugs, biomembranes and other biological molecules. We review key biophysical aspects of DDSs and discuss how computer modeling can assist in rational design of DDSs with improved and optimized properties. We summarize commonly used experimental techniques for the study of DDSs. Then we review computational studies for several major categories of nanocarriers, including dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, and carbon-based DDSs, and gold nanoparticles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- M Ramezanpour
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S S W Leung
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - K H Delgado-Magnero
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - B Y M Bashe
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - J Thewalt
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - D P Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Zhao S, Liu Y, Chen X, Lu Y, Liu H, Hu Y. Unified Framework of Multiscale Density Functional Theories and Its Recent Applications. MESOSCALE MODELING IN CHEMICAL ENGINEERING PART II 2015. [DOI: 10.1016/bs.ache.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|