1
|
Stewart SA, Domínguez-Robles J, Utomo E, Picco CJ, Corduas F, Mancuso E, Amir MN, Bahar MA, Sumarheni S, Donnelly RF, Permana AD, Larrañeta E. Poly(caprolactone)-based subcutaneous implant for sustained delivery of levothyroxine. Int J Pharm 2021; 607:121011. [PMID: 34391850 DOI: 10.1016/j.ijpharm.2021.121011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
This work aimed to develop a subcutaneous implant for prolonged delivery of LEVO to treat hypothyroidism. This could overcome challenges with patient compliance and co-administration and could improve treatment of this condition. For this purpose, implants were produced by solvent casting mixtures of poly(caprolactone) (PCL), poly(ethylene glycol) (PEG) and LEVO sodium. These implants contained mixtures of PCL of differing molecular weight, PEG and different LEVO sodium loadings (20% or 40% w/w). SEM images confirmed that the drug was evenly dispersed throughout the implant. In vitro release rates ranging from 28.37 ± 1.19 - 78.21 ± 19.93 µg/day and 47.39 ± 8.76 - 98.92 ± 4.27 µg/day were achieved for formulations containing 20% and 40% w/w drug loading, respectively. Implants containing higher amounts of low molecular weight PCL and 40% w/w of LEVO showed release profiles governed by zero order kinetics. On the other hand, implants containing higher amounts of high molecular weight PCL showed a release mechanism governed by Fickian diffusion. Finally, two representative formulations were tested in vivo. These implants were capable of providing detectable LEVO levels in plasma during the entire duration of the experiments (4 weeks) with LEVO plasma levels ranging between 5 and 20 ng/mL.
Collapse
Affiliation(s)
- Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Muh Nur Amir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Muh Akbar Bahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Sumarheni Sumarheni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Lam LRW, Schilling K, Romas S, Misra R, Zhou Z, Caton JG, Zhang X. Electrospun core-shell nanofibers with encapsulated enamel matrix derivative for guided periodontal tissue regeneration. Dent Mater J 2021; 40:1208-1216. [PMID: 34121026 DOI: 10.4012/dmj.2020-412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The osteogenic effect of a composite electrospun core-shell nanofiber membrane encapsulated with Emdogain® (EMD) was evaluated. The membrane was developed through coaxial electrospinning using polycaprolactone as the shell and polyethylene glycol as the core. The effects of the membrane on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) were examined using Alizarin Red S staining and qRT-PCR. Characterization of the nanofiber membrane demonstrated core-shell morphology with a mean diameter of ~1 µm. Examination of the release of fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) from core-shell nanofibers over a 22-day period showed improved release profile of encapsulated proteins as compared to solid nanofibers. When cultured on EMD-containing core-shell nanofibers, PDLSCs showed significantly improved osteogenic differentiation with increased Alizarin Red S staining and enhanced osteogenic gene expression, namely OCN, RUNX2, ALP, and OPN. Core-shell nanofiber membranes may improve outcomes in periodontal regenerative therapy through simultaneous mechanical barrier and controlled drug delivery function.
Collapse
Affiliation(s)
- Linda R Wang Lam
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry.,Department of Periodontology, Eastman Institute for Oral Health, University of Rochester, School of Medicine and Dentistry
| | - Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry.,Department of Biomedical Engineering, University of Rochester
| | - Stephen Romas
- Department of Pediatrics, University of Rochester, School of Medicine and Dentistry
| | - Ravi Misra
- Department of Pediatrics, University of Rochester, School of Medicine and Dentistry
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry
| | - Jack G Caton
- Department of Periodontology, Eastman Institute for Oral Health, University of Rochester, School of Medicine and Dentistry
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry
| |
Collapse
|
3
|
A novel approach to studying the kinetics of release of Alaptide from Poly-ε-caprolactone nanofibers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Seyedian R, Shabankareh Fard E, Najafiasl M, Assadi M, Zaeri S. N-acetylcysteine-loaded electrospun mats improve wound healing in mice and human fibroblast proliferation in vitro: a potential application of nanotechnology in wound care. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1590-1602. [PMID: 33489034 PMCID: PMC7811817 DOI: 10.22038/ijbms.2020.41550.11078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES N-acetylcysteine (NAC) has gained attention recently in dermatology as a unique anti-oxidant. In light of progress in nanotechnological methods, it was hypothesized that loading NAC onto nanofibers would positively affect skin wound healing. The objective of this study was to fabricate NAC-loaded electrospun mats and test their effect on wound healing in vivo and in vitro. MATERIALS AND METHODS Polyvinyl alcohol (PVA)-based mats loaded with NAC at three concentrations were electrospun and characterized in terms of physicochemical properties and drug release profile. Human fibroblast cells (in vitro) and mouse full-thickness skin wounds (in vivo) were treated with mats for 5 and 14 days, respectively. Wound area, tissue histopathology, fibroblast proliferation and cellular oxidative state were evaluated. RESULTS Mats containing 5% PVA/NAC showed thinner fibers with suitable physicochemical properties and a sustained drug release profile. PVA/NAC (5%) mats enhanced fibroblast proliferation and attachment in vitro. The mats resulted in significant wound closure with high levels of re-epithelialization and collagen fiber synthesis on day 14 post-surgery in vivo. The mats also reduced granulation tissue and edematous stroma to a higher extent. These findings were accompanied by a significant decrease in tissue lipid peroxidation and higher superoxide dismutase activity, which may explain how NAC improved wound healing. CONCLUSION We propose an NAC-loaded nanofibrous mat that takes the advantage of a porous nanoscaffold structure to release NAC in a sustained manner. This mat may be a promising candidate for further clinical evaluation.
Collapse
Affiliation(s)
- Ramin Seyedian
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elham Shabankareh Fard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Najafiasl
- Department of Chemical Engineering, School of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
5
|
Baranes‐Zeevi M, Goder D, Zilberman M. Novel drug‐eluting soy‐protein structures for wound healing applications. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Maya Baranes‐Zeevi
- Department of Biomedical Engineering, Faculty of EngineeringTel‐Aviv University Tel‐Aviv Israel
| | - Daniella Goder
- Department of Materials Science and Engineering, Faculty of EngineeringTel‐Aviv University Tel‐Aviv Israel
| | - Meital Zilberman
- Department of Biomedical Engineering, Faculty of EngineeringTel‐Aviv University Tel‐Aviv Israel
- Department of Materials Science and Engineering, Faculty of EngineeringTel‐Aviv University Tel‐Aviv Israel
| |
Collapse
|
6
|
|
7
|
Nittayacharn P, Nasongkla N. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:101. [PMID: 28534285 DOI: 10.1007/s10856-017-5905-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human liver cancer cell lines (HepG2 cell line) compared to that of blank depots.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand.
| |
Collapse
|
8
|
Jalvandi J, White M, Gao Y, Truong YB, Padhye R, Kyratzis IL. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:440-446. [DOI: 10.1016/j.msec.2016.12.112] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/07/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
|
9
|
New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications. Int J Biomater 2016; 2016:6964938. [PMID: 27965710 PMCID: PMC5124657 DOI: 10.1155/2016/6964938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/05/2016] [Accepted: 10/09/2016] [Indexed: 01/25/2023] Open
Abstract
The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA), a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa) and fungal strains (Aspergillus flavus and Aspergillus tubingensis) screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5%) showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes.
Collapse
|
10
|
Waghulde MR, Naik JB. Poly-e-caprolactone-loaded miglitol microspheres for the treatment of type-2 diabetes mellitus using the response surface methodology. J Taibah Univ Med Sci 2016. [DOI: 10.1016/j.jtumed.2016.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Zarandi MA, Zahedi P, Rezaeian I, Salehpour A, Gholami M, Motealleh B. Drug release, cell adhesion and wound healing evaluations of electrospun carboxymethyl chitosan/polyethylene oxide nanofibres containing phenytoin sodium and vitamin C. IET Nanobiotechnol 2015. [PMID: 26224348 DOI: 10.1049/iet-nbt.2014.0030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, N, O-carboxymethyl chitosan (CMCS) samples from virgin chitosan (CS) were synthesised and CMCS/polyethylene oxide (PEO) (50/50) blend nanofibrous samples were successfully electrospun from their aqueous solution. The electrospinning conditions to achieve smooth and fine diameter nanofibrous mats were optimised via D-optimal design approach. Afterwards, vitamin C and phenytoin sodium (PHT-Na) were added to these samples for producing wound dressing materials. H-nuclear magnetic resonance, scanning electron microscopy and Fourier transform infrared tests for the evaluation of functionalised CS, morphology and biodegradability studies of CMCS/PEO blend nanofibrous samples were applied. The kinetic and drug release mechanism for vitamin C and PHT-Na drug-loaded electrospun samples were also investigated by UV-vis spectrophotometer and high performance liquid chromatography, respectively. The results showed an approximately similar drug release rate of the two drugs and followed Higuchi's kinetic model. The stem cells viability and their adhesion on the surface of the samples containing PHT-Na and vitamin C were carried out using MTT assay and the best cells' biocompatibility was obtained using both drugs into the CMCS/PEO nanofibrous samples. Moreover, the in vivo animal wound model results revealed that the electrospun samples containing vitamin C and PHT-Na (1%) had a remarkable efficiency in the wounds' closure and their healing process compared with vitamin C/PHT-Na (50/50) ointment. Finally, the histology observations showed that the wound treated with optimised electrospun samples containing two drugs enabled regeneration of epidermis layers due to collagen fibres accumulation followed by granulating tissues formation without necrosis.
Collapse
Affiliation(s)
- Mohammad Amin Zarandi
- School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
| | - Iraj Rezaeian
- School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Alireza Salehpour
- School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Mehdi Gholami
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center and Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Behrooz Motealleh
- School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| |
Collapse
|
12
|
Schlesinger E, Ciaccio N, Desai TA. Polycaprolactone thin-film drug delivery systems: Empirical and predictive models for device design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:232-9. [PMID: 26354259 DOI: 10.1016/j.msec.2015.07.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To define empirical models and parameters based on theoretical equations to describe drug release profiles from two polycaprolactone thin-film drug delivery systems. Additionally, to develop a predictive model for empirical parameters based on drugs' physicochemical properties. METHODS Release profiles from a selection of drugs representing the standard pharmaceutical space in both polycaprolactone matrix and reservoir systems were determined experimentally. The proposed models were used to calculate empirical parameters describing drug diffusion and release. Observed correlations between empirical parameters and drug properties were used to develop equations to predict parameters based on drug properties. Predictive and empirical models were evaluated in the design of three prototype devices: a levonorgestrel matrix system for on-demand locally administered contraception, a timolol-maleate reservoir system for glaucoma treatment, and a primaquine-bisphosphate reservoir system for malaria prophylaxis. RESULTS Proposed empirical equations accurately fit experimental data. Experimentally derived empirical parameters show significant correlations with LogP, molecular weight, and solubility. Empirical models based on predicted parameters accurately predict experimental release data for three prototype systems, demonstrating the accuracy and utility of these models. CONCLUSION The proposed empirical models can be used to design polycaprolactone thin-film devices for target geometries and release rates. Empirical parameters can be predicted based on drug properties. Together, these models provide tools for preliminary evaluation and design of controlled-release delivery systems.
Collapse
Affiliation(s)
- Erica Schlesinger
- University of California, Berkeley-University of California San Francisco Graduate Program in Bioengineering, CA, USA
| | - Natalie Ciaccio
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - Tejal A Desai
- University of California, Berkeley-University of California San Francisco Graduate Program in Bioengineering, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Ng XW, Huang Y, Liu KL, Boey FYC, Venkatraman SS. Investigation of cenderitide controlled release platforms for potential local treatment of cardiovascular pathology. J Pharm Sci 2014; 103:1400-10. [PMID: 24590596 DOI: 10.1002/jps.23910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/16/2014] [Accepted: 02/03/2014] [Indexed: 12/16/2022]
Abstract
In this work, we focused on the development and investigation of controlled release matrices for a novel cardiotherapeutic peptide, cenderitide (CD-NP) that has shown to be useful for control of ventricular remodeling. To circumvent the hydrophilicity disparity between CD-NP and hydrophobic polymer matrix, a cosolvent system (water/dichloromethane) was selected for investigation. The effect of emulsification conditions, addition of poly(ethylene glycol) (PEG) and its copolymer on the release mechanism and profile were investigated. To verify the retention of bioactivity of entrapped CD-NP in different formulations, the generation of 3',5' cyclic guanosine monophospate (cGMP) and the inhibition of human cardiac fibroblast (HCF) were evaluated. The results showed that neat poly(ε-caprolactone) matrices carried out via two distinct emulsification conditions had either an unacceptably high burst or incomplete release of CD-NP; and the addition of PEG and its copolymer obtained intermediate profiles. Our confocal laser scanning microscopy and surface morphological investigations showed that the copolymer excipient was superior in playing stabilizer role by colocalizing and redistributing peptide throughout the matrix, making the release less sensitive to emulsification conditions. Furthermore, the released CD-NP is able to generate the cGMP and inhibit the HCF proliferation. Our investigations showed that CD-NP-loaded platforms can be a feasible option to provide sustained antifibrotic moderation of fibrotic scar formation and be potentially used to alleviate the adverse effects of cardiac remodeling.
Collapse
Affiliation(s)
- Xu Wen Ng
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | | | | | | | | |
Collapse
|
15
|
Sampath M, Lakra R, Korrapati P, Sengottuvelan B. Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids Surf B Biointerfaces 2014; 117:128-34. [PMID: 24646452 DOI: 10.1016/j.colsurfb.2014.02.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 02/08/2014] [Accepted: 02/08/2014] [Indexed: 01/28/2023]
Abstract
Poly (DL-lactic-co-glycolic) acid [PLGA] copolymers with different ratios (78/22, 68/32 and 61/39) and molecular weight (15,400, 11,000 and 10,000 Da) were synthesized and characterized by (1)H NMR, FTIR, GPC and TGA-DTA studies. Curcumin loaded PLGA with the size of 100-300 nm were obtained by electrospinning in which no visible aggregation observed on the surface. The diameter of CPNF (61/39) nanofiber obtained from the topographical imaging by AFM is 160±10 nm. The water contact angle measurements indicate that an increase in GA content results in increase in the hydrophilicity of the PLGA copolymer. The in vitro release profile and release kinetics from the CPNF demonstrated a sustained release of curcumin from CPNF. The release profile follows Korsmeyer-Peppas model suggesting a combination of surface drug dissolution and non-Fickian diffusion as a major drug release mechanism. The effect of CPNF on cell viability was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyltetrazolium bromide) assay to examine the cytotoxic effect of released curcumin on A431 cells in vitro.
Collapse
Affiliation(s)
- Malathi Sampath
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Rachita Lakra
- Biomaterials division, CSIR-CLRI, TICEL Biopark, Chennai 600 113, India
| | | | | |
Collapse
|
16
|
Zahedi P, Rezaeian I, Jafari SH, Karami Z. Preparation and release properties of electrospun poly(vinyl alcohol)/poly(ɛ-caprolactone) hybrid nanofibers: Optimization of process parameters via D-optimal design method. Macromol Res 2012. [DOI: 10.1007/s13233-013-1064-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Petropoulos JH, Papadokostaki KG, Sanopoulou M. Higuchi's equation and beyond: overview of the formulation and application of a generalized model of drug release from polymeric matrices. Int J Pharm 2012; 437:178-91. [PMID: 22921377 DOI: 10.1016/j.ijpharm.2012.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
Abstract
An account is presented of modeling and experimental work, which complements, in many useful ways, the excellent coverage, afforded by a recent dedicated issue edited by Siepmann and Peppas (Int. J. Pharm. 2011, 418(1)), of the theoretical background and many ramifications, as well as practical applications, of the Higuchi equation. The main notable feature of the said modeling work is formulation and successful practical application, of an ab initio generalized approach, based on solving the fundamental transport equations applicable to the operation of typical matrix-controlled release (MCR) devices. This approach (i) reduces to the Higuchi equation under the pertinent restrictive conditions but can duly handle most of its more complex ramifications and (ii) can be parameterized (by the use of appropriate data from the literature or from independent experiments) to adapt itself to the physics of the particular matrix-solvent-solute system under consideration; as demonstrated here with examples from our laboratory or from the literature. A distinctive feature of the experimental work is the extensive use of simpler "model" MCR systems, chosen so as to promote better understanding of the effect of various physicochemical parameters and mechanisms on drug MCR rate and kinetics. A concept of MCR device efficiency is also discussed.
Collapse
Affiliation(s)
- John H Petropoulos
- Department of Physical Chemistry, IAMPPNM, National Center for Scientific Research Demokritos, GR-15310 Aghia Paraskevi, Athens, Greece.
| | | | | |
Collapse
|
18
|
Liu Y, Peng D, Huang K, Liu S, Liu Z. Preparation and properties of poly(propylene carbonate maleate) microcapsules for controlled release of pazufloxacin mesilate. J Appl Polym Sci 2011. [DOI: 10.1002/app.34351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Jannesari M, Varshosaz J, Morshed M, Zamani M. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine 2011; 6:993-1003. [PMID: 21720511 PMCID: PMC3124403 DOI: 10.2147/ijn.s17595] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl), were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release.
Collapse
Affiliation(s)
- Marziyeh Jannesari
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | | | | |
Collapse
|
20
|
Gardyne SJ, Mucalo MR, Rathbone MJ. The application of co-melt-extruded poly(ε-caprolactone) as a controlled release drug delivery device when combined with novel bioactive drug candidates: Membrane permeation and Hanson dissolution studies. RESULTS IN PHARMA SCIENCES 2011; 1:80-7. [PMID: 25755986 DOI: 10.1016/j.rinphs.2011.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/13/2022]
Abstract
Eight bioactive drug compounds (abamectin, amoxicillin, dexamethasone, dexamethasone valerate, ketoprofen, melatonin, oestradiol 17β, and oestradiol benzoate) were combined via melt extrusion and disc pressing processes with a polycaprolactone (PCL) matrix and were then evaluated and compared via membrane diffusion and Hanson dissolution studies. This investigation was to determine the potential of this matrix to act as a controlled release drug delivery vehicle for a number of drugs not previously combined with PCL in a melt extrusion mix. The inclusion of the progesterone/PCL system, for which the drug release behaviour has been well studied before was intended for comparison with the PCL systems incorporating drugs that have received little research attention in the past. Initial studies centred on an evaluation of the permeation ability of the bioactive drugs dissolved in aqueous cyclodextrin solutions through a poly(ε-caprolactone) (PCL) membrane using Valia-Chien side-by-side cells. Permeation rates were mostly low and found to range from 0 to 122 μg h(-1) with only ketoprofen, melatonin, and progesterone displaying rates exceeding 20 μg h(-1). Hanson dissolution release profiles in aqueous alcohol were subsequently measured for the 9 melt extruded PCL/drug combinations and led to Hanson release rates of 0-556 μg cm(-2) h(-0.5) with dexamethasone, dexamethasone valerate, ketoprofen, melatonin, and progesterone giving values exceeding 100 μg cm(-2) h(-0.5). A number of drugs such as the dexamethasones probably performed better than they did in the permeability rate measurements because of the less polar aqueous alcoholic solvent used. In searching for useful correlations between the drug physicochemical properties and release rate, only a moderate correlation (R (2)=0.5675) between Hanson dissolution release rate and permeation rate was found. This suggests that the release rate and the permeation are both controlled by the rate of drug diffusion through the PCL with release rate involving an additional dissolution process (of the drug) before permeation occurs accounting for the moderate correlation. In general, of the eight drugs considered, it was clear that the oestradiol-based drugs, abamectin, and amoxicillin were generally not suited to drug delivery via PCL under the conditions used. However, ketoprofen was found to be very suitable as a drug candidate for melt extrusion with PCL with dexamethasone valerate, dexamethasone, and melatonin also showing potential as candidates though to a much lesser extent.
Collapse
Affiliation(s)
- Stephen J Gardyne
- Waikato Pathways College, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Michael R Mucalo
- Chemistry Department, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Michael J Rathbone
- School of Pharmacy, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| |
Collapse
|
21
|
Hou J, Li C, Cheng L, Guo S, Zhang Y, Tang T. Study on hydrophilic 5-fluorouracil release from hydrophobic poly(ε-caprolactone) cylindrical implants. Drug Dev Ind Pharm 2011; 37:1068-75. [PMID: 21449700 DOI: 10.3109/03639045.2011.559658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrophilic 5-fluorouracil (5-FU) loaded cylindrical poly(ε-caprolactone) (PCL) implants with different implant diameters (2, 4 and 8 mm), different drug loadings (25% and 50%) and end-capping were fabricated and characterized. The implant structure, drug content and molecular weight of PCL after 120 days drug release were investigated. The in vitro release results showed that, when the drug loading was the same, drug release was fastest for the implant with a diameter of 2 mm and slowest for the implant with a diameter of 8 mm; for the implants with the same diameters, the release of drug from the implants with 50% drug loading was faster than that from the implants with 25% drug loading; however, this effect of drug loading decreased with the increase of implant diameter; in addition, 5-FU was released slightly slower from the end-capped implants than from the corresponding uncapped implants; the drug release data for all the uncapped implants were best fit with the Ritger-Peppas model. Drug release from the hydrophobic implants was found to be dominated by diffusion mechanism. Scanning electron microscopy images and drug content measurements revealed that 5-FU release took place gradually from the exterior region to the interior region of the implants.
Collapse
Affiliation(s)
- Jingwen Hou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
22
|
Rosenberg RT, Dan N. Self-Assembly of Colloidosome Shells on Drug-Containing Hydrogels. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbnb.2011.21001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Mugabe C, Liggins RT, Guan D, Manisali I, Chafeeva I, Brooks DE, Heller M, Jackson JK, Burt HM. Development and in vitro characterization of paclitaxel and docetaxel loaded into hydrophobically derivatized hyperbranched polyglycerols. Int J Pharm 2010; 404:238-49. [PMID: 21093563 DOI: 10.1016/j.ijpharm.2010.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 12/31/2022]
Abstract
In this study we report the development and in vitro characterization of paclitaxel (PTX) and docetaxel (DTX) loaded into hydrophobically derivatized hyperbranched polyglycerols (HPGs). Several HPGs derivatized with hydrophobic groups (C(8/10) alkyl chains) (HPG-C(8/10)-OH) and/or methoxy polyethylene glycol (MePEG) chains (HPG-C(8/10)-MePEG) were synthesized. PTX or DTX were loaded into these polymers by a solvent evaporation method and the resulting nanoparticle formulations were characterized in terms of size, drug loading, stability, release profiles, cytotoxicity, and cellular uptake. PTX and DTX were found to be chemically unstable in unpurified HPGs and large fractions (∼80%) of the drugs were degraded during the preparation of the formulations. However, both PTX and DTX were found to be chemically stable in purified HPGs. HPGs possessed hydrodynamic radii of less than 10nm and incorporation of PTX or DTX did not affect their size. The release profiles for both PTX and DTX from HPG-C(8/10)-MePEG nanoparticles were characterized by a continuous controlled release with little or no burst phase of release. In vitro cytotoxicity evaluations of PTX and DTX formulations demonstrated a concentration-dependent inhibition of proliferation in KU7 cell line. Cellular uptake studies of rhodamine-labeled HPG (HPG-C(8/10)-MePEG(13)-TMRCA) showed that these nanoparticles were rapidly taken up into cells, and reside in the cytoplasm without entering the nuclear compartment and were highly biocompatible with the KU7 cells.
Collapse
Affiliation(s)
- C Mugabe
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yuan W, Yuan J, Zhou L, Wu S, Hong X. Fe3O4@poly(2-hydroxyethyl methacrylate)-graft-poly(ɛ-caprolactone) magnetic nanoparticles with branched brush polymeric shell. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Cheng L, Lei L, Guo S. In vitro and in vivo evaluation of praziquantel loaded implants based on PEG/PCL blends. Int J Pharm 2010; 387:129-38. [DOI: 10.1016/j.ijpharm.2009.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/30/2009] [Accepted: 12/04/2009] [Indexed: 11/30/2022]
|
26
|
Microporous polycaprolactone matrices for drug delivery and tissue engineering: the release behaviour of bioactives having extremes of aqueous solubility. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50031-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Chernenko T, Matthäus C, Milane L, Quintero L, Amiji M, Diem M. Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems. ACS NANO 2009; 3:3552-9. [PMID: 19863088 DOI: 10.1021/nn9010973] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Novel optical imaging methods, such as Raman microspectroscopy, have been gaining recognition in their ability to obtain noninvasively the distribution of biochemical components of a sample. Raman spectroscopy in combination with optical microscopy provides a label-free method to assess and image cellular processes, without the use of extrinsic fluorescent dyes. The submicrometer resolution of the confocal Raman instrumentation allows us to image cellular organelles on the scale of conventional microscopy. We used the technique to monitor subcellular degradation patterns of two biodegradable nanocarrier systems-poly(epsilon-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). Our results suggest that both drug-delivery systems eventually are incorporated into Golgi-associated vesicles of late endosomes. These processes were monitored via the decrease of the molecule-characteristic peaks of PCL and PLGA. As the catabolic pathways proceed, shifts and variations in peak intensities and intensity ratios in the rendered Raman spectra unequivocally delineate their degradation patterns.
Collapse
Affiliation(s)
- Tatyana Chernenko
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Lu F, Wang XL, Chen SC, Yang KK, Wang YZ. An efficient approach to synthesize polysaccharides-graft-poly(p-dioxanone) copolymers as potential drug carriers. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23584] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Characterization and in vitro release of praziquantel from poly(ɛ-caprolactone) implants. Int J Pharm 2009; 377:112-9. [DOI: 10.1016/j.ijpharm.2009.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/01/2009] [Accepted: 05/08/2009] [Indexed: 11/20/2022]
|
30
|
Chuysinuan P, Chimnoi N, Techasakul S, Supaphol P. Gallic Acid-Loaded Electrospun Poly(L
-Lactic Acid) Fiber Mats and their Release Characteristic. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200800614] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Hua C, Chen Z, Xu Q, He L. Ring-banded spherulites in PCL and PCL/MWCNT solution-casting films and effect of compressed CO2
on them. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/polb.21685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|