1
|
Fang T, Dong J, Xie Z. Transformative effects of fluorescence imaging technologies on current vascular surgical practices: An updated review. SLAS Technol 2025; 32:100270. [PMID: 40086632 DOI: 10.1016/j.slast.2025.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/02/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Fluorescence imaging technologies have revolutionized vascular surgery by enabling real-time visualization of vascular anatomy, blood circulation, and tissue perfusion, thus improving intraoperative decision-making. This review provides a comprehensive analysis of key fluorescence modalities, including Fluorescence-Guided Surgery (FGS), Near-Infrared (NIR) fluorescence imaging, and Indocyanine Green (ICG) angiography, highlighting their roles in optimizing tissue perfusion assessment, vessel patency evaluation, and identifying anatomical variations. Unlike existing literature, this review addresses critical gaps in current practices by comparing these technologies and exploring their applications across a range of vascular procedures such as peripheral vascular surgery, coronary artery bypass grafting, and oncological operations. The review further delves into the potential future directions for fluorescence imaging in vascular surgery, emphasizing emerging technologies, challenges in clinical implementation, and how these advancements can enhance surgical precision, patient outcomes, and intraoperative guidance. By synthesizing the latest developments, this review offers valuable insights into the evolving role of fluorescence imaging in vascular surgery and its potential to transform surgical practices.
Collapse
Affiliation(s)
- Tao Fang
- Department of Vascular Surgery, Yantai Mountain Hospital, Yantai 264001, China
| | - Jianxin Dong
- Department of Vascular Surgery, Yantai Mountain Hospital, Yantai 264001, China
| | - Zhilei Xie
- Department of Vascular Surgery, Yantai Mountain Hospital, Yantai 264001, China.
| |
Collapse
|
2
|
Hart M, Isuri RK, Ramos D, Osharovich SA, Rodriguez AE, Harmsen S, Dudek GC, Huck JL, Holt DE, Popov AV, Singhal S, Delikatny EJ. Non-Small Cell Lung Cancer Imaging Using a Phospholipase A2 Activatable Fluorophore. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:490-500. [PMID: 39056064 PMCID: PMC11267604 DOI: 10.1021/cbmi.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer, the most common cause of cancer-related death in the United States, requires advanced intraoperative detection methods to improve evaluation of surgical margins. In this study we employed DDAO-arachidonate (DDAO-A), a phospholipase A2 (PLA2) activatable fluorophore, designed for the specific optical identification of lung cancers in real-time during surgery. The in vitro fluorescence activation of DDAO-A by porcine sPLA2 was tested in various liposomal formulations, with 100 nm extruded EggPC showing the best overall characteristics. Extruded EggPC liposomes containing DDAO-A were tested for their stability under various storage conditions, demonstrating excellent stability for up to 4 weeks when stored at -20 °C or below. Cell studies using KLN 205 and LLC1 lung cancer cell lines showed DDAO-A activation was proportional to cell number. DDAO-A showed preferential activation by human recombinant cPLA2, an isoform highly specific to arachidonic acid-containing lipids, when compared to a control probe, DDAO palmitate (DDAO-P). In vivo studies with DBA/2 mice bearing KLN 205 lung tumors recapitulated these results, with preferential activation of DDAO-A relative to DDAO-P following intratumoral injection. Topical application of DDAO-A-containing liposomes to human (n = 10) and canine (n = 3) lung cancers ex vivo demonstrated the preferential activation of DDAO-A in tumor tissue relative to adjacent normal lung tissue, with fluorescent tumor-to-normal ratios (TNR) of up to 5.2:1. The combined results highlight DDAO-A as a promising candidate for clinical applications, showcasing its potential utility in intraoperative and back-table imaging and topical administration during lung cancer surgeries. By addressing the challenge of residual microscopic disease at resection margins and offering stability in liposomal formulations, DDAO-A emerges as a potentially valuable tool for advancing precision lung cancer surgery and improving curative resection rates.
Collapse
Affiliation(s)
- Michael
C. Hart
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ritesh K. Isuri
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Drew Ramos
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sofya A. Osharovich
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrea E. Rodriguez
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Harmsen
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Grace C. Dudek
- Department
of Biology, University of Pennsylvania, 102 Leidy Laboratories 433 S University
Ave, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer L. Huck
- Department
of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David E. Holt
- Department
of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoliy V. Popov
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sunil Singhal
- Department
of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Edward J. Delikatny
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Huang J, Wang K, Wu S, Zhang J, Chen X, Lei S, Wu J, Men K, Duan X. Tumor Cell Lysate-Based Multifunctional Nanoparticles Facilitate Enhanced mRNA Delivery and Immune Stimulation for Melanoma Gene Therapy. Mol Pharm 2024; 21:267-282. [PMID: 38079527 DOI: 10.1021/acs.molpharmaceut.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Messenger ribonucleic acid (mRNA)-based gene therapy has great potential for cancer gene therapy. However, the effectiveness of mRNA in cancer therapy needs to be further improved, and the delivery efficiency and instability of mRNA limit the application of mRNA-based products. Both the delivery efficiency can be elevated by cell-penetrating peptide modification, and the immune response can be enhanced by tumor cell lysate stimulation, representing an advantageous strategy to expand the effectiveness of mRNA gene therapy. Therefore, it is vital to exploit a vector that can deliver high-efficiency mRNA with codelivery of tumor cell lysate to induce specific immune responses. We previously reported that DMP cationic nanoparticles, formed by the self-assembly of DOTAP and mPEG-PCL, can deliver different types of nucleic acids. DMP has been successfully applied in gene therapy research for various tumor types. Here, we encapsulated tumor cell lysates with DMP nanoparticles and then modified them with a fused cell-penetrating peptide (TAT-iRGD) to form an MLSV system. The MLSV system was loaded with encoded Bim mRNA, forming the MLSV/Bim complex. The average size of the synthesized MLSV was 191.4 nm, with a potential of 47.8 mV. The MLSV/mRNA complex promotes mRNA absorption through caveolin-mediated endocytosis, with a transfection rate of up to 68.6% in B16 cells. The MLSV system could also induce the maturation and activation of dendritic cells, obviously promoting the expression of CD80, CD86, and MHC-II both in vitro and in vivo. By loading the encoding Bim mRNA, the MLSV/Bim complex can inhibit cell proliferation and tumor growth, with inhibition rates of up to 87.3% in vitro. Similarly, the MLSV/Bim complex can inhibit tumor growth in vivo, with inhibition rates of up to 78.7% in the B16 subcutaneous tumor model and 63.3% in the B16 pulmonary metastatic tumor model. Our results suggest that the MLSV system is an advanced candidate for mRNA-based immunogene therapy.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shan Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiayu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
4
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
5
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
6
|
Capistrano da Silva E, Carossino M, Smith-Fleming KM, Langohr IM, Martins BDC. Determining the efficacy of the bovine amniotic membrane homogenate during the healing process in rabbits' ex vivo corneas. Vet Ophthalmol 2021; 24:380-390. [PMID: 34402564 DOI: 10.1111/vop.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the efficacy of bovine amniotic membrane homogenate (BAMH) on wounded ex vivo rabbit corneas. PROCEDURE Eighteen corneas obtained from normal rabbit eyes were wounded equally using a 6 mm trephine and cultured into an air-liquid interface model. Corneas were treated with phosphate-buffered saline (PBS) (n = 6, control group), 0.2% ethylenediaminetetraacetic acid (EDTA; n = 6), or BAMH (n = 6). All treatments were applied topically 6 times/day. Each cornea was macrophotographed daily with and without fluorescein stain to assess epithelialization and haziness. After 7 days, corneal transparency was evaluated, and the tissues prepared for histologic analysis of viability, and total and epithelial thickness. RESULTS The mean epithelialization time was 6.2 ± 0.82 days for the control group, 6.2 ± 0.75 days for the EDTA-treated group, and 5.1 ± 0.40 days for the BAMH-treated group, demonstrating a significant difference between the BAMH and the other groups. The corneas that received EDTA had better transparency compared with the other groups. Histologically, all corneas had adequate morphology and architecture after healing. Analysis of corneal and epithelial thickness revealed no significant difference among groups. CONCLUSION Bovine amniotic membrane homogenate is an effective and promising treatment for stromal and epithelial ulcers.
Collapse
Affiliation(s)
- Erotides Capistrano da Silva
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, LA, USA
| | - Kathryn M Smith-Fleming
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Bianca da C Martins
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Capistrano da Silva E, Gibson DJ, Jeong S, Zimmerman KL, Smith-Fleming KM, Martins BDC. Determining MMP-2 and MMP-9 reductive activities of bovine and equine amniotic membranes homogenates using fluorescence resonance energy transfer. Vet Ophthalmol 2021; 24:279-287. [PMID: 33834598 DOI: 10.1111/vop.12888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs)-2 and -9 are present in corneal ulcers, and an imbalance between MMPs and tissue inhibitors of metalloproteinases (TIMPs) leads to further corneal degradation. Amniotic membrane homogenate (AMH) has proteolytic properties beneficial for corneal healing, but it is unknown whether AMH possesses TIMPs or effectively inhibits MMP-2 and MMP-9 activity. OBJECTIVE To determine if bovine and equine AMH reduce in vitro MMP-2 and MMP-9 activities associated with the presence of TIMPs. PROCEDURES Undiluted and diluted twofold series (0-fold to 16-fold dilutions) of equine amniotic membrane homogenates (EAMH, n = 8) and bovine amniotic membrane homogenates (BAMH, n = 8) were subjected to fluorescence resonance energy transfer, and the fluorescence emitted was recorded over time. Average fluorescence was calculated versus recombinant concentration. Enzyme-linked immunosorbent assays for TIMPs 1-4 were applied to quantify TIMPs in the samples. RESULTS AMH from both species were able to inhibit MMP-2 and MMP-9 activities in vitro, and the inhibition efficacy decreased gradually with dilution. BAMH was significantly more effective than EAMH at inhibiting MMP-2 and MMP-9 in vitro. TIMPs -2 and -3 were present in EAMH and BAMH. TIMP-1 was detected only in BAMH, and TIMP-4 was not detected in any samples. CONCLUSION Both EAMH and BAMH directly inhibited MMP-2 and MMP-9 in vitro without dilution, and BAMH showed better inhibition of MMP-2 and MMP-9 before and after dilution compared to EAMH.
Collapse
Affiliation(s)
- Erotides Capistrano da Silva
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniel J Gibson
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sunyoung Jeong
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kelli L Zimmerman
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kathryn M Smith-Fleming
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bianca da C Martins
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Buckle T, van der Wal S, van Willigen DM, Aalderink G, KleinJan GH, van Leeuwen FW. Fluorescence background quenching as a means to increase Signal to Background ratio - a proof of concept during Nerve Imaging. Theranostics 2020; 10:9890-9898. [PMID: 32863966 PMCID: PMC7449926 DOI: 10.7150/thno.46806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 01/15/2023] Open
Abstract
Introduction: Adequate signal to background ratios are critical for the implementation of fluorescence-guided surgery technologies. While local tracer administrations help to reduce the chance of systemic side effects, reduced spatial migration and non-specific tracer diffusion can impair the discrimination between the tissue of interest and the background. To combat background signals associated with local tracer administration, we explored a pretargeting concept aimed at quenching non-specific fluorescence signals. The efficacy of this concept was evaluated in an in vivo neuronal tracing set-up. Methods: Neuronal tracing was achieved using a wheat germ agglutinin (WGA) lectin. functionalized with an azide-containing Cy5 dye (N3-Cy5-WGA). A Cy7 quencher dye (Cy7-DBCO) was subsequently used to yield Cy7-Cy5-WGA, a compound wherein the Cy5 emission is quenched by Förster resonance energy transfer to Cy7. The photophysical properties of N3-Cy5-WGA and Cy7-Cy5-WGA were evaluated together with deactivation kinetics in situ, in vitro (Schwannoma cell culture), ex vivo (muscle tissue from mice; used for dose optimization), and in vivo (nervus ischiadicus in THY-1 YFP mice). Results:In situ, conjugation of Cy7-DBCO to N3-Cy5-WGA resulted in >90% reduction of the Cy5 fluorescence signal intensity at 30 minutes after addition of the quencher. In cells, pretargeting with the N3-Cy5-WGA lectin yielded membranous staining, which could efficiently be deactivated by Cy7-DBCO over the course of 30 minutes (91% Cy5 signal decrease). In ex vivo muscle tissue, administration of Cy7-DBCO at the site where N3-Cy5-WGA was injected induced 80-90% quenching of the Cy5-related signal after 10-20 minutes, while the Cy7-related signal remained stable over time. In vivo,Cy7-DBCO effectively quenched the non-specific background signal up to 73% within 5 minutes, resulting in a 50% increase in the signal-to-background ratio between the nerve and injection site. Conclusion: The presented pretargeted fluorescence-quenching technology allowed fast and effective reduction of the background signal at the injection site, while preserving in vivo nerve visualization. While this proof-of-principle study was focused on imaging of nerves using a fluorescent WGA-lectin, the same concept could in the future also apply to applications such as sentinel node imaging.
Collapse
|
9
|
In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Int J Mol Sci 2020; 21:ijms21134719. [PMID: 32630650 PMCID: PMC7369778 DOI: 10.3390/ijms21134719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
The cell membrane is a complex and highly regulated system that is composed of lipid bilayer and proteins. One of the main functions of the cell membrane is the regulation of cell entry. Cell-penetrating peptides (CPPs) are defined as peptides that can cross the plasma membrane and deliver their cargo inside the cell. The uptake of a peptide is determined by its sequence and biophysicochemical properties. At the same time, the uptake mechanism and efficiency are shown to be dependent on local peptide concentration, cell membrane lipid composition, characteristics of the cargo, and experimental methodology, suggesting that a highly efficient CPP in one system might not be as productive in another. To better understand the dependence of CPPs on the experimental system, we present a review of the in vitro assays that have been employed in the literature to evaluate CPPs and CPP-cargos. Our comprehensive review suggests that utilization of orthogonal assays will be more effective for deciphering the true ability of CPPs to translocate through the membrane and enter the cell cytoplasm.
Collapse
|
10
|
McConnell EM, Nguyen J, Li Y. Aptamer-Based Biosensors for Environmental Monitoring. Front Chem 2020; 8:434. [PMID: 32548090 PMCID: PMC7272472 DOI: 10.3389/fchem.2020.00434] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Due to their relative synthetic and chemical simplicity compared to antibodies, aptamers afford enhanced stability and functionality for the detection of environmental contaminants and for use in environmental monitoring. Furthermore, nucleic acid aptamers can be selected for toxic targets which may prove difficult for antibody development. Of particular relevance, aptamers have been selected and used to develop biosensors for environmental contaminants such as heavy metals, small-molecule agricultural toxins, and water-borne bacterial pathogens. This review will focus on recent aptamer-based developments for the detection of diverse environmental contaminants. Within this domain, aptamers have been combined with other technologies to develop biosensors with various signal outputs. The goal of much of this work is to develop cost-effective, user-friendly detection methods that can complement or replace traditional environmental monitoring strategies. This review will highlight recent examples in this area. Additionally, with innovative developments such as wearable devices, sentinel materials, and lab-on-a-chip designs, there exists significant potential for the development of multifunctional aptamer-based biosensors for environmental monitoring. Examples of these technologies will also be highlighted. Finally, a critical perspective on the field, and thoughts on future research directions will be offered.
Collapse
Affiliation(s)
| | | | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Wen Y, Cahya S, Zeng W, Lin J, Wang X, Liu L, Malherbe L, Siegel R, Ferrante A, Kaliyaperumal A. Development of a FRET-Based Assay for Analysis of mAbs Internalization and Processing by Dendritic Cells in Preclinical Immunogenicity Risk Assessment. AAPS JOURNAL 2020; 22:68. [DOI: 10.1208/s12248-020-00444-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 01/26/2023]
|
12
|
Chen C, Tian R, Zeng Y, Chu C, Liu G. Activatable Fluorescence Probes for “Turn-On” and Ratiometric Biosensing and Bioimaging: From NIR-I to NIR-II. Bioconjug Chem 2020; 31:276-292. [DOI: 10.1021/acs.bioconjchem.9b00734] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
13
|
Yamamoto K, Kamiya M, Urano Y. Highly sensitive fluorescence imaging of cancer with avidin-protease probe conjugate. Bioorg Med Chem Lett 2019; 29:126663. [PMID: 31521477 DOI: 10.1016/j.bmcl.2019.126663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/22/2023]
Abstract
It is a long-term goal of cancer diagnosis to develop tumor-imaging techniques that have sufficient specificity and sensitivity to detect small tumor nodules during surgery or endoscopic surgery. Here, we introduce an avidin-conjugated fluorescence probe, Avidin-Leu-HMRG, which consists of a cancer-targeting macromolecule (avidin) and a protease-activatable probe. The conjugate has a high affinity for lectin on cancer cells and undergoes endocytosis, followed by irreversible fluorescence activation due to cleavage by lysosomal leucine aminopeptidase. In a mouse model of peritoneal ovarian metastases, the probe could detect submillimeter-sized tumor nodules with a high S/N ratio at 1 h after intraperitoneal injection.
Collapse
Affiliation(s)
- Kyoko Yamamoto
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
14
|
Wang J, Wang DX, Ma JY, Wang YX, Kong DM. Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction. Chem Sci 2019; 10:9758-9767. [PMID: 32055345 PMCID: PMC6993746 DOI: 10.1039/c9sc02281c] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers.
Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Jia-Yi Ma
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China . .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| |
Collapse
|
15
|
Cheloha RW, Li Z, Bousbaine D, Woodham AW, Perrin P, Volarić J, Ploegh HL. Internalization of Influenza Virus and Cell Surface Proteins Monitored by Site-Specific Conjugation of Protease-Sensitive Probes. ACS Chem Biol 2019; 14:1836-1844. [PMID: 31348637 DOI: 10.1021/acschembio.9b00493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commonly used methods to monitor internalization of cell surface structures involve application of fluorescently or otherwise labeled antibodies against the target of interest. Genetic modification of the protein of interest, for example through creation of fusions with fluorescent or enzymatically active protein domains, is another approach to follow trafficking behavior. The former approach requires indirect methods, such as multiple rounds of cell staining, to distinguish between a target that remains surface-disposed and an internalized and/or recycled species. The latter approach necessitates the creation of fusions whose behavior may not accurately reflect that of their unmodified counterparts. Here, we report a method for the characterization of protein internalization in real time through sortase-mediated, site-specific labeling of single-domain antibodies or viral proteins with a newly developed, cathepsin-sensitive quenched-fluorophore probe. Quenched probes of this type have been used to measure enzyme activity in complex environments and for different cell types, but not as a sensor of protein movement into living cells. This approach allows a quantitative assessment of the movement of proteins into protease-containing endosomes in real time in living cells. We demonstrate considerable variation in the rate of endosomal delivery for different cell surface receptors. We were also able to characterize the kinetics of influenza virus delivery to cathepsin-positive compartments, showing highly coordinated arrival in endosomal compartments. This approach should be useful for identifying proteins expressed on cells of interest for targeted endosomal delivery of payloads, such as antibody-drug conjugates or antigens that require processing.
Collapse
Affiliation(s)
- Ross W. Cheloha
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Zeyang Li
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Djenet Bousbaine
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Andrew W. Woodham
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Priscillia Perrin
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Jana Volarić
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Hidde L. Ploegh
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. J Control Release 2019; 305:1-17. [DOI: 10.1016/j.jconrel.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
|
17
|
Zimmers ZA, Adams NM, Gabella WE, Haselton FR. Fluorophore-Quencher Interactions Effect on Hybridization Characteristics of Complementary Oligonucleotides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:2862-2867. [PMID: 32661463 PMCID: PMC7357715 DOI: 10.1039/c9ay00584f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nucleic acids are often covalently modified with fluorescent reporter molecules to create a hybridization state-dependent optical signal. Designing such a nucleic acid reporter involves selecting a fluorophore, quencher, and fluorescence quenching design. This report outlines the effect that these choices have on the DNA hybridization characteristics by examining six fluorophores in four quenching schemes: a quencher molecule offset from the fluorophore by 0, 5, or 10 bases, and nucleotide quenching. The similar binding characteristics of left-handed L-DNA were evaluated in comparison with right-handed DNA to quantify the effect of each quenching scheme. These results were applied to the Adaptive PCR method, which monitors fluorescently-labeled L-DNA as a sentinel for analogous unlabeled D-DNA in the reaction. All of the tested fluorophores and quenching schemes increased the annealing temperature of the oligonucleotide pairs by values ranging from 0.5 to 8.5 °C relative to unlabeled oligonucleotides. The design with the smallest increase (0.5 °C) was a sense strand with a FAM fluorophore and an anti-sense strand with Black Hole Quencher 2 offset by 10 bases from the FAM. An identical design that did not offset the quencher molecules resulted in a shift in annealing temperature of 5 °C. PCR was performed using temperature switching based on each of these L-DNA designs, and efficiency was significantly increased for the 10-base offset design, which had the smallest shift in annealing temperature. These results highlight the importance of selecting an appropriate fluorescence quenching scheme for nucleic acid optical signals.
Collapse
Affiliation(s)
- Zackary A Zimmers
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | - Nicholas M Adams
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | - William E Gabella
- 5932 Stevenson Center Science and Engineering, Vanderbilt University
| | | |
Collapse
|
18
|
New Techniques for Diagnosis and Treatment of Musculoskeletal Tumors: Methods of Intraoperative Margin Detection. Tech Orthop 2018. [DOI: 10.1097/bto.0000000000000290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Joshi BP, Wang TD. Targeted Optical Imaging Agents in Cancer: Focus on Clinical Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:2015237. [PMID: 30224903 PMCID: PMC6129851 DOI: 10.1155/2018/2015237] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/27/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Molecular imaging is an emerging strategy for in vivo visualization of cancer over time based on biological mechanisms of disease activity. Optical imaging methods offer a number of advantages for real-time cancer detection, particularly in the epithelium of hollow organs and ducts, by using a broad spectral range of light that spans from visible to near-infrared. Targeted ligands are being developed for improved molecular specificity. These platforms include small molecule, peptide, affibody, activatable probes, lectin, and antibody. Fluorescence labeling is used to provide high image contrast. This emerging methodology is clinically useful for early cancer detection by identifying and localizing suspicious lesions that may not otherwise be seen and serves as a guide for tissue biopsy and surgical resection. Visualizing molecular expression patterns may also be useful to determine the best choice of therapy and to monitor efficacy. A number of these imaging agents are overcoming key challenges for clinical translation and are being validated in vivo for a wide range of human cancers.
Collapse
Affiliation(s)
- Bishnu P. Joshi
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
| | - Thomas D. Wang
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
An P, Lewandowski TM, Lin Q. Design and Synthesis of a BODIPY-Tetrazole Based "Off-On" in-Cell Fluorescence Reporter of Hydrogen Peroxide. Chembiochem 2018; 19:1326-1333. [PMID: 29385317 DOI: 10.1002/cbic.201700656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 12/21/2022]
Abstract
BODIPY-linked bithiophene-tetrazoles were designed and synthesized for bioorthogonal photoclick reactions in vitro and in vivo. The reactivity of these tetrazoles toward dimethyl fumarate was found to depend on the BODIPY attachment site, with the meta-linked BODIPY-tetrazole being the most reactive. The resulting pyrazoline cycloadduct showed drastically reduced BODIPY fluorescence. However, BODIPY fluorescence recovered after treatment with hydrogen peroxide. This turn-on effect was attributed to conversion from the pyrazoline to a pyrazole. Finally, we showed that this unique BODIPY-tetrazole off-on fluorescence probe can be used to detect hydrogen peroxide inside HeLa cells.
Collapse
Affiliation(s)
- Peng An
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260-3000, USA
| | - Tracey M Lewandowski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260-3000, USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260-3000, USA
| |
Collapse
|
21
|
Nagaya T, Nakamura YA, Choyke PL, Kobayashi H. Fluorescence-Guided Surgery. Front Oncol 2017; 7:314. [PMID: 29312886 PMCID: PMC5743791 DOI: 10.3389/fonc.2017.00314] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/05/2017] [Indexed: 01/02/2023] Open
Abstract
Surgical resection of cancer remains an important treatment modality. Despite advances in preoperative imaging, surgery itself is primarily guided by the surgeon’s ability to locate pathology with conventional white light imaging. Fluorescence-guided surgery (FGS) can be used to define tumor location and margins during the procedure. Intraoperative visualization of tumors may not only allow more complete resections but also improve safety by avoiding unnecessary damage to normal tissue which can also reduce operative time and decrease the need for second-look surgeries. A number of new FGS imaging probes have recently been developed, complementing a small but useful number of existing probes. In this review, we describe current and new fluorescent probes that may assist FGS.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yu A Nakamura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Upchurch E, Griffiths S, Lloyd GR, Isabelle M, Kendall C, Barr H. Developments in optical imaging for gastrointestinal surgery. Future Oncol 2017; 13:2363-2382. [PMID: 29121775 DOI: 10.2217/fon-2017-0181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To improve outcomes for patients with cancer, in terms of both survival and a reduction in the morbidity and mortality that results from surgical resection and treatment, there are two main areas that require improvement. Accurate early diagnosis of the cancer, at a stage where curative and, ideally, minimally invasive treatment is achievable, is desired as well as identification of tumor margins, lymphatic and distant disease, enabling complete, but not unnecessarily extensive, resection. Optical imaging is making progress in achieving these aims. This review discusses the principles of optical imaging, focusing on fluorescence and spectroscopy, and the current research that is underway in GI tract carcinomas.
Collapse
Affiliation(s)
- Emma Upchurch
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN.,Department of Upper GI Surgery, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| | - Shelly Griffiths
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| | - Gavin-Rhys Lloyd
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| | - Martin Isabelle
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK, GL12 8JR
| | - Catherine Kendall
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| | - Hugh Barr
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN.,Department of Upper GI Surgery, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| |
Collapse
|
23
|
Sánchez-Rico C, Voith von Voithenberg L, Warner L, Lamb DC, Sattler M. Effects of Fluorophore Attachment on Protein Conformation and Dynamics Studied by spFRET and NMR Spectroscopy. Chemistry 2017; 23:14267-14277. [PMID: 28799205 DOI: 10.1002/chem.201702423] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 12/28/2022]
Abstract
Fluorescence-based techniques are widely used to study biomolecular conformations, intra- and intermolecular interactions, and conformational dynamics of macromolecules. Especially for fluorescence-based single-molecule experiments, the choice of the fluorophore and labeling position are highly important. In this work, we studied the biophysical and structural effects that are associated with the conjugation of fluorophores to cysteines in the splicing factor U2AF65 by using single pair Förster resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) spectroscopy. It is shown that certain acceptor fluorophores are advantageous depending on the experiments performed. The effects of dye attachment on the protein conformation were characterized using heteronuclear NMR experiments. The presence of hydrophobic and aromatic moieties in the fluorophores can significantly affect the conformation of the conjugated protein, presumably by transient interactions with the protein surface. Guidelines are provided for carefully choosing fluorophores, considering their photophysical properties and chemical features for the design of FRET experiments, and for minimizing artifacts.
Collapse
Affiliation(s)
- Carolina Sánchez-Rico
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Lena Voith von Voithenberg
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Lisa Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
24
|
Lyu Y, Pu K. Recent Advances of Activatable Molecular Probes Based on Semiconducting Polymer Nanoparticles in Sensing and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600481. [PMID: 28638783 PMCID: PMC5473328 DOI: 10.1002/advs.201600481] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/29/2016] [Indexed: 05/21/2023]
Abstract
Molecular probes that change their signals in response to the target of interest have a critical role in fundamental biology and medicine. Semiconducting polymer nanoparticles (SPNs) have recently emerged as a new generation of purely organic photonic nanoagents with desirable properties for biological applications. In particular, tunable optical properties of SPNs allow them to be developed into photoluminescence, chemiluminescence, and photoacoustic probes, wherein SPNs usually serve as the energy donor and internal reference for luminescence and photoacoustic probes, respectively. Moreover, facile surface modification and intraparticle engineering provide the versatility to make them responsive to various biologically and pathologically important substances and indexes including small-molecule mediators, proteins, pH and temperature. This article focuses on recent advances in the development of SPN-based activatable molecular probes for sensing and imaging. The designs and applications of these probes are discussed in details, and the present challenges to further advance them into life science are also analyzed.
Collapse
Affiliation(s)
- Yan Lyu
- School of Chemical and Biomedical EngineeringNanyang Technological University70 Nanyang DriveSingapore637457
| | - Kanyi Pu
- School of Chemical and Biomedical EngineeringNanyang Technological University70 Nanyang DriveSingapore637457
| |
Collapse
|
25
|
Jain A, Cheng K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J Control Release 2017; 245:27-40. [PMID: 27865853 PMCID: PMC5222781 DOI: 10.1016/j.jconrel.2016.11.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Avidin-biotin interaction is one of the strongest non-covalent interactions in the nature. Avidin and its analogues have therefore been extensively utilized as probes and affinity matrices for a wide variety of applications in biochemical assays, diagnosis, affinity purification, and drug delivery. Recently, there has been a growing interest in exploring this non-covalent interaction in nanoscale drug delivery systems for pharmaceutical agents, including small molecules, proteins, vaccines, monoclonal antibodies, and nucleic acids. Particularly, the ease of fabrication without losing the chemical and biological properties of the coupled moieties makes the avidin-biotin system a versatile platform for nanotechnology. In addition, avidin-based nanoparticles have been investigated as diagnostic systems for various tumors and surface antigens. In this review, we will highlight the various fabrication principles and biomedical applications of avidin-based nanoparticles in drug delivery and diagnosis. The structures and biochemical properties of avidin, biotin and their respective analogues will also be discussed.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States.
| |
Collapse
|
26
|
Hagimori M, Hatabe E, Sano K, Miyazaki H, Sasaki H, Saji H, Mukai T. An Activatable Fluorescent γ-Polyglutamic Acid Complex for Sentinel Lymph Node Imaging. Biol Pharm Bull 2017; 40:297-302. [DOI: 10.1248/bpb.b16-00773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masayori Hagimori
- Department of Biophysical Chemistry, Kobe Pharmaceutical University
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Eri Hatabe
- Department of Biophysical Chemistry, Kobe Pharmaceutical University
| | - Kohei Sano
- Department of Biophysical Chemistry, Kobe Pharmaceutical University
- Radioisotopes Research Laboratory, Kyoto University Hospital
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | - Hitoshi Sasaki
- Hospital Pharmacy, Nagasaki University Hospital of Medicine and Dentistry
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University
| |
Collapse
|
27
|
Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget 2016; 7:48753-48787. [PMID: 27145373 PMCID: PMC5217050 DOI: 10.18632/oncotarget.9066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/10/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.
Collapse
Affiliation(s)
- Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Umberto Veronesi Foundation, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Tecnomed Foundation, University of Milan-Bicocca, Monza, Italy
| | - Giovanni Lucignani
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Institute for Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
28
|
Li J, Cheng F, Huang H, Li L, Zhu JJ. Nanomaterial-based activatable imaging probes: from design to biological applications. Chem Soc Rev 2016. [PMID: 26214317 DOI: 10.1039/c4cs00476k] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activatable imaging probes as alternatives to "always on" imaging probes have attracted more and more attention due to their improved sensitivity and specificity. They are commonly designed to amplify or boost imaging signals only in response to specific biomolecular recognition or interaction. Thus, the design strategies play a vital role in the fabrication of activatable imaging probes. In this review, we focus on the design mechanisms and biological applications of those nanomaterial-based activatable imaging probes reported in the past five years, benefitting greatly from the good development of nanotechnology. These probes not only include the most studied activatable fluorescence imaging probes, but also cover more activatable MR imaging probes based on nanoparticle contrast agents and activatable photoacoustic imaging probes, providing more bases for clinical translation.
Collapse
Affiliation(s)
- Jingjing Li
- School of Medical Imaging, Xuzhou Medical College, Xuzhou 221004, China and Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Fangfang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Haiping Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Lingling Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
29
|
Büyüktimkin B, Stewart J, Tabanor K, Kiptoo P, Siahaan TJ. Protein and Peptide Conjugates for Targeting Therapeutics and Diagnostics to Specific Cells. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
30
|
Ha Y, Choi HK. Recent conjugation strategies of small organic fluorophores and ligands for cancer-specific bioimaging. Chem Biol Interact 2016; 248:36-51. [DOI: 10.1016/j.cbi.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 01/03/2023]
|
31
|
Li Y, Liu PC, Shen Y, Snavely MD, Hiraga K. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence-Quencher Probe as a Tool for Functional Antibody Screening. ACTA ACUST UNITED AC 2015; 20:869-75. [PMID: 26024945 PMCID: PMC4512523 DOI: 10.1177/1087057115588511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 05/05/2015] [Indexed: 11/15/2022]
Abstract
For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody–drug conjugates. Here we describe a novel activatable fluorescence–quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process.
Collapse
Affiliation(s)
- Yan Li
- Antibody Technology, Eli Lilly and Company, New York, NY, USA
| | | | - Yang Shen
- Antibody Technology, Eli Lilly and Company, New York, NY, USA
| | | | - Kaori Hiraga
- Antibody Technology, Eli Lilly and Company, New York, NY, USA
| |
Collapse
|
32
|
Suzuki T, Miyazaki C, Ishii-Watabe A, Tada M, Sakai-Kato K, Kawanishi T, Kawasaki N. A fluorescent imaging method for analyzing the biodistribution of therapeutic monoclonal antibodies that can distinguish intact antibodies from their breakdown products. MAbs 2015; 7:759-69. [PMID: 25891896 DOI: 10.1080/19420862.2015.1038683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many monoclonal antibodies have been developed for therapy over the last 2 decades. In the development of therapeutic antibodies, the preclinical assessment of an antibody's biodistribution is important for the prediction of the antibody's efficacy and safety. For imaging analyses of such biodistributions, radioisotope (RI) labeling and fluorescence labeling methods are typically used, but the resulting data are limited because these methods cannot distinguish breakdown products from intact antibodies. To resolve this problem, we developed a novel method using fluorescent resonance energy transfer (FRET)-type labeling and a spectral unmixing tool. With FRET-type labeling (labeling with 2 species of fluorophore), different fluorescence properties of labeled intact antibodies and their breakdown products (the hydrolyzed/digested type of breakdown products) are made visible. With the spectral unmixing tool, the fluorescence of a solution containing the intact antibody and its breakdown products could be unmixed in proportion to their contents. Moreover, when labeled antibodies that targeted either human epidermal growth factor receptor-2 or epidermal growth factor receptor were injected into nude mice implanted subcutaneously with tumor cells, the accumulation of the injected labeled antibodies and their breakdown products in the tumor could be separately analyzed by both whole-mouse imaging and a tumor homogenate analysis. These results suggest that our method using FRET-type labeling and a spectral unmixing tool could be useful in distinguishing breakdown products from intact antibodies.
Collapse
Affiliation(s)
- Takuo Suzuki
- a National Institute of Health Sciences ; Tokyo , Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Hill TK, Abdulahad A, Kelkar SS, Marini FC, Long TE, Provenzale JM, Mohs AM. Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug Chem 2015; 26:294-303. [PMID: 25565445 DOI: 10.1021/bc5005679] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Detecting positive tumor margins and local malignant masses during surgery is critical for long-term patient survival. The use of image-guided surgery for tumor removal, particularly with near-infrared fluorescent imaging, is a potential method to facilitate removing all neoplastic tissue at the surgical site. In this study we demonstrate a series of hyaluronic acid (HLA)-derived nanoparticles that entrap the near-infrared dye indocyanine green, termed NanoICG, for improved delivery of the dye to tumors. Self-assembly of the nanoparticles was driven by conjugation of one of three hydrophobic moieties: aminopropyl-1-pyrenebutanamide (PBA), aminopropyl-5β-cholanamide (5βCA), or octadecylamine (ODA). Nanoparticle self-assembly, dye loading, and optical properties were characterized. NanoICG exhibited quenched fluorescence that could be activated by disassembly in a mixed solvent. NanoICG was found to be nontoxic at physiologically relevant concentrations and exposure was not found to inhibit cell growth. Using an MDA-MB-231 tumor xenograft model in mice, strong fluorescence enhancement in tumors was observed with NanoICG using a fluorescence image-guided surgery system and a whole-animal imaging system. Tumor contrast with NanoICG was significantly higher than with ICG alone.
Collapse
Affiliation(s)
- Tanner K Hill
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, ‡Wake Forest Institute for Regenerative Medicine, §Department of Cancer Biology, Wake Forest University Health Sciences , Winston-Salem, North Carolina 27157, United States
| | | | | | | | | | | | | |
Collapse
|
34
|
Sun Q, Tian H, Qu H, Sun D, Chen Z, Duan L, Zhang W, Qian J. Discrimination between streptavidin and avidin with fluorescent affinity-based probes. Analyst 2015; 140:4648-53. [DOI: 10.1039/c5an00585j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SPS3 showed a high fluorescence response toward streptavidin and could discriminate biotin receptor over-expressed Hela cells from other cells.
Collapse
Affiliation(s)
- Qian Sun
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Haiyu Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Haoran Qu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Deheng Sun
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- China
| | - Zhuo Chen
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- China
| | - Liping Duan
- National Institute of Parasitic Diseases
- Chinese Center for Disease Control and Prevention
- Shanghai
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
35
|
Ding F, Guo S, Xie M, Luo W, Yuan C, Huang W, Zhou Y, Zhang XL, Zhou X. Diagnostic applications of gastric carcinoma cell aptamers in vitro and in vivo. Talanta 2014; 134:30-36. [PMID: 25618637 DOI: 10.1016/j.talanta.2014.09.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is the most malignant tumor. Due to lacking of efficient means to diagnose the cancer at the early stage, it is necessary to develop effective molecular probes for early diagnosis and treatment. We have selected aptamers with high specificity and affinity against SGC7901 cells by cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) method, which shown important clinical applications: (1) Specific recognize human gastric tumor tissues compared to the normal tissues. (2)When used to capture cancerous cells, the aptamer-functionalized fluorescent-magnetic nanospheres (FMNS) could specifically capture 93% target cancer cells and about 70% target cells can be released. (3) The aptamer probe displayed a quenched fluorescence in the absence of target cancer cells and went through a conformational transformation upon binding to target cancer cells that induced fluorescence. (4) The aptamer probe could target gastric tumors transplanted into mice with obvious fluorescence. The newly generated aptamers hold great potential in early cancer diagnosis.
Collapse
Affiliation(s)
- Fei Ding
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Shan Guo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Wei Luo
- School of Medicine, Wuhan University, State Key Laboratory of Virology, Wuhan 430072, Hubei, PR China
| | - Chunhui Yuan
- School of Medicine, Wuhan University, State Key Laboratory of Virology, Wuhan 430072, Hubei, PR China
| | - Weihua Huang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Yan Zhou
- Zhongnan Hospital of Wuhan University, Wuhan 430072, Hubei, PR China
| | - Xiao-Lian Zhang
- School of Medicine, Wuhan University, State Key Laboratory of Virology, Wuhan 430072, Hubei, PR China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China.
| |
Collapse
|
36
|
Ma Z, Du L, Li M. Toward fluorescent probes for G-protein-coupled receptors (GPCRs). J Med Chem 2014; 57:8187-203. [PMID: 24983484 DOI: 10.1021/jm401823z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
G-protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors that are the targets of about 40% of prescription drugs on the market, can sense numerous critical extracellular signals. Recent breakthroughs in structural biology, especially in holo-form X-ray crystal structures, have contributed to our understanding of GPCR signaling. However, actions of GPCRs at the cellular and molecular level, interactions between GPCRs, and the role of protein dynamics in receptor activities still remain controversial. To overcome these dilemmas, fluorescent probes of GPCRs have been employed, which have advantages of in vivo safety and real-time monitoring. Various probes that depend on specific mechanisms and/or technologies have been used to study GPCRs. The present review focuses on surveying the design and applications of fluorescent probes for GPCRs that are derived from small molecules or using protein-labeling techniques, as well as discussing some design strategies for new probes.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University , Jinan, Shandong 250012, China
| | | | | |
Collapse
|
37
|
Li C, Martínez-Dávalos A, Cherry SR. Numerical simulation of x-ray luminescence optical tomography for small-animal imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:046002. [PMID: 24695846 PMCID: PMC3973658 DOI: 10.1117/1.jbo.19.4.046002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 05/20/2023]
Abstract
X-ray luminescence optical tomography (XLOT) is an emerging hybrid imaging modality in which x-ray excitable particles (phosphor particles) emit optical photons when stimulated with a collimated x-ray beam. XLOT can potentially combine the high sensitivity of optical imaging with the high spatial resolution of x-ray imaging. For reconstruction of XLOT data, we compared two reconstruction algorithms, conventional filtered backprojection (FBP) and a new algorithm, x-ray luminescence optical tomography with excitation priors (XLOT-EP), in which photon propagation is modeled with the diffusion equation and the x-ray beam positions are used as reconstruction priors. Numerical simulations based on dose calculations were used to validate the proposed XLOT imaging system and the reconstruction algorithms. Simulation results showed nanoparticle concentrations reconstructed with XLOT-EP are much less dependent on scan depth than those obtained with FBP. Measurements at just two orthogonal projections are sufficient for XLOT-EP to reconstruct an XLOT image for simple source distributions. The heterogeneity of x-ray energy deposition is included in the XLOT-EP reconstruction and improves the reconstruction accuracy, suggesting that there is a need to calculate the x-ray energy distribution for experimental XLOT imaging.
Collapse
Affiliation(s)
- Changqing Li
- University of California, School of Engineering, Merced, Merced, California 95343
- Address all correspondence to: Changqing Li, E-mail:
| | - Arnulfo Martínez-Dávalos
- Universidad Nacional Autónoma de México, Instituto de Física, A.P. 20-364, 01000 México D.F., Mexico
| | - Simon R. Cherry
- University of California, Department of Biomedical Engineering, Davis, Davis, California 95616
| |
Collapse
|
38
|
Spolaore B, Damiano N, Raboni S, Fontana A. Site-specific derivatization of avidin using microbial transglutaminase. Bioconjug Chem 2014; 25:470-80. [PMID: 24517223 DOI: 10.1021/bc400378h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Avidin conjugates have several important applications in biotechnology and medicine. In this work, we investigated the possibility to produce site-specific derivatives of avidin using microbial transglutaminase (TGase). TGase allows the modification of proteins at the level of Gln or Lys residues using as substrate an alkyl-amine or a Gln-mimicking moiety, respectively. The reaction is site-specific, since Gln and Lys derivatization occurs preferentially at residues embedded in flexible regions of protein substrates. An analysis of the X-ray structure of avidin allowed us to predict Gln126 and Lys127 as potential sites of TGase's attack, because these residues are located in the flexible/unfolded C-terminal region of the protein. Surprisingly, incubation of avidin with TGase in the presence of alkylamine containing substrates (dansylcadaverine, 5-hydroxytryptamine) revealed a very low level of derivatization of the Gln126 residue. Analysis of the TGase reaction on synthetic peptide analogues of the C-terminal portion of avidin indicated that the lack of reactivity of Gln126 was likely due to the fact that this residue is proximal to negatively charged carboxylate groups, thus hampering the interaction of the substrate at the negatively charged active site of TGase. On the other hand, incubation of avidin with TGase in the presence of carbobenzoxy-l-glutaminyl-glycine in order to derivatize Lys residue(s) resulted in a clean and high yield production of an avidin derivative, retaining the biotin binding properties and the quaternary structure of the native protein. Proteolytic digestion of the modified protein, followed by mass spectrometry, allowed us to identify Lys127 as the major site of reaction, together with a minor modification of Lys58. By using TGase, avidin was also conjugated via a Lys-Gln isopeptide bond to a protein containing a single reactive Gln residue, namely, Gln126 of granulocyte-macrophage colony-stimulating factor. TGase can thus be exploited for the site-specific derivatization of avidin with small molecules or proteins.
Collapse
Affiliation(s)
- Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padua , Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | |
Collapse
|
39
|
Wang B, Galliford CV, Low PS. Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine (Lond) 2014; 9:313-30. [PMID: 24552563 DOI: 10.2217/nnm.13.175] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medicines for the treatment of most human pathologies are encumbered by unwanted side effects that arise from the deposition of an effective drug into the wrong tissues. The logical remedy for these undesirable properties involves selective targeting of the therapeutic agent to pathologic cells, thereby avoiding collateral toxicity to healthy cells. Since significant advantages can also accrue by incorporating a therapeutic or imaging agent into a nanoparticle, many laboratories are now combining both benefits into a single formulation. This review will focus on the major guiding principles in the design of ligand-targeted nanoparticles, including optimization of their chemical and physical properties, selection of the ideal targeting ligand, engineering of the appropriate surface passivation and linker strategies to achieve selective delivery of the entrapped cargo to the desired diseased cell.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Chris V Galliford
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Tian R, Li M, Wang J, Yu M, Kong X, Feng Y, Chen Z, Li Y, Huang W, Wu W, Hong Z. An intracellularly activatable, fluorogenic probe for cancer imaging. Org Biomol Chem 2014; 12:5365-74. [DOI: 10.1039/c4ob00297k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A newly designed, dual-functional probe based on intracellular activation has been successfully developed for the detection of cancer cells.
Collapse
Affiliation(s)
- Ruisong Tian
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071, P. R. China
- College of Material Science and Chemical Engineering
| | - Mingjie Li
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071, P. R. China
| | - Jin Wang
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071, P. R. China
| | - Min Yu
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071, P. R. China
| | - Xiuqi Kong
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071, P. R. China
| | - Yupeng Feng
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071, P. R. China
| | - Zeming Chen
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071, P. R. China
| | - Yuxi Li
- College of Material Science and Chemical Engineering
- Tianjin University of Science and Technology
- Tianjin 300457, P. R. China
| | | | - Wenjie Wu
- College of Material Science and Chemical Engineering
- Tianjin University of Science and Technology
- Tianjin 300457, P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071, P. R. China
| |
Collapse
|
41
|
Breij ECW, de Goeij BECG, Verploegen S, Schuurhuis DH, Amirkhosravi A, Francis J, Miller VB, Houtkamp M, Bleeker WK, Satijn D, Parren PWHI. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res 2013; 74:1214-26. [PMID: 24371232 DOI: 10.1158/0008-5472.can-13-2440] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue factor (TF) is aberrantly expressed in solid cancers and is thought to contribute to disease progression through its procoagulant activity and its capacity to induce intracellular signaling in complex with factor VIIa (FVIIa). To explore the possibility of using tissue factor as a target for an antibody-drug conjugate (ADC), a panel of human tissue factor-specific antibodies (TF HuMab) was generated. Three tissue factor HuMab, that induced efficient inhibition of TF:FVIIa-dependent intracellular signaling, antibody-dependent cell-mediated cytotoxicity, and rapid target internalization, but had minimal impact on tissue factor procoagulant activity in vitro, were conjugated with the cytotoxic agents monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF). Tissue factor-specific ADCs showed potent cytotoxicity in vitro and in vivo, which was dependent on tissue factor expression. TF-011-MMAE (HuMax-TF-ADC) was the most potent ADC, and the dominant mechanism of action in vivo was auristatin-mediated tumor cell killing. Importantly, TF-011-MMAE showed excellent antitumor activity in patient-derived xenograft (PDX) models with variable levels of tissue factor expression, derived from seven different solid cancers. Complete tumor regression was observed in all PDX models, including models that showed tissue factor expression in only 25% to 50% of the tumor cells. In conclusion, TF-011-MMAE is a promising novel antitumor agent with potent activity in xenograft models that represent the heterogeneity of human tumors, including heterogeneous target expression.
Collapse
Affiliation(s)
- Esther C W Breij
- Authors' Affiliations: Genmab, Utrecht, the Netherlands; Genmab, Copenhagen, Denmark; and Center for Thrombosis Research, Florida Hospital, Orlando, Florida
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhu B, Wu G, Robinson H, Wilganowski N, Hall MA, Ghosh SC, Pinkston KL, Azhdarinia A, Harvey BR, Sevick-Muraca EM. Tumor margin detection using quantitative NIRF molecular imaging targeting EpCAM validated by far red gene reporter iRFP. Mol Imaging Biol 2013; 15:560-8. [PMID: 23619897 DOI: 10.1007/s11307-013-0637-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Wide-field surgical excision reduces the chance of residual disease, but can also lead to disfigurement and devastating morbidities when resection is close to critical structures. We hypothesize that near-infrared fluorescence (NIRF) imaging can enable accurate detection of tumor margins for image-guided resection. EXPERIMENTAL DESIGN An orthotopic model of human prostate cancer (PCa) was used to assess primary tumor margins using a NIRF-labeled antibody against epithelial cell adhesion molecule (EpCAM). PCa cells stably expressing far red fluorescent gene reporter, iRFP, enabled colocalization with NIRF signals for direct assessment of tumor margins. RESULTS Using receiver operating characteristic analysis, far red fluorescence was validated against standard pathology of primary and metastatic lesions with >96 % accuracy. Primary tumor margins were more accurately detected by quantitative NIRF imaging using the EpCAM-targeting antibody as compared to a NIRF-labeled isotype control antibody. CONCLUSIONS NIRF molecular imaging may enable real-time and accurate assessment of tumor margins.
Collapse
Affiliation(s)
- Banghe Zhu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, 1825 Pressler Street, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Monoclonal antibody-fluorescent probe conjugates for in vivo target-specific cancer imaging: toward clinical translation. Ther Deliv 2013; 4:523-5. [PMID: 23647268 DOI: 10.4155/tde.13.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Bu L, Gan LC, Guo XQ, Chen FZ, Song Q, Qi-Zhao, Gou XJ, Hou SX, Yao Q. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int J Pharm 2013; 452:355-62. [PMID: 23685116 DOI: 10.1016/j.ijpharm.2013.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/16/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Conventional liver targeted system focuses on delivering drugs to liver, bringing toxicity on hepatic normal tissues. The purpose of this study is to construct a new system capable of specially targeting to hepatic carcinoma instead of the whole liver. Based on the fact that nanoparticles (NPs) bound with either biotin or avidin tend to accumulate in tumors and avidin-attached reagents were quickly eliminated from blood circulation and assembled in liver, trans-resveratrol loaded chitosan nanoparticles (CS-NPs), CS-NPs with the surface modified either by biotin (B-CS-NPs) or by both biotin and avidin (A-B-CS-NPs) were prepared and their physiochemical properties were investigated. The in vitro release profiles of the three NPs all conformed to bioexponential equation. Pharmacokinetic experiment indicated that A-B-CS-NPs rapidly assembled in liver after injection, with the highest liver targeting index of 2.70, while the modification of biotin attenuated the liver targeting ability of NPs. Inhibitory study on HepG2 cells declared that compared to trans-resveratrol solution and CS-NPs, both B-CS-NPs and A-B-CS-NPs significantly improved the anticancer activity. When incubated with HepG2 cells at high concentration for longer time, A-B-CS-NPs exhibited superior cytotoxicity than B-CS-NPs. This study exclaims that A-B-CS-NPs may be a potent drug delivery vector specially targeting to hepatic carcinoma.
Collapse
Affiliation(s)
- Le Bu
- Key Laboratory of Sichuan Province of Medicinal Chemistry, Chengdu University, Chengdu 610106, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sano K, Mitsunaga M, Nakajima T, Choyke PL, Kobayashi H. In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores. Breast Cancer Res 2013; 14:R61. [PMID: 22510481 PMCID: PMC3446396 DOI: 10.1186/bcr3167] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/17/2012] [Indexed: 12/28/2022] Open
Abstract
Introduction The gene expression profiles of cancer cells are closely related to their aggressiveness and metastatic potential. Antibody-based immunohistochemistry (IHC) of tissue specimens is a common method of identifying expressed proteins in cancer cells and increasingly inform treatment decisions. Molecular imaging is a potential method of performing similar IHC studies in vivo without the requirement for biopsy or tumor excision. To date, antibody-based imaging has been limited by high background levels related to slow clearance, making such imaging practical. However, optically activatable imaging agents, which are only fluorescent when bound to their cognate receptor, open the possibility of doing in vivo multi-color IHC. Methods We describe the use of activatable, near infrared fluorescence-labeled AlexaFluor680 (Alexa680) conjugated panitumumab (Pan) targeted against human epidermal growth factor receptor (EGFR) (Pan-Alexa680) and Indocyanine Green (ICG) conjugated trastuzumab (Tra) targeted against human epidermal growth factor receptor type 2 (HER2) (Tra-ICG) were synthesized and evaluated in cells in vitro and in an orthotopic breast cancer mouse model in vivo. Results Pan-Alexa680 (self-quenched; SQ) and Tra-ICG were initially quenched but demonstrated a 5.2- and 50-fold dequenching capacity under detergent treatment, respectively. In vitro microscopy and flow cytometry using MDA-MB-468 (EGFR+/HER2-) and 3T3/HER2 cells (EGFR-/HER2+), demonstrated specific fluorescence signal for each cell type based on binding to Pan-Alexa680(SQ) or Tra-ICG. An in vivo imaging study employing a cocktail of Pan-Alexa680(SQ) and Tra-ICG (each 50 μg) was injected into mice with orthotopic MDA-MB-468 and 3T3/HER2 tumors in the breast. Each probe visualized only the target-specific breast tumor. Conclusions Multi-color target-specific fluorescence breast cancer imaging can be achieved in vivo by employing two activatable fluorescent probes administered as a cocktail. The images allowed us to see a specific receptor expression in each breast tumor without post-image processing.
Collapse
Affiliation(s)
- Kohei Sano
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Building 10, RoomB3B69, 10 Center Dr. Bethesda, MD 0892-1088, USA
| | | | | | | | | |
Collapse
|
46
|
Zhang H, Uselman RR, Yee D. Exogenous near-infrared fluorophores and their applications in cancer diagnosis: biological and clinical perspectives. ACTA ACUST UNITED AC 2013; 5:241-51. [PMID: 21566703 DOI: 10.1517/17530059.2011.566858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Near-infrared fluorescent (NIRF) imaging is a rapidly growing research field which has the potential to be an important imaging modality in cancer diagnosis. Various exogenous NIR fluorophores have been developed for the technique, including small molecule fluorophores and nanoparticles. NIRF imaging has been used in animal models for the detection of cancer overthe last twenty years and has in recent years been used in human clinical trials. AREAS COVERED This article describes the types and characteristics of exogenous fluorophores available for in vivo fluorescent cancer imaging. The article also discusses the progression of NIRF cancer imaging over recent years and its future challenges, from both a biological and clinical perspective. in The review also looks at its application for lymph node mapping, tumor targeting and characterization, and tumor margin definition for surgical guidance. EXPERT OPINION NIRF imaging is not in routine clinical cancer practice; yet, the authors predict that techniques using NIR fluorophores for tumor margin definition and lymph node mapping will enter clinical practice in the near future. The authors also anticipate that NIRF imaging research will lead to the development of flurophores with 'high brightness' that will overcome the limited penetration of this modality and be better suited for non invasive tumor targeting.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medicine, Masonic Cancer Center, MMC 806, 420 Delaware St SE, Minneapolis, MN, 55455, USA,
| | | | | |
Collapse
|
47
|
Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev 2013; 113:2842-62. [PMID: 23509854 PMCID: PMC5519293 DOI: 10.1021/cr300468w] [Citation(s) in RCA: 477] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Michael J. Donovan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
48
|
Kramer-Marek G, Longmire MR, Choyke PL, Kobayashi H. Recent advances in optical cancer imaging of EGF receptors. Curr Med Chem 2013; 19:4759-66. [PMID: 22873662 DOI: 10.2174/092986712803341584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/14/2011] [Accepted: 04/06/2012] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor (EGF) receptors are commonly expressed on the cell membrane of cancer cells and activity of these receptors results in accelerated cell growth and carcinogenesis. A variety of targeted molecules have been developed to block ligand binding and/or inhibit the function of these receptor tyrosine kinases, and several have proven therapeutic benefits. Along with the advent of new therapeutic agents comes a need for non-invasive tools to diagnose, characterize, and monitor tumor responsiveness to therapy. Imaging EGF receptors with radionuclides has been performed for decades. However, recently this area has advanced considerably with the development of EGF receptor-targeted optical imaging probes. Herein, we review recent advances in molecular imaging of the EGF receptor family, focusing specifically on optical imaging. Such agents provide the opportunity for earlier diagnosis, improved tumor characterization, and the ability to measure and monitor tumor responsiveness to anti-EGF receptor treatment strategies.
Collapse
|
49
|
Lee JH, Park G, Hong GH, Choi J, Choi HS. Design considerations for targeted optical contrast agents. Quant Imaging Med Surg 2013; 2:266-73. [PMID: 23289086 DOI: 10.3978/j.issn.2223-4292.2012.12.04] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 12/28/2022]
Abstract
Optical fluorescence imaging with the right combination of imaging modality and targeted contrast agents offers tremendous improvement in intraoperative imaging and clinical output (i.e., image-guided cancer surgery). Therefore, it is of paramount importance to gain an in-depth knowledge in the design of targeted contrast agents to meet clinical requirements. Currently, there are several clinically approved contrast agents available; however, none perform optimally in vivo by providing optimum sensitivity, stability, specificity, and safety for target imaging, diagnosis, and therapy. In this review, we discuss basic design considerations for targeted contrast agents in terms of optical and physicochemical properties, biological and physiological interactions, and biodistribution and targeting.
Collapse
Affiliation(s)
- Jeong Heon Lee
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; ; Center for Molecular Imaging, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
50
|
Vollrath A, Schubert S, Schubert US. Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. J Mater Chem B 2013; 1:1994-2007. [DOI: 10.1039/c3tb20089b] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|