1
|
Steffens RC, Folda P, Fendler NL, Höhn M, Bücher-Schossau K, Kempter S, Snyder NL, Hartmann L, Wagner E, Berger S. GalNAc- or Mannose-PEG-Functionalized Polyplexes Enable Effective Lectin-Mediated DNA Delivery. Bioconjug Chem 2024; 35:351-370. [PMID: 38440876 DOI: 10.1021/acs.bioconjchem.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A cationic, dendrimer-like oligo(aminoamide) carrier with four-arm topology based on succinoyl tetraethylene pentamine and histidines, cysteines, and N-terminal azido-lysines was screened for plasmid DNA delivery on various cell lines. The incorporated azides allow modification with various shielding agents of different polyethylene glycol (PEG) lengths and/or different ligands by copper-free click reaction, either before or after polyplex formation. Prefunctionalization was found to be advantageous over postfunctionalization in terms of nanoparticle formation, stability, and efficacy. A length of 24 ethylene oxide repetition units and prefunctionalization of ≥50% of azides per carrier promoted optimal polyplex shielding. PEG shielding resulted in drastically reduced DNA transfer, which could be successfully restored by active lectin targeting via novel GalNAc or mannose ligands, enabling enhanced receptor-mediated endocytosis of the carrier system. The involvement of the asialoglycoprotein receptor (ASGPR) in the uptake of GalNAc-functionalized polyplexes was confirmed in the ASGPR-positive hepatocarcinoma cell lines HepG2 and Huh7. Mannose-modified polyplexes showed superior cellular uptake and transfection efficacy compared to unmodified and shielded polyplexes in mannose-receptor-expressing dendritic cell-like DC2.4 cells.
Collapse
Affiliation(s)
- Ricarda C Steffens
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Paul Folda
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Nikole L Fendler
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Katharina Bücher-Schossau
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Susanne Kempter
- Faculty of Physics, LMU Munich, 80539 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg im Breisgau, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| |
Collapse
|
2
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
3
|
|
4
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Salameh JW, Zhou L, Ward SM, Santa Chalarca CF, Emrick T, Figueiredo ML. Polymer-mediated gene therapy: Recent advances and merging of delivery techniques. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1598. [PMID: 31793237 PMCID: PMC7676468 DOI: 10.1002/wnan.1598] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
The ability to safely and precisely deliver genetic materials to target sites in complex biological environments is vital to the success of gene therapy. Numerous viral and nonviral vectors have been developed and evaluated for their safety and efficacy. This study will feature progress in synthetic polymers as nonviral vectors, which benefit from their chemical versatility, biocompatibility, and ability to carry both therapeutic cargo and targeting moieties. The combination of synthetic gene carrying constructs with advanced delivery techniques promises new therapeutic options for treating and curing genetic disorders. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Janelle W. Salameh
- The Weldon School of Biomedical Engineering and the
Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette,
Indiana
| | - Le Zhou
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | - Sarah M. Ward
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | | | - Todd Emrick
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences and the
Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette,
Indiana
| |
Collapse
|
6
|
Rojas-Aguirre Y, Torres-Mena MA, López-Méndez LJ, Alcaraz-Estrada SL, Guadarrama P, Urucha-Ortíz JM. PEGylated β-cyclodextrins: Click synthesis and in vitro biological insights. Carbohydr Polym 2019; 223:115113. [PMID: 31427016 DOI: 10.1016/j.carbpol.2019.115113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022]
Abstract
We present three easily rationalized star-shaped PEGylated β-cyclodextrin (βCD) derivatives synthesized via conjugation of different molecular weight PEG chains (5000, 2000, and 550 Da) to the βCD primary face by click chemistry (βCD-PEG5000, βCD-PEG2000, βCD-PEG550 respectively). βCDPEG systems are envisioned to further carry bioactive molecules, therefore, their interactions with biological interfaces must be determined at an early stage of development. Hence, the effect of βCDPEGs chain length on cell viability was investigated. To this aim, three models were selected: Vero cells for their fibroblast-like features; HeLa cells that are commonly used for preliminary viability screening; and human peripheral monocytes which are macrophage precursors. Of the three pegylated derivatives, βCD-PEG550 was the one that significantly affected HeLa cells and human monocytes viability. Despite the popularity of PEGylation approach, our results underscore the importance of careful and systematic PEGylated materials design for their future success in drug delivery systems.
Collapse
Affiliation(s)
- Yareli Rojas-Aguirre
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Manuel Alexis Torres-Mena
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Luis José López-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Sofía L Alcaraz-Estrada
- División de Medicina Genómica, Centro Médico Nacional "20 de Noviembre"-ISSSTE, Mexico City, 03100, Mexico
| | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Juan Manuel Urucha-Ortíz
- División de Medicina Genómica, Centro Médico Nacional "20 de Noviembre"-ISSSTE, Mexico City, 03100, Mexico
| |
Collapse
|
7
|
Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral Gene Delivery with Cationic Glycopolymers. Acc Chem Res 2019; 52:1347-1358. [PMID: 30993967 DOI: 10.1021/acs.accounts.8b00665] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of gene therapy, which aims to treat patients by modulating gene expression, has come to fruition and has landed several landmark FDA approvals. Most gene therapies currently rely on viral vectors to deliver nucleic acid cargo into cells, but there is significant interest in moving toward chemical-based methods, such as polymer-based vectors, due to their low cost, immunocompatibility, and tunability. The full potential of polymer-based delivery systems has yet to be realized, however, because most polymeric transfection reagents are either too inefficient or too toxic for use in the clinic. In this Account, we describe developments in carbohydrate-based cationic polymers, termed glycopolymers, for enhanced nonviral gene delivery. As ubiquitous components of biological systems, carbohydrates are a rich class of compounds that can be harnessed to improve the biocompatibility of non-native polymers, such as linear polyamines used for promoting transfection. Reineke et al. developed a new class of carbohydrate-based polymers called poly(glycoamidoamine)s (PGAAs) by step-growth polymerization of linear monosaccharides with linear ethyleneamines. These glycopolymers were shown to be both efficient and biocompatible transfection reagents. Systematic modifications of the structural components of the PGAA system revealed structure-activity relationships important to its function, including its ability to degrade in situ. Expanding upon the development of step-growth glycopolymers, monosaccharides, such as glucose, were functionalized as vinyl-based monomers for the formation of diblock copolymers via radical addition-fragmentation chain-transfer (RAFT) polymerization. Upon complexation with plasmid DNA, the glucose-containing block creates a hydrophilic shell that promotes colloidal stability as effectively as PEG functionalization. An N-acetyl-d-galactosamine variant of this diblock polymer yields colloidally stable particles that show increased receptor-mediated uptake by liver hepatocytes in vitro and promotes liver targeting in mice. Finally, the disaccharide trehalose was incorporated into polycationic structures using both step-growth and RAFT techniques. It was shown that these trehalose-based copolymers imparted increased colloidal stability and yielded plasmid and siRNA polyplexes that resist aggregation upon lyophilization and reconstitution in water. The aforementioned series of glycopolymers use carbohydrates to promote effective and safe delivery of nucleic acid cargo into a variety of human cells types by promoting vehicle degradation, tissue-targeting, colloidal stabilization, and stability toward lyophilization to extend shelf life. Work is currently underway to translate the use of glycopolymers for safe and efficient delivery of nucleic acid cargo for gene therapy and gene editing applications.
Collapse
Affiliation(s)
- Craig Van Bruggen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joseph K. Hexum
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Zhe Tan
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Rishad J. Dalal
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Cao Y, Zu G, Kuang Y, He Y, Mao Z, Liu M, Xiong D, Pei R. Biodegradable Nanoglobular Magnetic Resonance Imaging Contrast Agent Constructed with Host-Guest Self-Assembly for Tumor-Targeted Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26906-26916. [PMID: 30028584 DOI: 10.1021/acsami.8b08021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gadolinium-based macromolecular magnetic resonance imaging (MRI) contrast agents (CAs) have attracted increasing interest in tumor diagnosis. However, their practical application is potentially limited because the long-term retention of gadolinium ion in vivo will induce toxicity. Here, a nanoglobular MRI contrast agent (CA) PAMAM-PG- g-s-s-DOTA(Gd) + FA was designed and synthesized on the basis of the facile host-guest interaction between β-cyclodextrin and adamantane, which initiated the self-assembly of poly(glycerol) (PG) separately conjugated with gadolinium chelates by disulfide bonds and folic acid (FA) molecule onto the surface of poly(amidoamine) (PAMAM) dendrimer, finally realizing the biodegradability and targeting specificity. The nanoglobular CA has a higher longitudinal relaxivity ( r1) than commercial gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), showing a value of 8.39 mM-1 s-1 at 0.5 T, and presents favorable biocompatibility on the observations of cytotoxicity and tissue toxicity. Furthermore, MRI on cells and tumor-bearing mice both demonstrate the obvious targeting specificity, on the basis of which the effective contrast enhancement at tumor location was obtained. In addition, this CA exhibits the ability of cleavage to form free small-molecule gadolinium chelates and can realize minimal gadolinium retention in main organs and tissues after tumor detection. These results suggest that the biodegradable nanoglobular PAMAM-PG- g-s-s-DOTA(Gd) + FA can be a safe and efficient MRI CA for tumor diagnosis.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Ye Kuang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Yilin He
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Zheng Mao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Dangsheng Xiong
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| |
Collapse
|
9
|
Macroporous monolithic columns modified with cholesterol-containing glycopolymer for cholesterol solid-phase extraction. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Dhande YK, Wagh BS, Hall BC, Sprouse D, Hackett PB, Reineke TM. N-Acetylgalactosamine Block-co-Polycations Form Stable Polyplexes with Plasmids and Promote Liver-Targeted Delivery. Biomacromolecules 2016; 17:830-40. [DOI: 10.1021/acs.biomac.5b01555] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yogesh K. Dhande
- Department of Chemical Engineering and Materials Science, and Center
for Genome Engineering, ‡Department of Chemistry and Center for Genome Engineering, and §Department of Genetics,
Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bharat S. Wagh
- Department of Chemical Engineering and Materials Science, and Center
for Genome Engineering, ‡Department of Chemistry and Center for Genome Engineering, and §Department of Genetics,
Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryan C. Hall
- Department of Chemical Engineering and Materials Science, and Center
for Genome Engineering, ‡Department of Chemistry and Center for Genome Engineering, and §Department of Genetics,
Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dustin Sprouse
- Department of Chemical Engineering and Materials Science, and Center
for Genome Engineering, ‡Department of Chemistry and Center for Genome Engineering, and §Department of Genetics,
Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Perry B. Hackett
- Department of Chemical Engineering and Materials Science, and Center
for Genome Engineering, ‡Department of Chemistry and Center for Genome Engineering, and §Department of Genetics,
Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemical Engineering and Materials Science, and Center
for Genome Engineering, ‡Department of Chemistry and Center for Genome Engineering, and §Department of Genetics,
Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Tolstyka Z, Phillips H, Cortez M, Wu Y, Ingle N, Bell JB, Hackett PB, Reineke TM. Trehalose-Based Block Copolycations Promote Polyplex Stabilization for Lyophilization and in Vivo pDNA Delivery. ACS Biomater Sci Eng 2016; 2:43-55. [PMID: 26807438 PMCID: PMC4710891 DOI: 10.1021/acsbiomaterials.5b00312] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
Abstract
The development and thorough characterization of nonviral delivery agents for nucleic acid and genome editing therapies are of high interest to the field of nanomedicine. Indeed, this vehicle class offers the ability to tune chemical architecture/biological activity and readily package nucleic acids of various sizes and morphologies for a variety of applications. Herein, we present the synthesis and characterization of a class of trehalose-based block copolycations designed to stabilize polyplex formulations for lyophilization and in vivo administration. A 6-methacrylamido-6-deoxy trehalose (MAT) monomer was synthesized from trehalose and polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization to yield pMAT43. The pMAT43 macro-chain transfer agent was then chain-extended with aminoethylmethacrylamide (AEMA) to yield three different pMAT-b-AEMA cationic-block copolymers, pMAT-b-AEMA-1 (21 AEMA repeats), -2 (44 AEMA repeats), and -3 (57 AEMA repeats). These polymers along with a series of controls were used to form polyplexes with plasmids encoding firefly luciferase behind a strong ubiquitous promoter. The trehalose-coated polyplexes were characterized in detail and found to be resistant to colloidal aggregation in culture media containing salt and serum. The trehalose-polyplexes also retained colloidal stability and promoted high gene expression following lyophilization and reconstitution. Cytotoxicity, cellular uptake, and transfection ability were assessed in vitro using both human glioblastoma (U87) and human liver carcinoma (HepG2) cell lines wherein pMAT-b-AEMA-2 was found to have the optimal combination of high gene expression and low toxicity. pMAT-b-AEMA-2 polyplexes were evaluated in mice via slow tail vein infusion. The vehicle displayed minimal toxicity and discouraged nonspecific internalization in the liver, kidney, spleen, and lungs as determined by quantitative polymerase chain reaction (qPCR) and fluorescence imaging experiments. Hydrodynamic infusion of the polyplexes, however, led to very specific localization of the polyplexes to the mouse liver and promoted excellent gene expression in vivo.
Collapse
Affiliation(s)
- Zachary
P. Tolstyka
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Haley Phillips
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Mallory Cortez
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yaoying Wu
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nilesh Ingle
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jason B. Bell
- Department
of Genetics, Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Perry B. Hackett
- Department
of Genetics, Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Hu P, Chen Y, Li JJ, Liu Y. Construction, Enzyme Response, and Substrate Capacity of a Hyaluronan-Cyclodextrin Supramolecular Assembly. Chem Asian J 2015; 11:505-11. [PMID: 26556213 DOI: 10.1002/asia.201501029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 01/08/2023]
Abstract
A supramolecular assembly was constructed with a cationic cyclodextrin (EICD) and native hyaluronan (HA). The cationic carboxylic ester pendants on HA support hyaluronidase (HAase)-responsive sites and the EICD supports artificial carboxylic esterase responsive sites. Substrate-binding models were investigated by using environment-sensitive fluorescence probes 2-p-toluidino-6-naphthalenesulfoniate sodium (2,6-TNS) and thioflavin T (ThT). On a HA/EICD assembly, EICD was able to bind an anionic substrate and HA and EICD constructed the cationic substrate binding site together. This assembly could be used as a sequential dual-substrate carrier.
Collapse
Affiliation(s)
- Ping Hu
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yong Chen
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China
| | - Jing-Jing Li
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu Liu
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China.
| |
Collapse
|
13
|
Hu P, Chen Y, Liu Y. Hyaluronan/Ru( ii)-cyclodextrin supramolecular assemblies for colorimetric sensor of hyaluronidase activity. RSC Adv 2015. [DOI: 10.1039/c5ra19122j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hyaluronidase-induced colorimetric change was found in a hyaluronan/Ru(ii)-cyclodextrin supramolecular assembly under a laser (532 nm) irradiation.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
14
|
Abstract
Switchable DNA condensers based on β-CD bearing imidazolium and hydrolysable linkages were synthesized, showing base or enzyme-responsive switchable condensation ability.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
15
|
Obata M, Kobori T, Hirohara S, Tanihara M. Aqueous RAFT synthesis of block and statistical copolymers of 2-(α-d-mannopyranosyloxy)ethyl methacrylate with 2-(N,N-dimethylamino)ethyl methacrylate and their application for nonviral gene delivery. Polym Chem 2015. [DOI: 10.1039/c4py01652a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Statistical and block glycopolymers presenting d-mannose were prepared by aqueous RAFT polymerization, and the effect of the microstructure on gene delivery was examined.
Collapse
Affiliation(s)
- Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu 400-8510
- Japan
| | - Tomoya Kobori
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu 400-8510
- Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering
- Ube National College of Technology
- Ube 755-8555
- Japan
| | - Masao Tanihara
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| |
Collapse
|
16
|
Xue L, Lyu Z, Shi X, Tang Z, Chen G, Chen H. Fast and Green Synthesis of a Smart Glyco-surface via Aqueous Single Electron Transfer-Living Radical Polymerization. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lulu Xue
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou 215123 P. R. China
| | - Zhonglin Lyu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou 215123 P. R. China
| | - Xiujuan Shi
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou 215123 P. R. China
| | - Zengchao Tang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou 215123 P. R. China
| | - Gaojian Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou 215123 P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Hong Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou 215123 P. R. China
| |
Collapse
|
17
|
Wu Y, Wang M, Sprouse D, Smith AE, Reineke TM. Glucose-containing diblock polycations exhibit molecular weight, charge, and cell-type dependence for pDNA delivery. Biomacromolecules 2014; 15:1716-26. [PMID: 24620753 PMCID: PMC4025584 DOI: 10.1021/bm5001229] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/11/2014] [Indexed: 12/21/2022]
Abstract
A series of diblock glycopolycations were created by polymerizing 2-deoxy-2-methacrylamido glucopyranose (MAG) with either a tertiary amine-containing monomer, N-[3-(N,N-dimethylamino) propyl] methacrylamide (DMAPMA), or a primary amine-containing unit, N-(2-aminoethyl) methacrylamide (AEMA). Seven structures were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization that varied in the block lengths of MAG, DMAPMA, and AEMA along with two homopolymer controls of DMAPMA and AEMA that lacked a MAG block. The polymers were all able to complex plasmid DNA into polyplex structures and to prevent colloidal aggregation of polyplexes in physiological salt conditions. In vitro transfection experiments were performed in both HeLa (human cervix adenocarcinoma) cells and HepG2 (human liver hepatocellular carcinoma) cells to examine the role of charge type, block length, and cell type on transfection efficiency and toxicity. The glycopolycation vehicles with primary amine blocks and PAEMA homopolymers revealed much higher transfection efficiency and lower toxicity when compared to analogs created with DMAPMA. Block length was also shown to influence cellular delivery and toxicity; as the block length of DMAPMA increased in the glycopolycation-based polyplexes, toxicity increased while transfection decreased. While the charge block played a major role in delivery, the MAG block length did not affect these cellular parameters. Lastly, cell type played a major role in efficiency. These glycopolymers revealed higher cellular uptake and transfection efficiency in HepG2 cells than in HeLa cells, while homopolycations (PAEMA and PDMAPMA) lacking the MAG blocks exhibited the opposite trend, signifying that the MAG block could aid in hepatocyte transfection.
Collapse
Affiliation(s)
- Yaoying Wu
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Miao Wang
- Department
of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Dustin Sprouse
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Adam E. Smith
- Department
of Chemical Engineering, University of Mississippi, 134 Anderson, University, Mississippi 38677, United States
| | - Theresa M. Reineke
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Lu W, Ma W, Lu J, Li X, Zhao Y, Chen G. Microwave-assisted synthesis of glycopolymer-functionalized silver nanoclusters: combining the bioactivity of sugar with the fluorescence and cytotoxicity of silver. Macromol Rapid Commun 2014; 35:827-33. [PMID: 24519919 DOI: 10.1002/marc.201300905] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/15/2014] [Indexed: 11/08/2022]
Abstract
Copolymers of 2-(methacrylamido)glucopyranose (MAG) and methacrylic acid (MAA) are synthesized by RAFT polymerization and then used as templates to prepare glycopolymer-functionalized Ag nanoclusters (Gly-Ag NCs) through microwave irradiation. Polymers and the resulting nanoclusters are characterized by NMR, GPC, UV-Vis, SEM, TEM, AAS and fluorescence spectroscopy. The bio-activity of the fluorescent Gly-Ag NCs are further examined using GLUT-1 over-expressing cancer cells K562. Gly-Ag NCs show efficient binding ability toward K562 cells and inhibit the cell viability in a dose dependent manner (IC50 = 0.65 μg mL(-1)), indicating their potential biological applications for both cancer imaging and targeted cancer therapy.
Collapse
Affiliation(s)
- Wei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Lu J, Zhang W, Yuan L, Ma W, Li X, Lu W, Zhao Y, Chen G. One-Pot Synthesis of Glycopolymer-Porphyrin Conjugate as Photosensitizer for Targeted Cancer Imaging and Photodynamic Therapy. Macromol Biosci 2013; 14:340-6. [DOI: 10.1002/mabi.201300451] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/25/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Jiawei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- Department of Polymer Science and Engineering, College of Chemistry; Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Lin Yuan
- Department of Polymer Science and Engineering, College of Chemistry; Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 P. R. China
| | - Wenjuan Ma
- Cyrus Tang Hematology Center; Soochow University; Suzhou 215123 P. R. China
| | - Xiao Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- Department of Polymer Science and Engineering, College of Chemistry; Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 P. R. China
| | - Wei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- Department of Polymer Science and Engineering, College of Chemistry; Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 P. R. China
| | - Yun Zhao
- Cyrus Tang Hematology Center; Soochow University; Suzhou 215123 P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| |
Collapse
|
20
|
Sizovs A, Xue L, Tolstyka ZP, Ingle NP, Wu Y, Cortez M, Reineke TM. Poly(trehalose): sugar-coated nanocomplexes promote stabilization and effective polyplex-mediated siRNA delivery. J Am Chem Soc 2013; 135:15417-24. [PMID: 24083547 PMCID: PMC4027957 DOI: 10.1021/ja404941p] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
When nanoparticles interact with their environment, the nature of that interaction is governed largely by the properties of its outermost surface layer. Here, we exploit the exceptional properties of a common disaccharide, trehalose, which is well-known for its unique biological stabilization effects. To this end, we have developed a synthetic procedure that readily affords a polymer of this disaccharide, poly(methacrylamidotrehalose) or "poly(trehalose)" and diblock copolycations containing this polymer with 51 repeat units chain extended with aminoethylmethacrylamide (AEMA) at three degrees of polymerization (n = 34, 65, and 84). Two series of experiments were conducted to study these diblock copolymers in detail and to compare their properties to two control polymers [PEG-P(AEMA) and P(AEMA)]. First, we demonstrate that the poly(trehalose) coating ensures colloidal stability of polyplexes containing siRNA in the presence of high salt concentrations and serum proteins. Poly(trehalose) retains the ability of trehalose to lower the phase transition energy associated with water freezing and can protect siRNA polyplexes during freeze-drying, allowing complete nanoparticle resuspension without loss of biological function. Second, we show that siRNA polyplexes coated with poly(trehalose) have exceptional cellular internalization into glioblastoma cells that proceeds with zero-order kinetics. Moreover, the amount of siRNA delivered by poly(trehalose) block copolycations can be controlled by the siRNA concentration in cell culture media. Using confocal microscopy we show that trehalose-coated polyplexes undergo active trafficking in cytoplasm upon internalization and significant siRNA-induced target gene down-regulation was achieved with an IC50 of 19 nM. These findings coupled with a negligible cytotoxicity suggests that poly(trehalose) has the potential to serve as an important component of therapeutic nanoparticle formulations of nucleic acids and has great promise to be extended as a new coating for other nanobased technologies and macromolecules, in particular, those related to nanomedicine applications.
Collapse
Affiliation(s)
- Antons Sizovs
- Virginia Tech, Department of Chemistry and Macromolecules and Interfaces Institute, Blacksburg, VA 24060
| | - Lian Xue
- University of Minnesota Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Zachary P. Tolstyka
- University of Minnesota Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Nilesh P. Ingle
- University of Minnesota Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Yaoying Wu
- University of Minnesota Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Mallory Cortez
- University of Minnesota Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Theresa M. Reineke
- University of Minnesota Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455
| |
Collapse
|
21
|
Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5215-5256. [PMID: 24022921 DOI: 10.1002/adma.201302215] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Synthesis of Glycopolymer Architectures by Reversible-Deactivation Radical Polymerization. Polymers (Basel) 2013. [DOI: 10.3390/polym5020431] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Li H, Cortez MA, Phillips HR, Wu Y, Reineke TM. Poly(2 deoxy 2 methacrylamido glucopyranose) b Poly(methacrylate amine)s: Optimization of Diblock Glycopol ycations for Nucleic Acid Delivery. ACS Macro Lett 2013; 2:10.1021/mz300660t. [PMID: 24179703 PMCID: PMC3810285 DOI: 10.1021/mz300660t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of nine poly(2-deoxy-2-methacrylamido glucopyranose)-b-poly(methacrylate amine) diblock copolycations The cationic block was varied in length and in the degree of methyl group substitution (secondary, tertiary, quaternary) on the pendant amine in an effort to optimize the structure and activity for plasmid DNA delivery. Upon a thorough kinetic study of polymerization for each polymer, the glycopolymers were prepared with well-controlled Mn and Ð. The binding and colloidal stability of the polymer-pDNA nanocomplexes at different N/P ratios and in biological media has been investigated using gel electrophoresis and light scattering techniques. The toxicity and transfection efficiency of the polyplexes has been evaluated with Hep G2 (human liver hepatocellular carcinoma) cells; several polymers displayed excellent delivery and toxicity profiles justifying their further development for in vivo gene therapy.
Collapse
Affiliation(s)
- Haibo Li
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Mallory A. Cortez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Haley R. Phillips
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Yaoying Wu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| |
Collapse
|
24
|
Synthetic Glycopolymers: Some Recent Developments. HIERARCHICAL MACROMOLECULAR STRUCTURES: 60 YEARS AFTER THE STAUDINGER NOBEL PRIZE II 2013. [DOI: 10.1007/12_2013_254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Zhang Q, Li GZ, Becer CR, Haddleton DM. Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization. Chem Commun (Camb) 2012; 48:8063-5. [DOI: 10.1039/c2cc33742h] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|