1
|
Jin H, Wu Z, Lin W, Chen Y, Zhang J, Zheng R, Wei H, Chen Q, Qian Q, Huang J, Zhang J, Yan Y. Formation of Size-Controllable Tetragonal Nanoprisms by Crystallization-Directed Ionic Self-Assembly of Anionic Porphyrin and PEO-Containing Triblock Cationic Copolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300688. [PMID: 37029578 DOI: 10.1002/smll.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
The creation of anisotropic nanostructures with precise size control is desirable for new properties and functions, but it is challenging for ionic self-assembly (ISA) because of the non-directional electrostatic interactions. Herein, the formation of size-controllable tetragonal nanoprisms is reported via crystallization-directed ionic self-assembly (CDISA) through evaporating a micellar solution on solid substrates. First, ISA is designed with a crystalline polyethylene oxide (PEO) containing cationic polymer poly(2-(2-guanidinoethoxy)ethyl methacrylate)-b-poly(ethyleneoxide)-b-poly(2-(2-guanidinoethoxy)-ethylmethacrylate) (PGn -PEO230 -PGn ) and an anionic 5,10,15,20-Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) to form micelles in aqueous solution. The PG segments binds excessive TPPS with amplenet chargeto form hydrophilic corona, while the PEO segments are unprecedentedly dehydrated and tightly packed into cores. Upon naturally drying the micellar solution on a silicon wafer, PEO crystallizationdirects the micelles to aggregate into square nanoplates, which are further connected to nanoprisms. Length and width of the nanoprisms can be facilely tuned by varying the initial concentration. In this hierarchical process, the aqueous self-assembly is prerequisite and the water evaporation rate is crucial for the formation of nanostructures, which provides multiple factors for morphology regulating. Such precise size-control strategy is highly expected to provide a new vision for the design of advanced materials with size controllable anisotropic nanostructures.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yinye Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jingran Zhang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Ruyi Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haibing Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Joshy KS, Augustine R, Hasan A, Ali Zahid A, Alex SM, Dalvi YB, Mraiche F, Thomas S, Kalarikkal N, Chi H. Cisplatin encapsulated nanoparticles from polymer blends for anti-cancer drug delivery. NEW J CHEM 2022. [DOI: 10.1039/d1nj04311k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Synthesis of cubic nanostructure for cisplatin encapsulation.
Collapse
Affiliation(s)
- K. S. Joshy
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | | | - Yogesh B. Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala 689 101, India
| | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam – 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam – 686 560, Kerala, India
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Quartz Enhanced Conductance Spectroscopy for Polymer Nano-Mechanical Thermal Analysis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A fast and highly sensitive polymer nano-mechanical thermal analysis method for determining the melting temperature (Tm) of polymer microwires was proposed. In this method, a small-size, low-cost quartz tuning fork was used as a piezoelectric transducer to analyze the thermodynamics of polymer microwires at the nanogram level without changing its own properties. Due to the thin wire sample, which has a length of 1.2 mm and a diameter of ~5 µm, which is bridged across the prongs of the tuning fork, the nanogram-level sample greatly reduces the thermal equilibrium time for the measurement, resulting in a fast analysis for the melting temperature of the polymer sample. Compared with the traditional method, the analysis method based on the quartz enhanced conductivity spectrum (QECS) does not require annealing before measurement, which is an essential process for conventional thermal analysis to reduce the hardness, refine the grain, and eliminate the residual stress. In this work, the melting temperatures of three of the most commonly used polymers, namely polymers polymethyl methacrylate, high-density polyethylene, and disproportionated rosin, were obtained under the temperature from room temperature to >180 °C, proving the QECS method to be a useful tool for nano-mechanical thermal analysis.
Collapse
|
4
|
Grandes Reyes CF, Chen SPR, Bobrin VA, Jia Z, Monteiro MJ. Temperature-Induced Formation of Uniform Polymer Nanocubes Directly in Water. Biomacromolecules 2020; 21:1700-1708. [PMID: 31914312 DOI: 10.1021/acs.biomac.9b01637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional self-assembly methods of block copolymers in cosolvents (i.e., usually water and organic solvents) has yet to produce a pure and monodisperse population of nanocubes. The requirement to assemble a nanocube is for the second block to have a high molecular weight. However, such high molecular weight block copolymers usually result in the formation of kinetically trapped nanostructures even with the addition of organic cosolvents. Here, we demonstrate the rapid production of well-defined polymer nanocubes directly in water by utilizing the thermoresponsive nature of the second block (with 263 monomer units), in which the block copolymer was fully water-soluble below its lower critical solution temperature (LCST) and would produce a pure population of nanocubes when heated above this temperature. Incorporating a pH-responsive monomer in the second block allowed us to control the size of the nanocubes in water with pH and the LCST of the block copolymer. We then used the temperature and pH responsiveness to create an adaptive system that changes morphology when using a unique fuel. This fuel (H2O2 + MnO2) is highly exothermic, and the solution pH increases with the consumption of H2O2. Initially, a nonequilibrium spherical nanostructure formed, which transformed over time into nanocubes, and by controlling the exotherm of the reaction, we controlled the time for this transformation. This block copolymer and the water-only method of self-assembly have provided some insights into designing biomimetic systems that can readily adapt to the environmental conditions.
Collapse
Affiliation(s)
| | - Sung-Po R Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Margulis K, Zhang X, Joubert L, Bruening K, Tassone CJ, Zare RN, Waymouth RM. Formation of Polymeric Nanocubes by Self‐Assembly and Crystallization of Dithiolane‐Containing Triblock Copolymers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Xiangyi Zhang
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Karsten Bruening
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Christopher J. Tassone
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | |
Collapse
|
6
|
Margulis K, Zhang X, Joubert L, Bruening K, Tassone CJ, Zare RN, Waymouth RM. Formation of Polymeric Nanocubes by Self‐Assembly and Crystallization of Dithiolane‐Containing Triblock Copolymers. Angew Chem Int Ed Engl 2017; 56:16357-16362. [DOI: 10.1002/anie.201709564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xiangyi Zhang
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Karsten Bruening
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Christopher J. Tassone
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | |
Collapse
|
7
|
Molla MR, Ghosh S. Exploring Versatile Sulfhydryl Chemistry in the Chain End of a Synthetic Polylactide. Macromolecules 2012. [DOI: 10.1021/ma302130f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mijanur Rahaman Molla
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Suhrit Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|