1
|
Li S, Zhang J, Chen S, Ma X. Semi-heterogeneous asymmetric organocatalysis: covalent immobilization of BINOL-derived chiral phosphoric acid (TRIP) to polystyrene brush grafted on SiO2 nanoparticles. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Wang C, Zhao H. Polymer brush-based nanostructures: from surface self-assembly to surface co-assembly. SOFT MATTER 2022; 18:5138-5152. [PMID: 35781482 DOI: 10.1039/d2sm00458e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface structures play an important role in the practical applications of materials. The synthesis of polymer brushes on a solid surface has emerged as an effective tool for tuning surface properties. The fabrication of polymer brush-based surface nanostructures has greatly facilitated the development of materials with unique surface properties. In this review article, synthetic methods used in the synthesis of polymer brushes, and self-assembly approaches applied in the fabrication of surface nanostructures including self-assembly of polymer brushes, co-assembly of polymer brushes and "free" block copolymer chains, and polymerization induced surface self-assembly, are reviewed. It is demonstrated that polymer brush-based surface nanostructures, including spherical surface micelles, wormlike surface structures, layered structures and surface vesicles, can be fabricated. Meanwhile, the challenges in the synthesis and applications of the surface nanostructures are discussed. This review is expected to be helpful for understanding the principles, methods and applications of polymer brush-based surface nanostructures.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| |
Collapse
|
3
|
Sun W, Liu J, Hao Q, Lu K, Wu Z, Chen H. A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties. J Mater Chem B 2021; 10:262-270. [PMID: 34889346 DOI: 10.1039/d1tb01968f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The simultaneous introduction of two new functionalities into the same polymeric substrate under mild reaction conditions is an interesting and important topic. Herein, dual-functional polydimethylsiloxane (PDMS) surfaces with antibacterial and antifouling properties were conveniently developed via a novel Y-shaped asymmetric dual-functional photoiniferter (Y-iniferter). The Y-iniferter was initially immobilized onto the PDMS surface by radical coupling under visible light irradiation. Afterwards, poly(2-hydroxyethyl methacrylate) (PHEMA) brushes and antibacterial ionic liquid (IL) fragments were simultaneously immobilized on the Y-iniferter-modified PDMS surfaces by combining the sulfur(VI)-fluoride exchange (SuFEx) click reaction and UV-photoinitiated polymerization. Experiments using E. coli as a model bacterium demonstrated that the modified PDMS surfaces had both the expected antibacterial properties of the IL fragments and the excellent antifouling properties of PHEMA brushes. Furthermore, the cytotoxicity of the modified PDMS surfaces to L929 cells was examined in vitro with a CCK-8 assay, which showed that the modified surfaces maintained excellent cytocompatibility. Briefly, this strategy of constructing an antibacterial and antifouling PDMS surface has the advantages of simplicity and convenience and might inspire the construction of diverse dual-functional surfaces by utilizing PDMS more effectively.
Collapse
Affiliation(s)
- Wei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingrui Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qing Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kunyan Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
4
|
Bohannon CA, Chancellor AJ, Kelly MT, Le TT, Zhu L, Li CY, Zhao B. Adaptable Multivalent Hairy Inorganic Nanoparticles. J Am Chem Soc 2021; 143:16919-16924. [PMID: 34623815 DOI: 10.1021/jacs.1c08261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report a polymer brush-based approach for fabricating multivalent patchy nanoparticles (NPs) with the number of nanodomains (valency) from 6 to 10, potentially from 1 to 10, by exploiting the lateral microphase separation of binary mixed homopolymer brushes grafted on NPs with a radius comparable to the polymer sizes. Well-defined mixed brushes were grown on 20.4 nm silica NPs by two-step surface-initiated reversible deactivation radical polymerizations and microphase separated laterally upon casting from a good solvent, producing multivalent NPs on 2D surfaces. A linear relationship between valency and average core size for the corresponding valency was observed. The mixed brush NPs exhibited abilities to form "bonds" through the overlap of nanodomains and to change the valency when interacting with adjacent NPs. This method could open up a new avenue for studying patchy NPs.
Collapse
Affiliation(s)
- Caleb A Bohannon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew J Chancellor
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tram T Le
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lei Zhu
- Department of Macromolecular Science and Engineering and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Beyou E, Bourgeat-Lami E. Organic–inorganic hybrid functional materials by nitroxide-mediated polymerization. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Arraez FJ, Van Steenberge PHM, Sobieski J, Matyjaszewski K, D’hooge DR. Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | | | - Julian Sobieski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
7
|
Brito D, Quirarte G, Morgan J, Rackoff E, Fernandez M, Ganjam D, Dato A, Monson TC. Determining the dielectric constant of injection-molded polymer-matrix nanocomposites filled with barium titanate. MRS COMMUNICATIONS 2020; 10:587-593. [PMID: 33398238 PMCID: PMC7773014 DOI: 10.1557/mrc.2020.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Barium titanate (BTO) is a ferroelectric perovskite with potential in energy storage applications. Previous research suggests that BTO dielectric constant increases as nanoparticle diameter decreases. This report recounts an investigation of this relationship. Injection-molded nanocomposites of 5 vol% BTO nanoparticles incorporated in a low-density polyethylene matrix were fabricated and measured. Finite-element analysis was used to model nanocomposites of all BTO sizes and the results were compared with experimental data. Both indicated a negligible relationship between BTO diameter and dielectric constant at 5 vol%. However, a path for fabricating and testing composites of 30 vol% and higher is presented here. SUPPLEMENTARY MATERIAL The supplementary material for this article can be found at 10.1557/mrc.2020.69.
Collapse
Affiliation(s)
- Daniel Brito
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711 USA
| | - Guadalupe Quirarte
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711 USA
| | - Joshua Morgan
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711 USA
| | - Eleanor Rackoff
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711 USA
| | - Michael Fernandez
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711 USA
| | - Dithi Ganjam
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711 USA
| | - Albert Dato
- Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711 USA
| | - Todd C. Monson
- Nanoscale Sciences Department, Sandia National Laboratories, 1515 Eubank Blvd., Albuquerque, NM 87123 USA
| |
Collapse
|
8
|
Li M, Pester CW. Mixed Polymer Brushes for "Smart" Surfaces. Polymers (Basel) 2020; 12:E1553. [PMID: 32668820 PMCID: PMC7408536 DOI: 10.3390/polym12071553] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
Mixed polymer brushes (MPBs) are composed of two or more disparate polymers covalently tethered to a substrate. The resulting phase segregated morphologies have been extensively studied as responsive "smart" materials, as they can be reversible tuned and switched by external stimuli. Both computational and experimental work has attempted to establish an understanding of the resulting nanostructures that vary as a function of many factors. This contribution highlights state-of-the-art MPBs studies, covering synthetic approaches, phase behavior, responsiveness to external stimuli as well as novel applications of MPBs. Current limitations are recognized and possible directions for future studies are identified.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Hou W, Liu Y, Zhao H. Surface Nanostructures Based on Assemblies of Polymer Brushes. Chempluschem 2020; 85:998-1007. [DOI: 10.1002/cplu.202000112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Wangmeng Hou
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
| | - Yingze Liu
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 P. R. China
| |
Collapse
|
10
|
|
11
|
Rossner C, Zhulina EB, Kumacheva E. Staged Surface Patterning and Self‐Assembly of Nanoparticles Functionalized with End‐Grafted Block Copolymer Ligands. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christian Rossner
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg 199004 Russia
| | - Eugenia Kumacheva
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
12
|
Rossner C, Zhulina EB, Kumacheva E. Staged Surface Patterning and Self‐Assembly of Nanoparticles Functionalized with End‐Grafted Block Copolymer Ligands. Angew Chem Int Ed Engl 2019; 58:9269-9274. [DOI: 10.1002/anie.201904430] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Christian Rossner
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg 199004 Russia
| | - Eugenia Kumacheva
- Department of ChemistryUniversity of Toronto Toronto ON M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
13
|
Chancellor AJ, Seymour BT, Zhao B. Characterizing Polymer-Grafted Nanoparticles: From Basic Defining Parameters to Behavior in Solvents and Self-Assembled Structures. Anal Chem 2019; 91:6391-6402. [PMID: 31013073 DOI: 10.1021/acs.analchem.9b00707] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymer-grafted nanoparticles, often called hairy nanoparticles (HNPs), are an intriguing class of nanostructured hybrid materials with great potential in a variety of applications, including advanced polymer nanocomposite fabrication, drug delivery, imaging, and lubrication. This Feature provides an introduction to characterization of various aspects of HNPs, from basic defining parameters to behavior of HNPs in solvents and self-assembled structures of multicomponent brush nanoparticles, by using a broad range of analytical tools.
Collapse
Affiliation(s)
- Andrew J Chancellor
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Bryan T Seymour
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Bin Zhao
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
14
|
Zhang S, Liu W, Dong Y, Wei T, Wu Z, Chen H. Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3470-3478. [PMID: 30727730 DOI: 10.1021/acs.langmuir.8b04323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed homopolymer brushes have unique interfacial properties that can be exploited for both fundamental studies and applications in technology. Herein, the synthesis of a new catechol-based biomimetic Y-shaped binary photoinitiator (Y-photoinitiator) and its applications for surface modification with polymer brushes through both "grafting to" and "grafting from" strategies are reported. The "leg" of the Y consists of a catechol group as surface anchoring moiety. The arms are photoinitiator moieties that can be "addressed" independent of each other by radiation of different wavelengths. Using ultraviolet and visible light successively, each arm of the Y-photoinitiator was activated, thereby allowing the synthesis of Y-shaped block copolymer brushes with dissimilar polymer chains. The suitability of the Y-photoinitiator for surface modification was first investigated using N-vinylpyrrolidone and styrene as the model monomers for successive UV-photoiniferter-mediated polymerization and visible-light-induced polymerization, respectively. Switching of the wetting properties of the Y-shaped block copolymer brush poly( N-vinylpyrrolidone)- block-poly(styrene) (PVP- b-PS)-grafted surfaces by contact with different solvents was also investigated. To further exploit this novel Y-photoinitiator for the preparation of functional interfaces, Y-shaped block copolymer brushes poly(1-(2-methacryloyloxyhexyl)-3-methylimidazolium bromide)- block-poly( N-vinylpyrrolidone- co-glycidyl methacrylate) (PIL(Br)- b-P(NVP- co-GMA)) were also prepared and subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups (PILPNG-RGD). The PILPNG-RGD grafted surfaces showed excellent cell-adhesive, bacteriostatic, and bactericidal properties. Thus, it can be concluded that further exploitation of this novel Y-photoinitiator for graft polymerization should allow the preparation of a wide range of functional interfaces with tailored properties.
Collapse
Affiliation(s)
- Shuxiang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Wenying Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
15
|
Guo X, Choi B, Feng A, Thang SH. Polymer Synthesis with More Than One Form of Living Polymerization Method. Macromol Rapid Commun 2018; 39:e1800479. [DOI: 10.1002/marc.201800479] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaofeng Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Material Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Material Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Material Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - San H. Thang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Material Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- School of Chemistry; Monash University; Clayton Campus VIC 3800 Australia
| |
Collapse
|
16
|
Rossner C, Tang Q, Müller M, Kothleitner G. Phase separation in mixed polymer brushes on nanoparticle surfaces enables the generation of anisotropic nanoarchitectures. SOFT MATTER 2018; 14:4551-4557. [PMID: 29767175 DOI: 10.1039/c8sm00545a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The preparation of nanoparticles and their targeted connection with other functional units is one key challenge in developing nanoscale devices. Herein, we report an experimental strategy toward the development of anisotropic nanoparticle architectures. Our approach is based on phase separation of binary mixed polymer brushes on gold nanoparticle surfaces leading to Janus-type structures, as revealed by scanning transmission electron microscopy and electron energy-loss spectroscopy and, additionally, corroborated by computer simulation. We show that such structures can be used for the site-selective functionalization with additional nanosized entities.
Collapse
Affiliation(s)
- Christian Rossner
- Institut für Elektronenmikroskopie und Nanoanalytik, Technische Universität Graz, Steyrergasse 17, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
17
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Li PY, He C, Li JM, Li LW, Ye XD, He WD. Long-subchain Janus-dendritic copolymers from locally confined click reaction and generation-dependent micro-phase separation. Polym Chem 2017. [DOI: 10.1039/c7py00551b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Long-subchain Janus-dendritic copolymers composed of PSt and PtBA half-dendrons, up to the third generation, were prepared under alternating chemical and local confinement. All the Janus-dendritic copolymers exhibited generation-dependent microphase separation.
Collapse
Affiliation(s)
- Peng-Yun Li
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- and Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Chen He
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- and Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Jia-Min Li
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- and Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Lian-Wei Li
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Xiao-Dong Ye
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Wei-Dong He
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- and Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| |
Collapse
|
19
|
Zhou G, Person V, Khan IM. Hairy Nanoparticles with Hard Polystyrene Cores and Soft Polydimethylsiloxane Shells: One‐Pot Synthesis by Living Anionic Polymerization and Characterization. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guangchang Zhou
- Center for Functional Nanoscale Materials and Department of Chemistry Clark Atlanta University Atlanta GA 30314 USA
| | - Vernecia Person
- Center for Functional Nanoscale Materials and Department of Chemistry Clark Atlanta University Atlanta GA 30314 USA
| | - Ishrat M. Khan
- Center for Functional Nanoscale Materials and Department of Chemistry Clark Atlanta University Atlanta GA 30314 USA
| |
Collapse
|
20
|
Kermagoret A, Gigmes D. Combined nitroxide mediated radical polymerization techniques for block copolymer synthesis. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Yan J, Pan X, Wang Z, Zhang J, Matyjaszewski K. Influence of Spacers in Tetherable Initiators on Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajun Yan
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangcheng Pan
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jianan Zhang
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- School
of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
22
|
Modification of Silica Nanoparticles with Miktoarm Polymer Brushes via ATRP. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0427-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Fox TL, Tang S, Zhang G, Horton JM, Zhao B, Zhu L, Stewart PL. Loading and Delivery Characteristics of Binary Mixed Polymer Brush-Grafted Silica Nanoparticles. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tara L. Fox
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology; Case Western Reserve University; Cleveland OH 44106-4965 USA
| | - Saide Tang
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland OH 44106-7202 USA
| | - Guoqiang Zhang
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland OH 44106-7202 USA
| | - Jonathan M. Horton
- Department of Chemistry; University of Tennessee; Knoxville TN 37996 USA
| | - Bin Zhao
- Department of Chemistry; University of Tennessee; Knoxville TN 37996 USA
| | - Lei Zhu
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland OH 44106-7202 USA
| | - Phoebe L. Stewart
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology; Case Western Reserve University; Cleveland OH 44106-4965 USA
| |
Collapse
|
24
|
Chen C, Zhang T, Zhu L, Zhao B, Tang P, Qiu F. Hierarchical Superstructures Assembled by Binary Hairy Nanoparticles. ACS Macro Lett 2016; 5:718-723. [PMID: 35614660 DOI: 10.1021/acsmacrolett.6b00176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hierarchical superstructures assembled by binary mixed homopolymer-grafted nanoparticles are investigated by using a self-consistent field theory (SCFT). Our results demonstrate that grafting mixed homopolymer brushes provides an effective way to program the spatial lattice arrangement of the nanoparticles. For the polymer-grafted nanoparticles with specific interaction parameter and total grafting density, the unusual non-close-packed simple cubic (SC) crystal lattice is obtained at small spherical core/polymer size ratios (R/([Formula: see text]) < 1). As the size ratio increases to [Formula: see text] > 1, the nanoparticle arrangement transforms into a body-centered cubic (BCC) crystal lattice. Meanwhile, some unconventional microphases are formed in the polymer matrix, such as the tetragonal cylinder and simple cubic sphere phases. Furthermore, the two-dimensional (2D) model calculations reveal that the binary hairy nanoparticles prefer to arrange into the lattice in a way they can maintain the free energy-minimizing morphology as an isolated particle. Our findings suggest a possible strategy to design hierarchical nanomaterials composed of unique inorganic/organic hybrid superstructures.
Collapse
Affiliation(s)
- Cangyi Chen
- The
State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Tiancai Zhang
- The
State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lei Zhu
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Bin Zhao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ping Tang
- The
State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Feng Qiu
- The
State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Self-organization of homopolymer brush- and mixed homopolymer brush-grafted silica nanoparticles in block copolymers and polymer blends. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Fox TL, Tang S, Horton JM, Holdaway HA, Zhao B, Zhu L, Stewart PL. In Situ Characterization of Binary Mixed Polymer Brush-Grafted Silica Nanoparticles in Aqueous and Organic Solvents by Cryo-Electron Tomography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8680-8688. [PMID: 26174179 DOI: 10.1021/acs.langmuir.5b01739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present an in situ cryo-electron microscopy (cryoEM) study of mixed poly(acrylic acid) (PAA)/polystyrene (PS) brush-grafted 67 nm silica nanoparticles in organic and aqueous solvents. These organic-inorganic nanoparticles are predicted to be environmentally responsive and adopt distinct brush layer morphologies in different solvent environments. Although the self-assembled morphology of mixed PAA/PS brush-grafted particles has been studied previously in a dried state, no direct visualization of microphase separation was achieved in the solvent environment. CryoEM allows the sample to be imaged in situ, that is, in a frozen solvated state, at the resolution of a transmission electron microscope. Cryo-electron tomograms (cryoET) were generated for mixed PAA/PS brush-grafted nanoparticles in both N,N-dimethylformamide (DMF, a nonselective good solvent) and water (a selective solvent for PAA). Different nanostructures for the mixed brushes were observed in these two solvents. Overall, the brush layer is more compact in water, with a thickness of 18 nm, as compared with an extended layer of 27 nm in DMF. In DMF, mixed PAA/PS brushes are observed to form laterally separated microdomains with a ripple wavelength of 13.8 nm. Because of its lower grafting density than that of PAA, PS domains form more or less cylindrical or truncated cone-shaped domains in the PAA matrix. In water, PAA chains are found to form a more complete shell around the nanoparticle to maximize their interaction with water, whereas PS chains collapse into the core of surface-tethered micelles near the silica core. The cryoET results presented here confirm the predicted environmentally responsive nature of PAA/PS mixed brush-grafted nanoparticles. This experimental approach may be useful for the design of future mixed brush-grafted nanoparticles for nano- and biotechnology applications.
Collapse
Affiliation(s)
- Tara L Fox
- †Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4965, United States
| | - Saide Tang
- ‡Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106-7202, United States
| | - Jonathan M Horton
- §Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Heather A Holdaway
- †Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4965, United States
| | - Bin Zhao
- §Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Lei Zhu
- ‡Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106-7202, United States
| | - Phoebe L Stewart
- †Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4965, United States
| |
Collapse
|
27
|
Tang S, Fox TL, Lo TY, Horton JM, Ho RM, Zhao B, Stewart PL, Zhu L. Environmentally responsive self-assembly of mixed poly(tert-butyl acrylate)-polystyrene brush-grafted silica nanoparticles in selective polymer matrices. SOFT MATTER 2015; 11:5501-5512. [PMID: 26061172 DOI: 10.1039/c5sm00193e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Environmentally responsive self-assembly of nearly symmetric mixed poly(tert-butyl acrylate) (PtBA, 22.2 kDa)/polystyrene (PS, 23.4 kDa) brushes grafted onto 67 nm silica nanoparticles in selective homopolymer matrices [PtBA for the grafted PtBA chains and poly(cyclohexyl methacrylate) (PCHMA) for the grafted PS chains] was investigated using both conventional transmission electron microscopy (TEM) and electron tomography (i.e., 3D TEM). A variety of self-assembled phase morphologies were observed for the mixed brushes in selective polymer matrices with different molecular weights, and these can be explained by entropy-driven wet- and dry-brush theories. In a low molecular weight selective matrix, the wet-brush regime was formed with the miscible chains stretching out and the immiscible chains collapsing into isolated domains. In contrast, when the molecular weight of the selective matrix was higher than that of the compatible grafted polymer chains, the dry-brush regime was formed with the mixed brushes exhibiting the unperturbed morphology. In addition to the molecular weight, the size of nanoparticles (or the substrate curvature) was also observed to play an important role. For small particles (core size less than 50 nm), the wet brush-like morphology with a surface-tethered micellar structure was observed. Finally, the wet- and dry-brush regimes also significantly affected the dispersion of mixed brush particles in selective polymer matrices.
Collapse
Affiliation(s)
- Saide Tang
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes. Polymers (Basel) 2015. [DOI: 10.3390/polym7071346] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Calabrese DR, Ditter D, Liedel C, Blumfield A, Zentel R, Ober CK. Design, Synthesis, and Use of Y-Shaped ATRP/NMP Surface Tethered Initiator. ACS Macro Lett 2015; 4:606-610. [PMID: 35596400 DOI: 10.1021/acsmacrolett.5b00175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heterogeneous polymer brushes on surfaces can be easily formed from a binary initiator on a silicon oxide substrate where two different types of polymers can be grown side-by-side. Herein, we designed a new Y-shaped binary initiator using straightforward chemistry for "grafting from" polymer brushes. This initiator synthesis takes advantage of the Passerini reaction, a multicomponent reaction combining two initiator sites and one surface linking site. This Y-shaped binary initiator can be synthesized in three steps with a higher yield than other similar initiators reported in the literature, and can be performed on a multigram scale. We were able to attach the initiator to a silicon oxide substrate and successfully grow polymer brushes from both initiators (separately and in combination), confirmed by NEXAFS, AFM, and contact angle.
Collapse
Affiliation(s)
| | - David Ditter
- Institute
of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | | | | | - Rudolf Zentel
- Institute
of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | | |
Collapse
|
30
|
Rossner C, Vana P. Nanocomposites and Self-Assembled Structures via Controlled Radical Polymerization. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Wu L, Glebe U, Böker A. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 2015. [DOI: 10.1039/c5py00525f] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent progress in surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- DWI – Leibniz Institute for Interactive Materials e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie
- Universität Potsdam
| |
Collapse
|
32
|
Bao C, Tang S, Wright RAE, Tang P, Qiu F, Zhu L, Zhao B. Effect of Molecular Weight on Lateral Microphase Separation of Mixed Homopolymer Brushes Grafted on Silica Particles. Macromolecules 2014. [DOI: 10.1021/ma501474m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chunhui Bao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Saide Tang
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Roger A. E. Wright
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ping Tang
- Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Feng Qiu
- Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lei Zhu
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Bin Zhao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
33
|
Bao C, Horton JM, Bai Z, Li D, Lodge TP, Zhao B. Stimuli-triggered phase transfer of polymer-inorganic hybrid hairy particles between two immiscible liquid phases. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chunhui Bao
- Department of Chemistry; University of Tennessee; Knoxville Tennessee 37996
| | - Jonathan M. Horton
- Department of Chemistry; University of Tennessee; Knoxville Tennessee 37996
| | - Zhifeng Bai
- Corporate R&D, The Dow Chemical Company; Midland Michigan 48674
| | - Dejin Li
- Department of Chemistry; University of Tennessee; Knoxville Tennessee 37996
| | - Timothy P. Lodge
- Department of Chemistry; University of Minnesota; Minneapolis Minnesota 55455
- Department of Chemical Engineering and Materials Science; University of Minnesota; Minneapolis Minnesota 55455
| | - Bin Zhao
- Department of Chemistry; University of Tennessee; Knoxville Tennessee 37996
| |
Collapse
|
34
|
Li W, Bao C, Wright RAE, Zhao B. Synthesis of mixed poly(ε-caprolactone)/polystyrene brushes from Y-initiator-functionalized silica particles by surface-initiated ring-opening polymerization and nitroxide-mediated radical polymerization. RSC Adv 2014. [DOI: 10.1039/c4ra02429j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This article reports the synthesis of mixed brushes by ring-opening polymerization of ε-caprolactone and nitroxide-mediated radical polymerization of styrene from Y-initiator-functionalized silica particles.
Collapse
Affiliation(s)
- Weikun Li
- Department of Chemistry
- University of Tennessee
- Knoxville, USA
| | - Chunhui Bao
- Department of Chemistry
- University of Tennessee
- Knoxville, USA
| | | | - Bin Zhao
- Department of Chemistry
- University of Tennessee
- Knoxville, USA
| |
Collapse
|
35
|
Ma X, Yang Y, Zhu L, Zhao B, Tang P, Qiu F. Binary mixed homopolymer brushes grafted on nanorod particles: A self-consistent field theory study. J Chem Phys 2013; 139:214902. [DOI: 10.1063/1.4832742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
36
|
Zhang Q, Liao Y, Bu W. Tunable interactions of polyoxometalate-based brushlike hybrids in solvents of variable quality: from self-recognition to supramolecular recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10630-10634. [PMID: 23927082 DOI: 10.1021/la402491n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The controllable interactions of a spherical polymer brush modeled by a poly(styrene-b-4-vinylpyridinium methyl iodide)-polyoxometalate composite micelle, SVP-6, with a polyoxometalate-based supramolecular star polymer, PSP-4, in solvents of variable quality allow us to tune their self-assembly behaviors from self-recognition to supramolecular recognition. In the former case, isolated, contractive spheres together with a few vesicles formed by PSP-4 coexist with multimicelle aggregates formed by SVP-6, whereas SVP-6 is hosted inside the vesicle of PSP-4 in the latter case. This work represents an important step toward the development and understanding of programmable self-assembly of brushlike polymers into complex materials.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000 PR China
| | | | | |
Collapse
|
37
|
Tang S, Lo TY, Horton JM, Bao C, Tang P, Qiu F, Ho RM, Zhao B, Zhu L. Direct Visualization of Three-Dimensional Morphology in Hierarchically Self-Assembled Mixed Poly(tert-butyl acrylate)/Polystyrene Brush-Grafted Silica Nanoparticles. Macromolecules 2013. [DOI: 10.1021/ma401264m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Saide Tang
- Department of Macromolecular
Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Ting-Ya Lo
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jonathan M. Horton
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996,
United States
| | - Chunhui Bao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996,
United States
| | - Ping Tang
- Department
of Macromolecular
Science, Fudan University, Shanghai 200433,
P. R. China
| | - Feng Qiu
- Department
of Macromolecular
Science, Fudan University, Shanghai 200433,
P. R. China
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996,
United States
| | - Lei Zhu
- Department of Macromolecular
Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|