1
|
Lee J, Tang Y, Cureño Hernandez KE, Kim S, Lee R, Cartwright Z, Pochan DJ, Herrera-Alonso M. Ultrastable and Redispersible Zwitterionic Bottlebrush Micelles for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39370599 DOI: 10.1021/acsami.4c10968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Bottlebrush copolymers are increasingly used for drug delivery and biological imaging applications in part due to the enhanced thermodynamic stability of their self-assemblies. Herein, we discuss the effect of hydrophilic block chemistry on the stability of bottlebrush micelles. Amphiphilic bottlebrushes with zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and nonionic polyethylene glycol (PEG) hydrophilic blocks were synthesized by "grafting from" polymerization and self-assembled into well-defined spherical micelles. Colloidal stability and stability against disassembly were challenged under high concentrations of NaCl, MgSO4, sodium dodecyl sulfate, fetal bovine serum, and elevated temperature. While both types of micelles appeared to be stable in many of these conditions, those with a PMPC shell consistently surpassed their PEG analogs. Moreover, when repeatedly subjected to lyophilization/resuspension cycles, PMPC micelles redispersed with no apparent variation in size or dispersity even in the absence of a cryoprotectant; PEG micelles readily aggregated. The observed excellent stability of PMPC micelles is attributed to the low critical micelle concentration of the bottlebrushes as well as to the strong hydration shell caused by ionic solvation of the phosphorylcholine moieties. Zwitterionic micelles were loaded with doxorubicin, and higher loading capacity/efficiency, as well as delayed release, was observed with increasing side-chain length. Finally, hemocompatibility studies of PMPC micelles demonstrated no disruption to the red blood cell membranes. The growing concern regarding the immunogenicity of PEG-based systems propels the search for alternative hydrophilic polymers; in this respect and for their outstanding stability, zwitterionic bottlebrush micelles represent excellent candidates for drug delivery and bioimaging applications.
Collapse
Affiliation(s)
- Jeonghun Lee
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yao Tang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Karla E Cureño Hernandez
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sunghoon Kim
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Rahmi Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Zachary Cartwright
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Margarita Herrera-Alonso
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Hwang W, Kwon S, Lee WB, Kim Y. Self-assembly prediction of architecture-controlled bottlebrush copolymers in solution using graph convolutional networks. SOFT MATTER 2024; 20:4905-4915. [PMID: 38867573 DOI: 10.1039/d4sm00453a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The investigation of bottlebrush copolymer self-assembly in solution involves a comprehensive approach integrating simulation and experimental research, due to their unique physical characteristics. However, the intricate architecture of bottlebrush copolymers and the diverse solvent conditions introduce a wide range of parameter spaces. In this study, we investigated the solution self-assembly behavior of bottlebrush copolymers by combining dissipative particle dynamics (DPD) simulation results and machine learning (ML) including graph convolutional networks (GCNs). The architecture of bottlebrush copolymers is encoded by graphs including connectivity, side chain length, bead types, and interaction parameters of DPD simulation. Using GCN, we accurately predicted the single chain properties of bottlebrush copolymers with over 95% accuracy. Furthermore, phase behavior was precisely predicted using these single chain properties. Shapley additive explanations (SHAP) values of single chain properties to the various self-assembly morphologies were calculated to investigate the correlation between single chain properties and morphologies. In addition, we analyzed single chain properties and phase behavior as a function of DPD interaction parameters, extracting relevant physical properties for vesicle morphology formation. This work paves the way for tailored design in solution of self-assembled nanostructures of bottlebrush copolymers, offering a GCN framework for precise prediction of self-assembly morphologies under various chain architectures and solvent conditions.
Collapse
Affiliation(s)
- Wooseop Hwang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Leo CM, Jang J, Corey EJ, Neary WJ, Bowman JI, Kennemur JG. Comparison of Polypentenamer and Polynorbornene Bottlebrushes in Dilute Solution. ACS POLYMERS AU 2024; 4:235-246. [PMID: 38882033 PMCID: PMC11177302 DOI: 10.1021/acspolymersau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 06/18/2024]
Abstract
Bottlebrush (BB) polymers were synthesized via grafting-from-atom transfer radical polymerization (ATRP) of styrene on polypentenamer and polynorbornene macroinitiators with matched grafting density (n g = 4) and backbone degrees of polymerization (122 ≥ N bb ≥ 61) to produce a comparative study on their respective dilute solution properties as a function of increasing side chain degree of polymerization (116 ≥ N sc ≥ 5). The grafting-from technique produced near quantitative grafting efficiency and narrow dispersity N sc as evidenced by spectroscopic analysis and ring closing metathesis depolymerization of the polypentenamer BBs. The versatility of this synthetic approach permitted a comprehensive survey of power law expressions that arise from monitoring intrinsic viscosity, hydrodynamic radius, and radius of gyration as a function of increasing the molar mass of the BBs by increasing N sc. These values were compared to a series of linear (nongrafted, N sc = 0) macroinitiators in addition to linear grafts. This unique study allowed elucidation of the onset of bottlebrush behavior for two different types of bottlebrush backbones with identical grafting density but inherently different flexibility. In addition, grafting-from ATRP of methyl acrylate on a polypentenamer macroinitiator allowed the observation of the effects of graft chemistry in comparison to polystyrene. Differences in the observed scaling relationships in dilute solution as a function of each of these synthetic variants are discussed.
Collapse
Affiliation(s)
- Courtney M Leo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Jaehoon Jang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Ethan J Corey
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - William J Neary
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Jared I Bowman
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Justin G Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| |
Collapse
|
4
|
Xu J, Wu Y, Xia Y, Fatima R, Li Y, Song DP. Photonic Pigments of Polystyrene- block-Polyvinylpyrrolidone Bottlebrush Block Copolymers via Sustainable Organized Spontaneous Emulsification. ACS Macro Lett 2024; 13:495-501. [PMID: 38607961 DOI: 10.1021/acsmacrolett.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Prior studies on photonic pigments of amphiphilic bottlebrush block copolymers (BBCPs) through an organized spontaneous emulsification (OSE) mechanism have been limited to using polyethylene glycol (PEG) as the hydrophilic side chains and toluene as the organic phase. Herein, a family of polystyrene-block-polyvinylpyrrolidone (PS-b-PVP) BBCPs are synthesized with PVP as the hydrophilic block. Biocompatible and sustainable anisole is employed for dissolving the obtained BBCPs followed by emulsification of the solutions in water. Subsequent evaporation of oil-in-water emulsion droplets triggers the OSE mechanism, producing thermodynamically stable water-in-oil-in-water (w/o/w) multiple emulsions with uniform and closely packed internal droplet arrays through the assembly of the BBCPs at the w/o interface. Upon solidification, the homogeneous porous structures are formed within the photonic microparticles that exhibit visible structural colors. The pore diameter is widely tunable (150∼314 nm) by changing the degree of polymerization of BBCP (69∼110), resulting in tunable colors across the whole visible spectrum. This work demonstrates useful knowledge that OSE can be generally used in the fabrication of ordered porous materials with tunable internal functional groups, not only for photonic applications, but also offers a potential platform for catalysis, sensing, separation, encapsulation, etc.
Collapse
Affiliation(s)
- Jingcheng Xu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yulun Wu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu Xia
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Rida Fatima
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Seong HG, Jin Z, Chen Z, Hu M, Emrick T, Russell TP. Bottlebrush Block Copolymers at the Interface of Immiscible Liquids: Adsorption and Lateral Packing. J Am Chem Soc 2024; 146:13000-13009. [PMID: 38710503 DOI: 10.1021/jacs.3c13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Amphiphilic bottlebrush block copolymers (BBCPs), having a hydrophilic bottlebrush polymer (BP) linked covalently to a hydrophobic BP, were found to segregate to liquid-liquid interfaces to minimize the free energy of the system. The key parameter influencing the outcome of the experiments is the ratio between the degree of polymerization of the backbone (NBB) and that of the side-chain brushes (NSC). Specifically, a spherical, star-like configuration results when NBB < NSC, while a cylindrical, bottlebrush-like shape is preferred when NBB > NSC. Dynamic interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) measurements show that the BBCP configuration influences the areal density and in-plane diffusion at the fluid interface. The characteristic relaxation times associated with BBCP adsorption (τA) and reorganization (τR) were determined by fitting time-dependent interfacial tension measurements to a sum of two exponential relaxation functions. Both τA and τR initially increased with NBB up to 92 repeat units, due to the larger hydrodynamic radius in solution and slower in-plane diffusivity, attributed to a shorter cross-sectional diameter of the side-chains near the block junction. This trend reversed at NBB = 190, with shorter τA and τR attributed to increased segregation strength and exposure of the bare water/toluene interface due to tilting and/or wiggling of the backbone chains, respectively. The adsorption energy barrier decreased with higher NBB, due to a reduced BBCP packing density at the fluid interface. This study provides fundamental insights into macromolecular assembly at fluid interfaces, as it pertains to unique bottlebrush block architectures.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zichen Jin
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zhan Chen
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Mingqiu Hu
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Kelly MT, Zhao B. Worm-globule transition of amphiphilic pH-responsive heterografted bottlebrushes at air-water interface. SOFT MATTER 2024; 20:1224-1235. [PMID: 38230501 DOI: 10.1039/d3sm01635h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Heterografted molecular bottlebrushes (MBBs) with side chains composed of poly(n-butyl acrylate) (PnBA) and pH-responsive poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA, pKa = 7.4) have been shown to be efficient, robust, and responsive emulsifiers. However, it remains unknown how they respond to external stimuli at interfaces. In this work, the shape-changing behavior of six hetero- and homografted MBBs at air-water interfaces in response to pH changes and lateral compression was investigated using a Langmuir-Blodgett trough and atomic force microscopy. At a surface pressure of 0.5 mN m-1, PDEAEMA-containing MBBs showed no worm-globule transitions when the pH was increased from 4.0 to 10.0, at which PDEAEMA becomes insoluble in water. Upon lateral compression at pH 4.0, MBBs with a mole fraction of PDEAEMA side chains (xPDEAEMA) < 0.50 underwent pronounced worm-globule shape transitions; there was an increasing tendency for bottlebrushes to become connected with increasing xPDEAEMA. At xPDEAEMA = 0.76, the molecules remained wormlike even at high compression. These observations were presumably caused by the increased electrostatic repulsion between protonated PDEAEMA side chains in the subphase with increasing xPDEAEMA, hindering the shape change. At pH 10.0, MBBs with xPDEAEMA < 0.50 showed a lower tendency to change their wormlike morphologies upon compression than at pH 4.0. No shape transition was observed when xPDEAEMA > 0.50, attributed to the relatively high affinity toward water and the rigidity of PDEAEMA. This study revealed the shape-changing behavior of amphiphilic pH-responsive MBBs at air-water interfaces, which could be useful for future design of multicomponent MBBs for potential applications.
Collapse
Affiliation(s)
- Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
7
|
Wang C, Zhao H. Polymer Brushes and Surface Nanostructures: Molecular Design, Precise Synthesis, and Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2439-2464. [PMID: 38279930 DOI: 10.1021/acs.langmuir.3c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
For over two decades, polymer brushes have found wide applications in industry and scientific research. Now, polymer brush research has been a significant research focus in the community of polymer science. In this review paper, we give an introduction to the synthesis, self-assembly, and applications of one-dimensional (1D) polymer brushes on polymer backbones, two-dimensional (2D) polymer brushes on flat surfaces, and three-dimensional (3D) polymer brushes on spherical particles. Examples of the synthesis of polymer brushes on different substrates are provided. Studies on the formation of the surface nanostructures on solid surfaces are also reviewed in this article. Multicomponent polymer brushes on solid surfaces are able to self-assemble into surface micelles (s-micelles). If the s-micelles are linked to the substrates through cleavable linkages, the s-micelles can be cleaved from the substrates, and the cleaved s-micelles are able to self-assemble into hierarchical structures. The formation of the surface nanostructures by coassembly of polymer brushes and "free" polymer chains (coassembly approach) or polymerization-induced surface self-assembly approach, is discussed. The applications of the polymer brushes in colloid and biomedical science are summarized. Finally, perspectives on the development of polymer brushes are offered in this article.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
8
|
Yang Z, Xu X, Douglas JF, Xu WS. Confinement effect of inter-arm interactions on glass formation in star polymer melts. J Chem Phys 2024; 160:044503. [PMID: 38265089 DOI: 10.1063/5.0185412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
We utilized molecular dynamic simulation to investigate the glass formation of star polymer melts in which the topological complexity is varied by altering the number of star arms (f). Emphasis was placed on how the "confinement effect" of repulsive inter-arm interactions within star polymers influences the thermodynamics and dynamics of star polymer melts. All the characteristic temperatures of glass formation were found to progressively increase with increasing f, but unexpectedly the fragility parameter KVFT was found to decrease with increasing f. As previously observed, stars having more than 5 or 6 arms adopt an average particle-like structure that is more contracted relative to the linear polymer size having the same mass and exhibit a strong tendency for intermolecular and intramolecular segregation. We systematically analyzed how varying f alters collective particle motion, dynamic heterogeneity, the decoupling exponent ζ phenomenologically linking the slow β- and α-relaxation times, and the thermodynamic scaling index γt. Consistent with our hypothesis that the segmental dynamics of many-arm star melts and thin supported polymer films should exhibit similar trends arising from the common feature of high local segmental confinement, we found that ζ increases considerably with increasing f, as found in supported polymer films with decreasing thickness. Furthermore, increasing f led to greatly enhanced elastic heterogeneity, and this phenomenon correlates strongly with changes in ζ and γt. Our observations should be helpful in building a more rational theoretical framework for understanding how molecular topology and geometrical confinement influence the dynamics of glass-forming materials more broadly.
Collapse
Affiliation(s)
- Zhenyue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
9
|
Dutta S, Sing CE. Brownian dynamics simulations of bottlebrush polymers in dilute solution under simple shear and uniaxial extensional flows. J Chem Phys 2024; 160:044901. [PMID: 38258921 DOI: 10.1063/5.0177113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
We study the dynamics of bottlebrush polymer molecules in dilute solutions subjected to shear and uniaxial extensional flows using Brownian dynamics simulations with hydrodynamic interaction (HI). Bottlebrush polymers are modeled using a coarse-grained representation, consisting of a set of beads interacting pairwise via a purely repulsive potential and connected by finitely extensible nonlinear springs. We present the results for molecular stretching, stress, and solution viscosity during the startup of flow as well as under steady state as a function of side chain length while keeping the backbone length fixed. In extensional flow, the backbone fractional extension and the first normal stress difference decrease with an increase in side chain length at a fixed Weissenberg number (Wi). Using simulation results both in the presence of and in the absence of HI, we show that this is primarily a consequence of steric interaction resulting from the dense grafting of side chains. In shear flow, we observe a shear-thinning behavior in all cases, although it becomes less pronounced with increasing side chain length. Furthermore, nonmonotonicity in the backbone fractional extension is observed under shear, particularly at high Wi. We contextualize our simulation results for bottlebrush polymers with respect to existing studies in the literature for linear polymers and show that the unique dynamical features characterizing bottlebrush polymers arise on account of their additional molecular thickness due to the presence of densely grafted side chains.
Collapse
Affiliation(s)
- Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Kelly MT, Chen Z, Russell TP, Zhao B. Amphiphilic Heterografted Molecular Bottlebrushes with Tertiary Amine-Containing Side Chains as Efficient and Robust pH-Responsive Emulsifiers. Angew Chem Int Ed Engl 2023; 62:e202315424. [PMID: 37956395 DOI: 10.1002/anie.202315424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
By combining the unique characteristics of molecular bottlebrushes (MBBs) and the properties of stimuli-responsive polymers, we show that MBBs with randomly grafted poly(n-butyl acrylate) and pH-responsive poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA) side chains are efficient and robust pH-responsive emulsifiers. Water-in-toluene emulsions were formed at pH 4.0 and disrupted by increasing the pH to 10.0. The emulsion generation and disruption was reversible over the ten cycles investigated, and the bottlebrushes remained intact. The exceptional emulsion stability stemmed from the high interfacial binding energy of MBBs, imparted by their large molecular size and Janus architecture at the interface, as evidenced by the interfacial jamming and wrinkling of the assemblies upon reducing the interfacial area. At pH 10.0, PDEAEMA became water-insoluble, and the MBBs desorbed from the interface, causing de-emulsification. Consequently, we have shown that the judicious design of MBBs can generate properties of particle emulsifiers from their large size, while the responsiveness of the MBBs enables more potential applications.
Collapse
Affiliation(s)
- Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhan Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Dobrynin AV, Stroujkova A, Vatankhah-Varnosfaderani M, Sheiko SS. Coarse-Grained Artificial Intelligence for Design of Brush Networks. ACS Macro Lett 2023; 12:1510-1516. [PMID: 37888787 DOI: 10.1021/acsmacrolett.3c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The ability to synthesize elastomeric materials with programmable mechanical properties is vital for advanced soft matter applications. Due to the inherent complexity of hierarchical structure-property correlations in brush-like polymer networks, the application of conventional theory-based, so-called Human Intelligence (HI) approaches becomes increasingly difficult. Herein we developed a design strategy based on synergistic combination of HI and AI tools which allows precise encoding of mechanical properties with three architectural parameters: degrees of polymerization (DP) of network strands, nx, side chains, nsc, backbone spacers between side chains, ng. Implementing a multilayer feedforward artificial neural network (ANN), we took advantage of model-predicted structure-property cross-correlations between coarse-grained system code including chemistry specific characteristics S = [l, v, b] defined by monomer projection length l and excluded volume v, Kuhn length b of bare backbone and side chains, and architecture A = [nsc, ng, nx] of polymer networks and their equilibrium mechanical properties P = [G, β] including the structural shear modulus G and firmness parameter β. The ANN was trained by minimizing the mean-square error with Bayesian regularization to avoid overfitting using a data set of experimental stress-deformation curves of networks with brush-like strands of poly(n-butyl acrylate), poly(isobutylene), and poly(dimethylsiloxane) having structural modulus G < 50 kPa and 0.01 ≤ β ≤ 0.3. The trained ANN predicts network mechanical properties with 95% confidence. The developed ANN was implemented for synthesis of model networks with identical mechanical properties but different chemistries of network strands.
Collapse
Affiliation(s)
- Andrey V Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anastasia Stroujkova
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559, United States
| | | | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Zhulina EB, Borisov OV. Cylindrical brushes with ionized side chains: Scaling theory revisited. SOFT MATTER 2023; 19:8440-8452. [PMID: 37881868 DOI: 10.1039/d3sm00727h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We revisit the classic scaling model of a cylindrical polyelectrolyte (PE) brush focusing on molecular brushes with stiff backbones and dispersions of polymer-decorated nanorods. Based on the blob representation we demonstrate that similarly to the case of planar PE brushes, separation of intra- and intermolecular repulsions between charges leads to novel scaling regimes for cylindrical PE brushes in salt-added solution and a sharper decrease in its thickness versus salt concentration dependence. These theoretical predictions may inspire further comprehensive experimental research and computer simulations of synthetic and biopolyelectrolyte cylindrical brushes.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia.
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia.
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France
| |
Collapse
|
13
|
Chen T, Qiu M, Peng Y, Yi C, Xu Z. Colloidal Polymer-Templated Formation of Inorganic Nanocrystals and their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303282. [PMID: 37409416 DOI: 10.1002/smll.202303282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Indexed: 07/07/2023]
Abstract
Inorganic nanocrystals possess unique physicochemical properties compared to their bulk counterparts. Stabilizing agents are commonly used for the preparation of inorganic nanocrystals with controllable properties. Particularly, colloidal polymers have emerged as general and robust templates for in situ formation and confinement of inorganic nanocrystals. In addition to templating and stabilizing inorganic nanocrystals, colloidal polymers can tailor their physicochemical properties such as size, shape, structure, composition, surface chemistry, and so on. By incorporating functional groups into colloidal polymers, desired functions can be integrated with inorganic nanocrystals, advancing their potential applications. Here, recent advances in the colloidal polymer-templated formation of inorganic nanocrystals are reviewed. Seven types of colloidal polymers, including dendrimer, polymer micelle, stare-like block polymer, bottlebrush polymer, spherical polyelectrolyte brush, microgel, and single-chain nanoparticle, have been extensively applied for the synthesis of inorganic nanocrystals. Different strategies for the development of these colloidal polymer-templated inorganic nanocrystals are summarized. Then, their emerging applications in the fields of catalysis, biomedicine, solar cells, sensing, light-emitting diodes, and lithium-ion batteries are highlighted. Last, the remaining issues and future directions are discussed. This review will stimulate the development and application of colloidal polymer-templated inorganic nanocrystals.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
14
|
Snipes RT, Melara M, Tiiara A, Owens J, Luzinov I. Fluorine-Free Extinguishing of a Hydrocarbon Pool Fire with a Suspension of Glass Bubbles Grafted with Nanoscale Polymer Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49749-49761. [PMID: 37815891 DOI: 10.1021/acsami.3c10228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The current most efficient solution to extinguish liquid hydrocarbon (class B) pool fires involves fire-fighting foams containing fluorinated surfactants. However, fluorocarbon surfactants are unsafe due to their environmental persistence and negative toxicological/bioaccumulative impact. To this end, we show that fluorine-free aqueous suspensions of Glass Bubbles (GB) modified with hydrophilic polymer grafted layers can efficiently extinguish hydrocarbon pool fires. Namely, GB grafted with poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA), GB-G was fabricated employing "grafting-through" and "grafting-from" methods and used to obtain the suspensions. It was found that the GB suspension, with a grafted layer of higher molecular weight and lower grafting density (GB-GL), proved superior to the more densely grafted GB-GH and nongrafted GB-0 system. The GB-GL suspensions displayed less negative spreading coefficients and viscosities lower than those of GB-GH/GB-0 compositions. When siloxane-polyoxyethylene surfactant was added to all GB suspensions, the interfacial properties were dominated by the surfactant, with all suspensions having the same positive spreading coefficient. However, the GB-GL-surfactant composition had the lowest viscosity among the suspensions studied in this work. Specifically, the viscosity of GB-GH and GB-0 suspensions at a shear rate of 77 s-1 was ∼110% and 70% higher than that of GB-GL. Due to the lower viscosity, the GB-GL suspension demonstrated the most efficient spreading over model hydrocarbon solid (polyethylene) and liquid (hexadecane) surfaces when the surfactant was added. The suspension also showed the best performance in the retardation of hexane evaporation when placed over the heated hexane pool. After 50 min, the amount of hexane that evaporated through GB-GH and GB-0 suspensions was ∼8 and 11 times higher, respectively, compared to the GB-GL suspension. We found that the GB-GL-surfactant system was the most efficient GB suspension in extinguishing the fire due to its superior spreading and sealing ability. It was within 10% of fluorine-containing foam's fire extinguishment performance. The GB suspensions are much safer in terms of burnback resistance as a torch applied directly to the suspension after extinguishment could not reignite the fire. The GB material is recyclable, since it can be collected and reused after application to a fire.
Collapse
Affiliation(s)
- Randall T Snipes
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Mauricio Melara
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Andrii Tiiara
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jeffery Owens
- Air Force Civil Engineer Center, Tyndall AFB, Panama City, Florida 32403, United States
| | - Igor Luzinov
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
15
|
Salinas-Soto CA, Choe Y, Hur SM, Ramírez-Hernández A. Exploring conformations of comb-like polymers with varying grafting density in dilute solutions. J Chem Phys 2023; 159:114901. [PMID: 37712792 DOI: 10.1063/5.0160824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Comb-like polymers have shown potential as advanced materials for a diverse palette of applications due to the tunability of their polymer architecture. To date, however, it still remains a challenge to understand how the conformational properties of these polymers arise from the interplay of their architectural parameters. In this work, extensive simulations were performed using dissipative particle dynamics to investigate the effect of grafting density, backbone length, and sidechain length on the conformations of comb-like polymers immersed in a good solvent. To quantify the effect of these architectural parameters on polymer conformations, we computed the asphericity, radius of gyration, and backbone and sidechain end-to-end distances. Bond-bond correlation functions and effective Kuhn lengths were computed to quantify the topological stiffness induced by sidechain-sidechain interactions. Simulation results reveal that the effective Kuhn length increases as grafting density and sidechain length increase, in agreement with previous experimental and theoretical studies. This increase in stiffness results in comb-like polymers adopting extended conformations as grafting density and sidechain length increase. Simulation results regarding the radius of gyration of comb-like polymers as a function of grafting density are compared with scaling theory predictions based on a free energy proposed by Morozova and Lodge [ACS Macro Lett. 6, 1274-1279 (2017)] and scaling arguments by Tang et al. [Macromolecules 55, 8668-8675 (2022)].
Collapse
Affiliation(s)
- Carlos A Salinas-Soto
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yeojin Choe
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
16
|
Zhulina EB, Borisov OV. Polyelectrolyte Cylindrical Brushes in Hairy Gels. Polymers (Basel) 2023; 15:3261. [PMID: 37571155 PMCID: PMC10422550 DOI: 10.3390/polym15153261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
We considered dispersions of cylindrical polyelectrolyte (PE) brushes with stiff backbones, and polymer-decorated nanorods with tunable solubility of the brush-forming PE chains that affected thermodynamic stability of the dispersions. We focused on thermo-induced and deionization-induced conformational transition that provokes loss of aggregative dispersion stability of nanorods decorated with weakly ionized polyions. A comparison between theoretical predictions and experiments enabled rationalization and semi-quantitative interpretation of the experimental results.
Collapse
Affiliation(s)
- Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| |
Collapse
|
17
|
Seong HG, Fink Z, Chen Z, Emrick T, Russell TP. Bottlebrush Polymers at Liquid Interfaces: Assembly Dynamics, Mechanical Properties, and All-Liquid Printed Constructs. ACS NANO 2023. [PMID: 37490585 DOI: 10.1021/acsnano.3c02684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Bottlebrush polymer surfactants (BPSs), formed by the interfacial interactions between bottlebrush polymers (BPs) with poly(acrylic acid) side chains dissolved in an aqueous phase and amine-functionalized ligands dissolved in the oil phase, assemble and bind strongly to the fluid-fluid interface. The ratio between NBB (backbone degree of polymerization) and NSC (side chain degree of polymerization) defines the initial assembly kinetics, interface packing efficiency, and stress relaxation. The equilibrium interfacial tension (γ) increases when NBB < NSC, but decreases when NBB ≫ NSC, correlating to a pronounced change in the effective shape of the BPs from being spherical to worm-like structures. The apparent surface coverage (ASC), i.e., the interfacial packing efficiency, decreases as NBB increases. The dripping-to-jetting transition of an injected polymer solution, as well as fluorescence recovery after photobleaching experiments, revealed faster initial assembly kinetics for BPs with higher NBB. Euler buckling of BPS assemblies with different NBB values was used to characterize the stress relaxation behavior and bending modulus. The stress relaxation behavior was directly related to the ASC, reflecting the strong influence of macromolecular shape on packing efficiency. The bending modulus of BPSs decreases for NBB < NSC, but increased when NBB ≫ NSC, showing the effect of molecular architecture and multisite anchoring. All-liquid printed constructs with lower NBB BPs yielded more stable structured liquids, underscoring the importance of macromolecular packing efficiency at fluid interfaces. Overall, this work elucidates fundamental relationships between nanoscopic structures and macroscopic properties associated with various bottlebrush polymer architectures, which translate to the stabilization of all-fluidic printed constructs.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zachary Fink
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Xue Y, Cao M, Chen C, Zhong M. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation. JACS AU 2023; 3:1284-1300. [PMID: 37234122 PMCID: PMC10207122 DOI: 10.1021/jacsau.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
With the ever-growing demand for sustainability, designing polymeric materials using readily accessible feedstocks provides potential solutions to address the challenges in energy and environmental conservation. Complementing the prevailing strategy of varying chemical composition, engineering microstructures of polymer chains by precisely controlling their chain length distribution, main chain regio-/stereoregularity, monomer or segment sequence, and architecture creates a powerful toolbox to rapidly access diversified material properties. In this Perspective, we lay out recent advances in utilizing appropriately designed polymers in a wide range of applications such as plastic recycling, water purification, and solar energy storage and conversion. With decoupled structural parameters, these studies have established various microstructure-function relationships. Given the progress outlined here, we envision that the microstructure-engineering strategy will accelerate the design and optimization of polymeric materials to meet sustainability criteria.
Collapse
Affiliation(s)
- Yazhen Xue
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mengxue Cao
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Charles Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
19
|
Rappoport S, Chrysostomou V, Kafetzi M, Pispas S, Talmon Y. Self-Aggregation in Aqueous Media of Amphiphilic Diblock and Random Block Copolymers Composed of Monomers with Long Side Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3380-3390. [PMID: 36802652 DOI: 10.1021/acs.langmuir.2c03294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Amphiphilic diblock copolymers and hydrophobically modified random block copolymers can self-assemble into different structures in a selective solvent. The formed structures depend on the copolymer properties, such as the ratio between the hydrophilic and the hydrophobic segments and their nature. In this work, we characterize by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) the amphiphilic copolymers poly(2-dimethylamino ethyl methacrylate)-b-poly(lauryl methacrylate) (PDMAEMA-b-PLMA) and their quaternized derivatives QPDMAEMA-b-PLMA at different ratios between the hydrophilic and the hydrophobic segments. We present the various structures formed by these copolymers, including spherical and cylindrical micelles, as well as unilamellar and multilamellar vesicles. We also examined by these methods the random diblock copolymers poly(2-(dimethylamino) ethyl methacrylate)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (P(DMAEMA-co-Q6/12DMAEMA)-b-POEGMA), which are partially hydrophobically modified by iodohexane (Q6) or iodododecane (Q12). The polymers with a small POEGMA block did not form any specific nanostructure, while a polymer with a larger POEGMA block formed spherical and cylindrical micelles. This nanostructural characterization could lead to the efficient design and use of these polymers as carriers of hydrophobic or hydrophilic compounds for biomedical applications.
Collapse
Affiliation(s)
- Sapir Rappoport
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Martha Kafetzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Yeshayahu Talmon
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
20
|
Husted KL, Herzog-Arbeitman A, Kleinschmidt D, Zhang W, Sun Z, Fielitz AJ, Le AN, Zhong M, Johnson JA. Pendant Group Modifications Provide Graft Copolymer Silicones with Exceptionally Broad Thermomechanical Properties. ACS CENTRAL SCIENCE 2023; 9:36-47. [PMID: 36712487 PMCID: PMC9881205 DOI: 10.1021/acscentsci.2c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/18/2023]
Abstract
Graft copolymers offer a versatile platform for the design of self-assembling materials; however, simple strategies for precisely and independently controlling the thermomechanical and morphological properties of graft copolymers remain elusive. Here, using a library of 92 polynorbornene-graft-polydimethylsiloxane (PDMS) copolymers, we discover a versatile backbone-pendant sequence-control strategy that addresses this challenge. Small structural variations of pendant groups, e.g., cyclohexyl versus n-hexyl, of small-molecule comonomers have dramatic impacts on order-to-disorder transitions, glass transitions, mechanical properties, and morphologies of statistical and block silicone-based graft copolymers, providing an exceptionally broad palette of designable materials properties. For example, statistical graft copolymers with high PDMS volume fractions yielded unbridged body-centered cubic morphologies that behaved as soft plastic crystals. By contrast, lamellae-forming graft copolymers provided robust, yet reprocessable silicone thermoplastics (TPs) with transition temperatures spanning over 160 °C and elastic moduli as high as 150 MPa despite being both unentangled and un-cross-linked. Altogether, this study reveals a new pendant-group-mediated self-assembly strategy that simplifies graft copolymer synthesis and enables access to a diverse family of silicone-based materials, setting the stage for the broader development of self-assembling materials with tailored performance specifications.
Collapse
Affiliation(s)
- Keith
E. L. Husted
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Abraham Herzog-Arbeitman
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Zehao Sun
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alyssa J. Fielitz
- Core
R&D, Analytical Science, The Dow Chemical
Company, Midland, Michigan 48640, United States
| | - An N. Le
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jeremiah A. Johnson
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Hou W, Wu J, Li Z, Zhang Z, Shi Y, Chen Y. Efficient Synthesis and PISA Behavior of Molecular Bottlebrush Block Copolymers via a Grafting-From Strategy through RAFT Dispersion Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiasheng Wu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheqi Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhen Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Loose Semirigid Aromatic Polyester Bottle Brushes at Poly(2-isopropyl-2-oxazoline) Side Chains of Various Lengths: Behavior in Solutions and Thermoresponsiveness. Polymers (Basel) 2022; 14:polym14245354. [PMID: 36559721 PMCID: PMC9781464 DOI: 10.3390/polym14245354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
A polycondensation aromatic polyester with an oxygen spacer was synthesized and used as a macroinitiator for the grafting of linear poly(2-isopropyl-2-oxazoline) (PiPrOx) by the cationic polymerization method. The length of the thermosensitive side chains was varied by the initiator:monomer ratio. Using methods of molecular hydrodynamics, light scattering and turbidimetry, the copolymers were studied in organic solvents and in water. The molecular characteristics of the main chain and graft copolymers, the polymerization degree of side chains and their grafting density have been determined. The equilibrium rigidity of the macroinitiator and the conformations of grafted macromolecules were evaluated. In selective solvents, they take on a star-like conformation or aggregate depending on the degree of shielding of the main chain by side chains. The thermoresponsiveness of graft copolymers in aqueous solutions was studied, and their LCST were estimated. The results are compared with data for graft copolymers composed of PiPrOx side chains and flexible or rigid chain backbones of aromatic polyester type.
Collapse
|
23
|
Uhlik F, Rud OV, Borisov OV, Zhulina EB. Hairy Gels: A Computational Study. Gels 2022; 8:793. [PMID: 36547317 PMCID: PMC9777993 DOI: 10.3390/gels8120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
We present results of MD and MC simulations of the equilibrium properties of swelling gels with comb-like or bottlebrush subchains and compare them to scaling-theory predictions. In accordance with theory, the simulation results demonstrate that swelling coefficient of the gel increases as a function of the polymerization degree of the main chains and exhibits a very weak maximum (or is virtually constant) as a function of the polymerization degree and grafting density of side chains. The bulk osmotic modulus passes through a shallow minimum as the polymerization degree of the side chains increases. This minimum is attributed to the onset of overlap of side chains belonging to different bottlebrush strands in the swollen gel.
Collapse
Affiliation(s)
- Filip Uhlik
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Oleg V. Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, CEDEX 9, 64053 Pau, France
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| |
Collapse
|
24
|
Kamble YL, Walsh DJ, Guironnet D. Precision of Architecture-Controlled Bottlebrush Polymer Synthesis: A Monte Carlo Analysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Yash Laxman Kamble
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
25
|
Zhulina EB, Sheiko SS, Borisov OV. Theoretical advances in molecular bottlebrushes and comblike (co)polymers: solutions, gels, and self-assembly. SOFT MATTER 2022; 18:8714-8732. [PMID: 36373559 DOI: 10.1039/d2sm01141g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present an overview of state-of-the-art theory of (i) conformational properties of molecular bottlebrushes in solution, (ii) self-assembly of di- and triblock copolymers comprising comb-shaped and bottlebrush blocks in solutions and melts, and (iii) cross-linked and self-assembled gels with bottlebrush subchains. We demonstrate how theoretical models enable quantitative prediction and interpretation of experimental results and provide rational guidance for design of new materials with physical properties tunable by architecture of constituent bottlebrush blocks.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei S Sheiko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France.
| |
Collapse
|
26
|
Ahmed E, Cho J, Friedmann L, Jang SS, Weck M. Catalytically Active Multicompartment Micelles. JACS AU 2022; 2:2316-2326. [PMID: 36311828 PMCID: PMC9597600 DOI: 10.1021/jacsau.2c00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
This article presents the self-assembly behavior of multicompartment micelles (MCMs) in water into morphologies with multiple segregated domains and their use as supports for aqueous catalysis. A library of poly(norbornene)-based amphiphilic bottlebrush copolymers containing covalently attached l-proline in the hydrophobic, styrene, and pentafluorostyrene domains and a poly(ethylene glycol)-containing repeat unit as the hydrophilic block have been synthesized using ring-opening metathesis polymerization. Interaction parameter (χ) values between amphiphilic blocks were determined using a Flory-Huggins-based computational model. The morphologies of the MCMs are observed via cryogenic transmission electron microscopy and modeled using dissipative particle dynamic simulations. The catalytic activities of these MCM nanoreactors were systematically investigated using the aldol addition between 4-nitrobenzaldehyde and cyclohexanone in water as a model reaction. MCMs present an ideal environment for catalysis by providing control over water content and enhancing interactions between the catalytic sites and the aldehyde substrate, thereby forming the aldol product in high yields and selectivities that is otherwise not possible under aqueous conditions. Catalyst location, block ratio, and functionality have substantial influences on micelle morphology and, ultimately, catalytic efficiency. "Clover-like" and "core-shell" micelle morphologies displayed the best catalytic activity. Our MCM-based catalytic system expands the application of these nanostructures beyond selective storage of guest molecules and demonstrates the importance of micelle morphology on catalytic activity.
Collapse
Affiliation(s)
- Eman Ahmed
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jinwon Cho
- School
of Materials Science and Engineering, Georgia
Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Lulu Friedmann
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seung Soon Jang
- School
of Materials Science and Engineering, Georgia
Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Marcus Weck
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
27
|
Thompson KA, Mayder DM, Tonge CM, Sauvé ER, Lefeaux HR, Hudson ZM. A grafting-from strategy for the synthesis of bottlebrush nanofibers from organic semiconductors. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bottlebrush polymers with optoelectronic function show promise for applications in photonic crystals, nanomedicine, and encoding of information. In particular, bottlebrush polymers formed from organic semiconductors give wire-like nanoparticles where band gaps, fluorescence, and energy transfer can be tuned. To date, such bottlebrush polymers have largely been prepared by grafting-through polymerization of organic semiconductor macromonomers, where pre-synthesized side chains are polymerized along a bottlebrush backbone. While this approach provides high side-chain grafting densities, the length of bottlebrush polymers that is possible to obtain is limited by steric crowding at the propagating chain end. Here, we describe methods for preparing ultralong bottlebrush nanofibers from organic semiconductors, with backbone lengths approaching 800 repeating units and molecular weights in excess of 4 MDa. By combining reversible addition fragmentation chain transfer and Cu(0) reversible deactivation radical polymerization, a “grafting-from” protocol is described where monomers can be grown from a pre-synthesized backbone. Bottlebrush polymers were prepared from organic semiconductors used as n-type, p-type, and host materials in multilayer organic devices. Finally, a two-component bottlebrush polymer exhibiting deep blue emission, two-photon fluorescence, and a quantum yield of unity is also prepared by this method.
Collapse
Affiliation(s)
- Kyle A. Thompson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Don M. Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Christopher M. Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ethan R. Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Harrison R. Lefeaux
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
28
|
Chen X, Song DP, Li Y. Precisely Tunable Photonic Pigments via Interfacial Self-Assembly of Bottlebrush Block Copolymer Binary Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
29
|
Ivanov IV, Kashina AV, Kukarkina NV, Yakimansky AV. Amphiphilic ABA-Type Block–Graft Molecular Brushes Based on Polyimide. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Mesoscale Modeling of Agglomeration of Molecular Bottlebrushes: Focus on Conformations and Clustering Criteria. Polymers (Basel) 2022; 14:polym14122339. [PMID: 35745920 PMCID: PMC9227207 DOI: 10.3390/polym14122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Using dissipative particle dynamics, we characterize dynamics of aggregation of molecular bottlebrushes in solvents of various qualities by tracking the number of clusters, the size of the largest cluster, and an average aggregation number. We focus on a low volume fraction of bottlebrushes in a range of solvents and probe three different cutoff criteria to identify bottlebrushes belonging to the same cluster. We demonstrate that the cutoff criteria which depend on both the coordination number and the length of the side chain allows one to correlate the agglomeration status with the structural characteristics of bottlebrushes in solvents of various qualities. We characterize conformational changes of the bottlebrush within the agglomerates with respect to those of an isolated bottlebrush in the same solvents. The characterization of bottlebrush conformations within the agglomerates is an important step in understanding the relationship between the bottlebrush architecture and material properties. An analysis of three distinct cutoff criteria to identify bottlebrushes belonging to the same cluster introduces a framework to identify both short-lived transient and long-lived agglomerates; the same approach could be further extended to characterize agglomerates of various macromolecules with complex architectures beyond the specific bottlebrush architecture considered herein.
Collapse
|
31
|
Zhu M, Ishaq MW, Li L. Advances in experimental studies of internal motions of non-linear macromolecular systems in solutions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Optimizing Chain Topology of Bottle Brush Copolymer for Promoting the Disorder-to-Order Transition. Int J Mol Sci 2022; 23:ijms23105374. [PMID: 35628178 PMCID: PMC9141188 DOI: 10.3390/ijms23105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
The order-disorder transitions (ODT) of core-shell bottle brush copolymer and its structural isomers were investigated by dissipative particle dynamics simulations and theoretically by random phase approximation. Introducing a chain topology parameter λ which parametrizes linking points between M diblock chains each with N monomers, the degree of incompatibility at ODT ((χN)ODT; χ being the Flory-Huggins interaction parameter between constituent monomers) was predicted as a function of chain topology parameter (λ) and the number of linked diblock chains per bottle brush copolymer (M). It was found that there exists an optimal chain topology about λ at which (χN)ODT gets a minimum while the domain spacing remains nearly unchanged. The prediction provides a theoretical guideline for designing an optimal copolymer architecture capable of forming sub-10 nm periodic structures even with non-high χ components.
Collapse
|
33
|
Seong HG, Chen Z, Emrick T, Russell TP. Reconfiguration and Reorganization of Bottlebrush Polymer Surfactants. Angew Chem Int Ed Engl 2022; 61:e202200530. [PMID: 35224828 DOI: 10.1002/anie.202200530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 02/02/2023]
Abstract
Bottlebrush random copolymers (BRCPs), having randomly distributed hydrophilic and hydrophobic side chains, are shown to reconfigure into hydrophilic-rich and hydrophobic-rich conformations at liquid-liquid interfaces to reduce interfacial energy. Both the degree of polymerization (NBB ) and extent of grafting in these BRCPs were found to impact surface coverage and assembly kinetics. The time-dependence of the interfacial tension is described as the sum of two exponential relaxation functions characterizing BRCP diffusion, interfacial adsorption, and reorganization. Interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) results showed that higher molecular weight BRCPs require longer time to adsorb to the water-oil interface, but less time for interfacial reorganization. Overall, this work describes fundamental principles of BRCP assembly at liquid-liquid interfaces, with implications pertaining to polymer design with enhanced understanding of emulsification, adhesion, and related properties in fluids and at interfaces.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Blosch SE, Alaboalirat M, Eades CB, Scannelli SJ, Matson JB. Solvent Effects in Grafting-through Ring-Opening Metathesis Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Cabell B. Eades
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| |
Collapse
|
35
|
Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022; 58:5683-5716. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular polymer bottlebrushes are densely grafted, individual macromolecules with nanoscale proportions. The last decade has seen an increased focus on this material class, especially in nanomedicine and for biomedical applications. This Feature Article provides an overview of major developments in this area to highlight the many opportunities that these polymer architectures bring to nano-bio research. The article covers aspects of bottlebrush synthesis and summarises their use in drug and gene delivery, imaging, as theranostics and as prototype materials to correlate nanoparticle structure and composition to biological function and behaviour. Areas for future research in this area are discussed.
Collapse
Affiliation(s)
- Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Martinez MR, Dworakowska S, Gorczyński A, Szczepaniak G, Bossa FDL, Matyjaszewski K. Kinetic comparison of isomeric oligo(ethylene oxide) (meth)acrylates: Aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate and methyl 2‐(oligo(ethylene oxide) methyl ether)acrylate macromonomers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Sylwia Dworakowska
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Department of Biotechnology and Renewable Materials, Faculty of Chemical Engineering and Technology Cracow University of Technology Cracow Poland
| | - Adam Gorczyński
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Faculty of Chemistry Adam Mickiewicz University Poznań Poland
| | - Grzegorz Szczepaniak
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Ferdinando De Luca Bossa
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
37
|
Xu X, Xu WS. Melt Properties and String Model Description of Glass Formation in Graft Polymers of Different Side-Chain Lengths. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
38
|
K. I. S, Nutenki R, Joseph TM, Murali S. Structural, molecular and thermal properties of cardanol based monomers and polymers synthesized via atom transfer radical polymerization (ATRP). JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2053288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Suresh K. I.
- Materials Science & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India
| | - Rajender Nutenki
- Materials Science & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India
| | - Tomy Murugayil Joseph
- Materials Science & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India
| | - Sumi Murali
- Materials Science & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
39
|
Seong H, Chen Z, Emrick T, Russell TP. Reconfiguration and Reorganization of Bottlebrush Polymer Surfactants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong‐Gyu Seong
- Polymer Science and Engineering Department Conte Center for Polymer Research University of Massachusetts 120 Governors Drive Amherst MA 01003 USA
| | - Zhan Chen
- Polymer Science and Engineering Department Conte Center for Polymer Research University of Massachusetts 120 Governors Drive Amherst MA 01003 USA
| | - Todd Emrick
- Polymer Science and Engineering Department Conte Center for Polymer Research University of Massachusetts 120 Governors Drive Amherst MA 01003 USA
| | - Thomas P. Russell
- Polymer Science and Engineering Department Conte Center for Polymer Research University of Massachusetts 120 Governors Drive Amherst MA 01003 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| |
Collapse
|
40
|
Cai F, Wang X, Deng Z, Bai L. Exploration of the Visual Function after the Implantation of Continuous Visual Range Human Cocrystal Micromonocular Vision in Both Eyes of the Patient. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6000977. [PMID: 35295177 PMCID: PMC8920647 DOI: 10.1155/2022/6000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
Eye diseases such as myopia, hyperopia, astigmatism, and cataract are have affected most people at home and abroad for many years. With the development of science and technology, people who wear glasses are now younger, and they are on the rise over time. This paper is to explore the visual function after the implantation of continuous visual range human cocrystal micromonocular vision in both eyes of the patient. On this basis, the latest visual sensor technology is used to conduct clinical research on the operation, a case-control study is performed on the patient's eyes, followed by intraocular lens insertion surgery, one eye is hemitrope and the other eye has a certain degree of intraocular lens inserted, and it is recorded within a period of time after the operation. According to the analysis of the experimental results, the patient's naked eye and corrected distance vision is (t = 2.102, P = 0.049), middle distance vision (t = 1.403, P = 0.200), and near vision (t = 1.463, P = 0.216). After the operation, the ratio of patients taking off glasses 91.8%. After the continuous visual range intraocular lens micromonocular vision design, it can well correct the patient's near and far vision of the naked eye of both eyes.
Collapse
Affiliation(s)
- Fangrong Cai
- Ophthalmology, Jianyang People's Hospital, Jianyang 641400, China
| | - Xiaoli Wang
- Ophthalmology, Jianyang People's Hospital, Jianyang 641400, China
| | - Zhihui Deng
- Ophthalmology, Jianyang People's Hospital, Jianyang 641400, China
| | - Lina Bai
- Ophthalmology, Jianyang People's Hospital, Jianyang 641400, China
| |
Collapse
|
41
|
Miao W, Yang B, Jin B, Ni C, Feng H, Xue Y, Zheng N, Zhao Q, Shen Y, Xie T. An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape- and Molecular Architecture Reconfiguration. Angew Chem Int Ed Engl 2022; 61:e202109941. [PMID: 34985780 DOI: 10.1002/anie.202109941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Indexed: 12/11/2022]
Abstract
Bond exchange in a typical dynamic covalent polymer network allows access to macroscopic shape reconfigurability, but the network architecture is not altered. An alternative possibility is that the network architecture can be designed to switch to various topological states corresponding to different material properties. Achieving both in one network can expand the material scope, but their intrinsically conflicting mechanisms make it challenging. We design a dynamic covalent network that can undergo two orthogonal topological transformations, namely transesterification on the branched chains and olefin metathesis on the mainframe. This allows independent control of the macroscopic shape and molecular architecture. With this design, we illustrate a bottlebrush network with programmable shape and spatially definable mechanical properties. Our strategy paves a way to on-demand regulation of network polymers.
Collapse
Affiliation(s)
- Wusha Miao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bo Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chujun Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haijun Feng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaoting Xue
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Youqing Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
42
|
Kelly MT, Kent EW, Zhao B. Stepwise Conformational Transitions of Stimuli-Responsive Linear Ternary Heterografted Bottlebrush Polymers in Aqueous Solution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Michael T. Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ethan W. Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
43
|
Kim EJ, Shin JJ, Lee GS, Kim S, Park S, Park J, Choe Y, Lee D, Choi J, Bang J, Kim YH, Li S, Hur SM, Kim JG, Kim BJ. Synthesis and Self-Assembly of Poly(vinylpyridine)-Containing Brush Block Copolymers: Combined Synthesis of Grafting-Through and Grafting-to Approaches. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeman J. Shin
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sejong Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Juhae Park
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeojin Choe
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dahye Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwoong Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Hun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Mi Hur
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
44
|
Zhulina EB, Borisov OV. Bottlebrush polymer gels: architectural control over swelling and osmotic bulk modulus. SOFT MATTER 2022; 18:1239-1246. [PMID: 35043819 DOI: 10.1039/d1sm01575c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Swelling behaviour and bulk moduli of polymer gels comprising of crosslinked bottlebrush subchains enable fine tuning by varying polymerization degrees of the main and side chains of the bottlebrush strands as well as their grafting densities. By using scaling approach we predict power law dependences of structural and elastic properties of swollen bottlebrush gels on the set of relevant architectural parameters and construct phase diagrams consisting of regions corresponding to different power law asymptotics for these dependences. In particular, our theory predict that bulk elastic modulus of the gel exhibits non-monotonous dependence on the degree of polymerization of side chains of the bottlebrush strands.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France.
| |
Collapse
|
45
|
Miao W, Yang B, Jin B, Ni C, Feng H, Xue Y, Zheng N, Zhao Q, Shen Y, Xie T. An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape‐ and Molecular Architecture Reconfiguration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wusha Miao
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Bo Yang
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Chujun Ni
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Haijun Feng
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Yaoting Xue
- Institute of Applied Mechanics Department of Engineering Mechanics Zhejiang University Hangzhou 310027 China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| | - Youqing Shen
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
46
|
Zhu Y, Liu P, Zhang J, Hu J, Zhao Y. Facile synthesis of monocyclic, dumbbell-shaped and jellyfish-like copolymers using a telechelic multisite hexablock copolymer. Polym Chem 2022. [DOI: 10.1039/d2py00824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterofunctional hexablock copolymer comprising alternating reactive and non-reactive blocks is designed to generate cyclic, dumbbell-shaped and jellyfish-like copolymers.
Collapse
Affiliation(s)
- Yingsheng Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiaman Hu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
47
|
Li S, Liu P, Wang Z, Lian L, Zhao Y. Multi-tunable aggregation behaviors of thermo/pH-responsive toothbrush-like and jellyfish-like copolymers. Polym Chem 2022. [DOI: 10.1039/d1py01667a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rational design of comb-like and linear conjugates comprising PNIPAM and PDMAEMA segments allows the construction of a multi-tunable hierarchical self-assembly platform and insight into the topology effect.
Collapse
Affiliation(s)
- Siyu Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lu Lian
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Naguib M, Nixon K, Keddie D. Effect of Radical Copolymerization of the (Oxa)norbornene End-group of RAFT-prepared Macromonomers on Bottlebrush Copolymer Synthesis via ROMP. Polym Chem 2022. [DOI: 10.1039/d1py01599k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers are attractive for use in a variety of different applications. Here we report synthesis of two novel trithiocarbonate RAFT agents bearing either a oxanorbornyl or norbornenyl moiety for...
Collapse
|
49
|
Liberman-Martin AL, Chang AB, Chu CK, Siddique RH, Lee B, Grubbs RH. Processing Effects on the Self-Assembly of Brush Block Polymer Photonic Crystals. ACS Macro Lett 2021; 10:1480-1486. [PMID: 35549148 DOI: 10.1021/acsmacrolett.1c00579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The self-assembly of poly(dimethylsiloxane)-b-poly(trimethylene carbonate) (PDMS-b-PTMC) bottlebrush block polymers was investigated under different processing conditions. Small-angle X-ray scattering (SAXS) and UV/Visible spectroscopy provided insight into the self-assembly and structure in response to heating and applied pressure. In the absence of applied pressure (i.e., before annealing), the PDMS-b-PTMC bottlebrush block polymers are white solids and adopt small, randomly oriented lamellar grains. Heating the materials to 140 °C in the absence of applied pressure appears to "lock in" the isotropic, short-range-ordered state, preventing the formation of the long-range-ordered lamellar structure responsible for photonic properties. Applying modest anisotropic pressure (3 psi) between parallel plates at ambient temperature orients the short-range lamellar grains; however, applied pressure alone does not produce long-range order. Only when the bottlebrush block polymers were heated (>100 °C) under modest pressure (3 psi) were long-range-ordered photonic crystals formed. Analysis of the SAXS data motivated analogies to liquid crystals and revealed the potential self-assembly pathway. These results provide insight into the structure and self-assembly of bottlebrush block polymers with low glass transition temperature side chains in response to different processing conditions.
Collapse
Affiliation(s)
| | - Alice B. Chang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Crystal K. Chu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Radwanul H. Siddique
- Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Byeongdu Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Robert H. Grubbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
50
|
Hu M, Li X, Rzayev J, Russell TP. Hydrolysis-Induced Self-Assembly of High-χ–Low-N Bottlebrush Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingqiu Hu
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Xindi Li
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Javid Rzayev
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Thomas P. Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|