1
|
van der Vlies AJ, Xu J, Ghasemi M, Bator C, Bell A, Rosoff-Verbit B, Liu B, Gomez ED, Hasegawa U. Thioether-Based Polymeric Micelles with Fine-Tuned Oxidation Sensitivities for Chemotherapeutic Drug Delivery. Biomacromolecules 2021; 23:77-88. [PMID: 34762396 DOI: 10.1021/acs.biomac.1c01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidation-sensitive drug delivery systems (DDSs) have attracted attention due to the potential to improve efficacy and safety of chemotherapeutics. These systems are designed to release the payload in response to oxidative stress conditions, which are associated with many types of cancer. Despite extensive research on the development of oxidation-sensitive DDS, the lack of selectivity toward cancer cells over healthy cells remains a challenge. Here, we report the design and characterization of polymeric micelles containing thioether groups with varying oxidation sensitivities within the micellar core, which become hydrophilic upon thioether oxidation, leading to destabilization of the micellar structure. We first used the thioether model compounds, 3-methylthiopropylamide (TPAM), thiomorpholine amide (TMAM), and 4-(methylthio)benzylamide (TPhAM) to investigate the effect of the chemical structures of the thioethers on the oxidation by hydrogen peroxide (H2O2). TPAM shows the fastest oxidation, followed by TMAM and TPhAM, showing that the oxidation reaction of thioethers can be modulated by changing the substituent groups bound to the sulfur atom. We next prepared micelles containing these different thioether groups within the core (TP, TM, and TPh micelles). The micelles containing the thioether groups with a higher oxidation sensitivity were destabilized by H2O2 at a lower concentration. Micelle destabilization was also tested in human liver cancer (HepG2) cells and human umbilical vein endothelial cells (HUVECs). The TP micelles having the highest oxidation sensitivity were destabilized in both HepG2 cells and HUVECs, while the TPh micelles, which showed the lowest reactivity toward H2O2, were stable in these cell lines. The TM micelles possessing a moderate oxidation sensitivity were destabilized in HepG2 cells but were stable in HUVECs. Furthermore, the micelles were loaded with doxorubicin (Dox) to evaluate their potential in drug delivery applications. Among the micelles, the TM micelles loaded with Dox showed the enhanced relative toxicity in HepG2 cells over HUVECs. Therefore, our approach to fine-tune the oxidation sensitivity of the micelles has potential for improving therapeutic efficacy and safety of drugs in cancer treatment.
Collapse
Affiliation(s)
- André J van der Vlies
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiayi Xu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Masoud Ghasemi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carol Bator
- Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amanda Bell
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brett Rosoff-Verbit
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bin Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Enrique D Gomez
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Urara Hasegawa
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
2
|
François F, Nicolas C, Forcher G, Fontaine L, Montembault V. Poly(norbornenyl azlactone) as a versatile platform for sequential double click postpolymerization modification. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Liu M, Miao D, Wang X, Wang C, Deng W. Precise synthesis of heterogeneous glycopolymers with well‐defined saccharide motifs in the side chain via post‐polymerization modification and recognition with lectin. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meina Liu
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
- Key laboratory of Synthetic and Self‐Assembly Chemistry for Organic Function Molecules, Shanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai China
- State Key laboratory of Molecular Engineering of PolymersFudan University Shanghai China
| | - Dengyun Miao
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Xingyou Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Caiyun Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Wei Deng
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| |
Collapse
|
4
|
Makino H, Nishikawa T, Ouchi M. Elucidating Monomer Character of an Alkenyl Boronate through Radical Copolymerization Leads to Copolymer Synthesis beyond the Limitation of Copolymerizability by Side-Chain Replacement. ACS Macro Lett 2020; 9:788-793. [PMID: 35648527 DOI: 10.1021/acsmacrolett.0c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isopropenyl boronic acid pinacol ester (IPBpin) was used as a comonomer in radical polymerization with a wide range of common vinyl monomers for elucidation of the monomer character and syntheses of conventionally inaccessible copolymers via the replacement of the boron pendant. The study revealed that the boron-containing monomer is categorized into an electron-rich conjugated monomer, which was well consistent with the results of density functional theory (DFT)-based investigation. One of the thus obtained copolymers, the IPBpin-styrene copolymer, was successfully transformed into an α-methyl vinyl alcohol (MVA)-styrene counterpart via oxidation of the boron pendant. The copolymer cannot be synthesized even with the acetyl-protected monomer instead of IPBpin due to poor copolymerization ability based on the nonconjugated character.
Collapse
Affiliation(s)
- Hiroshi Makino
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Nishikawa
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Leiske MN, Mahmoud AM, Warne NM, Goos JACM, Pascual S, Montembault V, Fontaine L, Davis TP, Whittaker MR, Kempe K. Poly(2-isopropenyl-2-oxazoline) – a structural analogue to poly(vinyl azlactone) with Orthogonal Reactivity. Polym Chem 2020. [DOI: 10.1039/d0py00861c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular copolymer platform based on two oxazole derivatives is presented. Post-polymerisation modifications revealed the potential to selectively modify the individual side groups, providing access to functional copolymer libraries in the future.
Collapse
|
6
|
Heraud C, Basuki J, Hughes TC, Mueller M. Copolymerization of Pentafluorophenylmethacrylate with Hydrophilic Methacrylamide Monomers Induces Premature Hydrolytic Cleavage. Macromol Rapid Commun 2019; 40:e1900278. [PMID: 31328341 DOI: 10.1002/marc.201900278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Active ester polymers are commonly used for fast development of novel polymer libraries, but they require post-polymerization modification, which is not atom-efficient or economical. In order to more efficiently produce 2-hydroxypropyl methacrylamide (HPMAm) libraries, it would be advantageous to perform a direct copolymerization with active ester monomers. In this work, the synthesis of copolymer libraries of pentafluorophenyl methacrylate (PFPMA) and the hydrophilic monomer HPMAm is investigated. Surprisingly, HPMAm induces premature hydrolytic cleavage of PFPMA, which occurs during polymerization and depends on the HPMAm/PFPMA feed ratio. Copolymerization of PFPMA with N-isopropylmethacrylamide and the methacrylate monomers 2-hydroxypropylmethacrylate and N-isopropylmethacrylate reveals that the hydrolytic cleavage is promoted by copolymerization with methacrylamides only. By switching from a thermal- to a light-based initiator and lowering the reaction temperature, premature hydrolytic cleavage of PFPMA is avoided and allows direct copolymerization of HPMAm together with PFPMA to create polymer libraries for biomaterial screening.
Collapse
Affiliation(s)
- Clemence Heraud
- CSIRO Manufacturing, Private Bag 10, Clayton South, VIC, 3169, Australia.,Chimie Paris Tech, 11 Rue Pierre et Marie Curie, 75005, Paris, France
| | - Johan Basuki
- CSIRO Manufacturing, Private Bag 10, Clayton South, VIC, 3169, Australia
| | - Timothy C Hughes
- CSIRO Manufacturing, Private Bag 10, Clayton South, VIC, 3169, Australia
| | - Michael Mueller
- CSIRO Manufacturing, Private Bag 10, Clayton South, VIC, 3169, Australia
| |
Collapse
|
7
|
Gaballa H, Shang J, Meier S, Theato P. The glucose‐responsive behavior of a block copolymer featuring boronic acid and glycine. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Heba Gaballa
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg, Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Jiaojiao Shang
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg, Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Sabrina Meier
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg, Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg, Bundesstrasse 45 D‐20146 Hamburg Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesser Strasse. 18, D‐76131 Karlsruhe Germany
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Herrmann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
8
|
Zhong Y, Zeberl BJ, Wang X, Luo J. Combinatorial approaches in post-polymerization modification for rational development of therapeutic delivery systems. Acta Biomater 2018; 73:21-37. [PMID: 29654990 PMCID: PMC5985219 DOI: 10.1016/j.actbio.2018.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
The combinatorial polymer library approach has been proven to be effective for the optimization of therapeutic delivery systems. The library of polymers with chemical diversity has been synthesized by (i) polymerization of functionalized monomers or (ii) post-polymerization modification of reactive polymers. Most scientists have followed the first approach so far, and the second method has emerged as a versatile approach for combinatorial biomaterials discovery. This review focuses on the second approach, especially discussing the post-modifications that employ reactive polymers as templates for combinatorial synthesis of a library of functional polymers with distinct structural diversity or a combination of different functionalities. In this way, the functional polymers have a consistent chain length and distribution, which allows for systematic optimization of therapeutic delivery polymers for the efficient delivery of genes, small-molecule drugs, and protein therapeutics. In this review, the modification of representative reactive polymers for the delivery of different therapeutic payloads are summarized. The recent advances in rational design and optimization of therapeutic delivery systems based on reactive polymers are highlighted. This review ends with a summary of the current achievements and the prospect on future directions in applying the approach of post-polymerization modification of polymers to accelerate the development of therapeutic delivery systems. STATEMENT OF SIGNIFICANCE A strategy to rationally design and systematically optimize polymers for the efficient delivery of specific therapeutics is highly needed. The combinatorial polymer library approach could be an effective way to this end. The post-polymerization modification of reactive polymer precursors is applicable for the combinatorial synthesis of a library of functional polymers with distinct structural diversity across a consistent degree of polymerization. This allows for parallel comparison and systematic evaluation/optimization of functional polymers for efficient therapeutic delivery. This review summarizes the key elements of this combinatorial polymer synthesis approach realized by post-polymerization modification of reactive polymer precursors towards the development and identification of optimal polymers for the efficient delivery of therapeutic agents.
Collapse
Affiliation(s)
- Yuanbo Zhong
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Brian J Zeberl
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
9
|
Noree S, Tangpasuthadol V, Kiatkamjornwong S, Hoven VP. Cascade post-polymerization modification of single pentafluorophenyl ester-bearing homopolymer as a facile route to redox-responsive nanogels. J Colloid Interface Sci 2017; 501:94-102. [DOI: 10.1016/j.jcis.2017.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
|
10
|
Gegenhuber T, Abt D, Welle A, Özbek S, Goldmann AS, Barner-Kowollik C. Spatially resolved photochemical coding of reversibly anchored cysteine-rich domains. J Mater Chem B 2017; 5:4993-5000. [PMID: 32264016 DOI: 10.1039/c7tb00962c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a novel methodology to generate recodable surfaces using cysteine-rich domains (CRD) via a combination of photolithography and reversible covalently peptide-driven disulfide formation. Therefore, two 21mer CRD peptide derivatives were synthesized, one bearing an electron deficient fumarate group for immobilization via nitrile imine-ene mediated cycloaddition (NITEC) to a tetrazole-functional surface. Secondly, a bromine moiety is introduced to the CRD for analytic labelling purposes to detect surface encoding. The photolithography is conducted by selectively passivating the surface with a polyethylene glycol (PEG)-fumarate via NITEC using a photomask in a dotted pattern. Consecutively, the CRD-fumarate is immobilized via NITEC adjacent to the PEG-functional areas to the unaffected tetrazole covered surface layer. Subsequently, the CRD-bromide is covalently linked to the CRD-fumarate by forming disulfide bonds under mild reoxidative conditions in a buffer solution. The CRD-bromide is released from the surface upon reduction to recover the prior state of the surface without the bromine marker. The analysis of the CRD precursors is based on electrospray ionization mass spectrometry (ESI-MS). The surface analytics were carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS), unambiguously verifying the successful immobilization as well as coding and decoding of the CRD-bromide on the surface based on dynamically reversible disulfide bond formation.
Collapse
Affiliation(s)
- Thomas Gegenhuber
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Glass JJ, Li Y, De Rose R, Johnston APR, Czuba EI, Khor SY, Quinn JF, Whittaker MR, Davis TP, Kent SJ. Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12182-12194. [PMID: 28338321 DOI: 10.1021/acsami.6b15942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown. Herein, we used RAFT polymerization to prepare pyridyl disulfide (PDS)-functionalized star polymers with a methoxy-poly(ethylene glycol) brush corona and a fluorescently labeled cross-linked core using an arm-first method. PDS star polymers were examined for their interaction with primary human blood components: six separate white blood cell subsets, as well as red blood cells and platelets. Compared with control star polymers, thiol-reactive nanoparticles displayed enhanced association with white blood cells at 37 °C, particularly the phagocytic monocyte, granulocyte, and dendritic cell subsets. Platelets associated with more PDS than control nanoparticles at both 37 °C and on ice, but they were not activated in the duration examined. Association with red blood cells was minor but still enhanced with PDS nanoparticles. Thiol-reactive nanoparticles represent a useful strategy to target primary human immune cell subsets for improved nanoparticle delivery.
Collapse
Affiliation(s)
- Joshua J Glass
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Yang Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Robert De Rose
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Angus P R Johnston
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Ewa I Czuba
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Song Yang Khor
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University , Melbourne, Victoria 3800, Australia
| |
Collapse
|
12
|
Kratochvil MJ, Carter MCD, Lynn DM. Amine-Reactive Azlactone-Containing Nanofibers for the Immobilization and Patterning of New Functionality on Nanofiber-Based Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10243-10253. [PMID: 28234454 DOI: 10.1021/acsami.7b00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the design of amine-reactive polymer nanofibers and nonwoven reactive nanofiber mats fabricated by the electrospinning of azlactone-functionalized polymers. We demonstrate that randomly oriented nanofibers fabricated using a random copolymer of methyl methacrylate and 2-vinyl-4,4-dimethylazlactone contain intact and reactive azlactone groups that can be used to introduce new chemical functionality and modulate important interfacial properties of these materials (e.g., wetting behaviors) by postfabrication treatment with primary amine-based nucleophiles. The facile and "click-like" nature of these reactions permits functionalization under mild conditions without substantial changes to nanofiber or mat morphologies. This approach also enables the patterning of new functionality on mat-coated surfaces by treatment with bulk solutions of primary amines or by using methods such as microcontact printing. Further, these reactive mats can also, themselves, be contact-transferred or "printed" onto secondary surfaces by pressing them into contact with other amine-functionalized objects. Finally, we demonstrate that functionalization with hydrophobic amines can increase the stability of these materials in aqueous environments and yield hydrophobic nanofiber scaffolds useful for the design of "slippery" liquid-infused materials. The approaches reported here enable the introduction of new properties to reactive polymer mats after fabrication and, thus, reduce the need to synthesize individual functional polymers prior to electrospinning to achieve new properties. The azlactone chemistry used here broadens the scope of reactions that can be used to functionalize polymer nanofibers and is likely to prove general. We anticipate that this approach can be used with a range of amines or other nucleophiles (e.g., alcohols or thiols) to design nanofibers and reactive nanofiber-based materials with new physical properties, surface features, and behaviors that may be difficult to achieve by the direct electrospinning of conventional materials or other functional polymers.
Collapse
Affiliation(s)
- Michael J Kratochvil
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Matthew C D Carter
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Tesch M, Kudruk S, Letzel M, Studer A. Orthogonal Click Postfunctionalization of Alternating Copolymers Prepared by Nitroxide-Mediated Polymerization. Chemistry 2017; 23:5915-5919. [DOI: 10.1002/chem.201605639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Matthias Tesch
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Sergej Kudruk
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Matthias Letzel
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
14
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
15
|
Hu J, Qiao R, Whittaker MR, Quinn JF, Davis TP. Synthesis of Star Polymers by RAFT Polymerization as Versatile Nanoparticles for Biomedical Applications. Aust J Chem 2017. [DOI: 10.1071/ch17391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The precise control of polymer chain architecture has been made possible by developments in polymer synthesis and conjugation chemistry. In particular, the synthesis of polymers in which at least three linear polymeric chains (or arms) are tethered to a central core has yielded a useful category of branched architecture, so-called star polymers. Fabrication of star polymers has traditionally been achieved using either a core-first technique or an arm-first approach. Recently, the ability to couple polymeric chain precursors onto a functionalized core via highly efficient coupling chemistry has provided a powerful new methodology for star synthesis. Star syntheses can be implemented using any of the living polymerization techniques using ionic or living radical intermediates. Consequently, there are innumerable routes to fabricate star polymers with varying chemical composition and arm numbers. In comparison with their linear counterparts, star polymers have unique characteristics such as low viscosity in solution, prolonged blood circulation, and high accumulation in tumour regions. These advantages mean that, far beyond their traditional application as rheology control agents, star polymers may also be useful in the medical and pharmaceutical sciences. In this account, we discuss recent advances made in our laboratory focused on star polymer research ranging from improvements in synthesis through to novel applications of the product materials. Specifically, we examine the core-first and arm-first preparation of stars using reversible addition–fragmentation chain transfer (RAFT) polymerization. Further, we also discuss several biomedical applications of the resulting star polymers, particularly those made by the arm-first protocol. Emphasis is given to applications in the emerging area of nanomedicine, in particular to the use of star polymers for controlled delivery of chemotherapeutic agents, protein inhibitors, signalling molecules, and siRNA. Finally, we examine possible future developments for the technology and suggest the further work required to enable clinical applications of these interesting materials.
Collapse
|
16
|
Zayas-Gonzalez YM, Lynn DM. Degradable Amine-Reactive Coatings Fabricated by the Covalent Layer-by-Layer Assembly of Poly(2-vinyl-4,4-dimethylazlactone) with Degradable Polyamine Building Blocks. Biomacromolecules 2016; 17:3067-75. [PMID: 27525718 DOI: 10.1021/acs.biomac.6b00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the fabrication of reactive and degradable cross-linked polymer multilayers by the reactive/covalent layer-by-layer assembly of a non-degradable azlactone-functionalized polymer [poly(2-vinyl-4,4-dimethylazlactone), PVDMA] with hydrolytically or enzymatically degradable polyamine building blocks. Fabrication of multilayers using PVDMA and a hydrolytically degradable poly(β-amino ester) (PBAE) containing primary amine side chains yielded multilayers (∼100 nm thick) that degraded over ∼12 days in physiologically relevant media. Physicochemical characterization and studies on stable films fabricated using PVDMA and an analogous non-degradable poly(amidoamine) suggested that erosion occurred by chemical hydrolysis of backbone esters in the PBAE components of these assemblies. These degradable assemblies also contained residual amine-reactive azlactone functionality that could be used to impart new functionality to the coatings post-fabrication. Cross-linked multilayers fabricated using PVDMA and the enzymatically degradable polymer poly(l-lysine) were structurally stable for prolonged periods in physiological media, but degraded over ∼24 h when the enzyme trypsin was added. Past studies demonstrate that multilayers fabricated using PVDMA and non-degradable polyamines [e.g., poly(ethylenimine)] enable the design and patterning of useful nano/biointerfaces and other materials that are structurally stable in physiological media. The introduction of degradable functionality into PVDMA-based multilayers creates opportunities to exploit the reactivity of azlactone groups for the design of reactive materials and functional coatings that degrade or erode in environments that are relevant in biomedical, biotechnological, and environmental contexts. This "degradable building block" strategy should be general; we anticipate that this approach can also be extended to the design of amine-reactive multilayers that degrade upon exposure to specific chemical triggers, selective enzymes, or contact with cells by judicious design of the degradable polyamine building blocks used to fabricate the coatings.
Collapse
Affiliation(s)
- Yashira M Zayas-Gonzalez
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States , and
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States , and.,Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Carter MCD, Jennings J, Appadoo V, Lynn DM. Synthesis and Characterization of Backbone Degradable Azlactone-Functionalized Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Matthew C. D. Carter
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James Jennings
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Stuparu MC, Khan A. Thiol-epoxy “click” chemistry: Application in preparation and postpolymerization modification of polymers. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28195] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University; 21-Nanyang Link 637371 Singapore
- School of Materials Science and Engineering, Nanyang Technological University; Singapore
| | - Anzar Khan
- Department of Chemical and Biological Engineering; Korea University; Seoul 02841 Korea
| |
Collapse
|
19
|
De Coen R, Vanparijs N, Risseeuw MDP, Lybaert L, Louage B, De Koker S, Kumar V, Grooten J, Taylor L, Ayres N, Van Calenbergh S, Nuhn L, De Geest BG. pH-Degradable Mannosylated Nanogels for Dendritic Cell Targeting. Biomacromolecules 2016; 17:2479-88. [DOI: 10.1021/acs.biomac.6b00685] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Leeanne Taylor
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Neil Ayres
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | | | | | | |
Collapse
|
20
|
Liu H, Pan W, Tong M, Zhao Y. Synthesis and properties of couplable ABCDE star copolymers by orthogonal CuAAC and Diels–Alder click reactions. Polym Chem 2016. [DOI: 10.1039/c5py01960e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Well-defined ABCDE star quintopolymers generated by a modular and orthogonal strategy could self-assemble into intriguing nanoobjects sensitive to thermal and pH stimuli.
Collapse
Affiliation(s)
- Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Weidong Pan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Min Tong
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
21
|
Waggel J, Mathers RT. Post polymer modification of polyethylenimine with citrate esters: selectivity and hydrophobicity. RSC Adv 2016. [DOI: 10.1039/c6ra14953g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrophobic modification of water soluble PEI with citrate esters is selective and increases log Poct.
Collapse
Affiliation(s)
- Justine Waggel
- Department of Chemistry
- The Pennsylvania State University
- New Kensington
- USA
| | - Robert T. Mathers
- Department of Chemistry
- The Pennsylvania State University
- New Kensington
- USA
| |
Collapse
|
22
|
Khor SY, Hu J, McLeod VM, Quinn JF, Williamson M, Porter CJ, Whittaker MR, Kaminskas LM, Davis TP. Molecular weight (hydrodynamic volume) dictates the systemic pharmacokinetics and tumour disposition of PolyPEG star polymers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2099-108. [DOI: 10.1016/j.nano.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
23
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
24
|
He L, Shang J, Theato P. Preparation of dual stimuli-responsive block copolymers based on different activated esters with distinct reactivities. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Xiang Y, Moulin E, Buhler E, Maaloum M, Fuks G, Giuseppone N. Hydrogen-Bonded Multifunctional Supramolecular Copolymers in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7738-7748. [PMID: 26087392 DOI: 10.1021/acs.langmuir.5b01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have investigated the self-assembly in water of molecules having a single hydrophobic bis-urea domain linked to different hydrophilic functional side chains, i.e., bioactive peptidic residues and fluorescent cyanine dyes. By using a combination of spectroscopy, scattering, and microscopy techniques, we show that each one of these molecules can individually produce well-defined nanostructures such as twisted ribbons, two-dimensional plates, or branched fibers. Interestingly, when these monomers of different functionalities are mixed in an equimolar ratio, supramolecular copolymers are preferred to narcissistic segregation. Radiation scattering and imaging techniques demonstrate that one of the molecular units dictates the formation of a preferential nanostructure, and optical spectroscopies reveal the alternated nature of the copolymerization process. This work illustrates how social self-sorting in H-bond supramolecular polymers can give straightforward access to multifunctional supramolecular copolymers.
Collapse
Affiliation(s)
- Yunjie Xiang
- †SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| | - Emilie Moulin
- †SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| | - Eric Buhler
- ‡Matière et Systèmes Complexes (MSC) Laboratory, University of Paris Diderot-Paris VII, UMR 7057, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - Mounir Maaloum
- †SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| | - Gad Fuks
- †SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| | - Nicolas Giuseppone
- †SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
26
|
Li Y, Duong HTT, Laurent S, MacMillan A, Whan RM, Elst LV, Muller RN, Hu J, Lowe A, Boyer C, Davis TP. Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity. Adv Healthc Mater 2015; 4:148-56. [PMID: 24985790 DOI: 10.1002/adhm.201400164] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/27/2014] [Indexed: 12/12/2022]
Abstract
Dual-functional star polymers (diameters 15 nm) are synthesized producing nanoparticles with excellent colloidal stability in both water and serum. The nanoparticles are built with aldehyde groups in the core and activated esters in the arms. The different reactivity of the two functional groups to sequentially react with different amino compounds is exploited; doxorubicin (DOX) and 1-(5-amino-3-aza-2-oxypentyl)-4,7,10-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO3A-tBu-NH2 )-a chelating agent effective for the complexation of Gadolinium ions (Gd). The activated ester group is employed to attach the DO3A chelating agent, while the aldehyde groups are exploited for DOX conjugation, providing a controlled release mechanism for DOX in acidic environments. DOX/Gd-loaded nanoparticles are rapidly taken up by MCF-7 breast cancer cells, subsequently releasing DOX as demonstrated using in vitro fluorescence lifetime imaging microscopy (FLIM). Endosomal, DOX release is observed, using a phasor plot representation of the fluorescence lifetime data, showing an increase of native DOX with time. The MRI properties of the stars are assessed and the relaxivity of Gd loaded in stars is three times higher than conventional organic Gd/DO3A complexes. The DOX/Gd-conjugated nanoparticles yield a similar IC50 to native DOX for breast cancer cell lines, confirming that DOX integrity is conserved during nanoparticle attachment and release.
Collapse
Affiliation(s)
- Yang Li
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Hien T. T. Duong
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
| | - Alexandre MacMillan
- Biomedical Imaging Facility; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Renee Megan Whan
- Biomedical Imaging Facility; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Luce Vander Elst
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
| | - Robert N. Muller
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
- CMMI - Center of Microscopy and Molecular Imaging; Rue Adrienne Bolland, 8 B-6041 Gosselies Belgium
| | - Jinming Hu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Andrew Lowe
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| |
Collapse
|
27
|
Jang HJ, Lee JT, Yoon HJ. Aziridine in polymers: a strategy to functionalize polymers by ring-opening reaction of aziridine. Polym Chem 2015. [DOI: 10.1039/c5py00266d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aziridine-containing polymers were synthesized, and post-modification of polymers was demonstrated through ring-opening reaction of aziridine.
Collapse
Affiliation(s)
| | - Jae Tak Lee
- Department of Chemistry
- Sogang University
- Seoul
- Korea
| | - Hyo Jae Yoon
- Department of Chemistry
- Korea University
- Seoul
- Korea
| |
Collapse
|
28
|
Gadwal I, Stuparu MC, Khan A. Homopolymer bifunctionalization through sequential thiol–epoxy and esterification reactions: an optimization, quantification, and structural elucidation study. Polym Chem 2015. [DOI: 10.1039/c4py01453g] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we probe various aspects of a post-polymerization double-modification strategy involving sequential thiol–epoxy and esterification reactions for the preparation of dual-functional homopolymers.
Collapse
Affiliation(s)
- Ikhlas Gadwal
- Department of Materials
- ETH-Zürich
- CH-8093 Zürich
- Switzerland
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- and School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Anzar Khan
- Department of Materials
- ETH-Zürich
- CH-8093 Zürich
- Switzerland
| |
Collapse
|
29
|
Hu D, Peng H, Niu Y, Li Y, Xia Y, Li L, He J, Liu X, Xia X, Lu Y, Xu W. Reversibly light-responsive biodegradable poly(carbonate) micelles constructed via CuAAC reaction. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27499] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Hu
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Hua Peng
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Yile Niu
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Yefei Li
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Yingchun Xia
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Ling Li
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Jingwen He
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Xiangyu Liu
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Xinnian Xia
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Yanbing Lu
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Weijian Xu
- Institute of Polymer Science and Engineering, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| |
Collapse
|
30
|
Ono RJ, Liu SQ, Venkataraman S, Chin W, Yang YY, Hedrick JL. Benzyl Chloride-Functionalized Polycarbonates: A Versatile Platform for the Synthesis of Functional Biodegradable Polycarbonates. Macromolecules 2014. [DOI: 10.1021/ma501734y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Robert J. Ono
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Shao Qiong Liu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Willy Chin
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
31
|
Affiliation(s)
- Umit Tunca
- Department of Chemistry; Istanbul Technical University; Maslak Istanbul 34469 Turkey
| |
Collapse
|
32
|
He L, Szameit K, Zhao H, Hahn U, Theato P. Postpolymerization Modification Using Less Cytotoxic Activated Ester Polymers for the Synthesis of Biological Active Polymers. Biomacromolecules 2014; 15:3197-205. [DOI: 10.1021/bm500902t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lirong He
- Institute
for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Kristina Szameit
- Institute
for Biochemistry and Molecular Biology, University of Hamburg Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Hui Zhao
- Institute
for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Ulrich Hahn
- Institute
for Biochemistry and Molecular Biology, University of Hamburg Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg, Germany
| |
Collapse
|
33
|
Binder S, Gadwal I, Bielmann A, Khan A. Thiol-epoxy polymerization via an AB monomer: Synthetic access to high molecular weight poly(β-hydroxythio-ether)s. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27212] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Selmar Binder
- Department of Materials; ETH-Zürich 8093 Zürich Switzerland
| | - Ikhlas Gadwal
- Department of Materials; ETH-Zürich 8093 Zürich Switzerland
| | | | - Anzar Khan
- Department of Materials; ETH-Zürich 8093 Zürich Switzerland
| |
Collapse
|
34
|
Uysal BB, Gunay US, Hizal G, Tunca U. Orthogonal multifunctionalization of aliphatic polycarbonate via sequential Michael addition and radical‐thiol‐ene click reactions. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bilal Bugra Uysal
- Department of ChemistryIstanbul Technical UniversityMaslak Istanbul34469 Turkey
| | - Ufuk Saim Gunay
- Department of ChemistryIstanbul Technical UniversityMaslak Istanbul34469 Turkey
| | - Gurkan Hizal
- Department of ChemistryIstanbul Technical UniversityMaslak Istanbul34469 Turkey
| | - Umit Tunca
- Department of ChemistryIstanbul Technical UniversityMaslak Istanbul34469 Turkey
| |
Collapse
|
35
|
Hayward AS, Eissa AM, Maltman D, Sano N, Przyborski SA, Cameron NR. Galactose-functionalized polyHIPE scaffolds for use in routine three dimensional culture of mammalian hepatocytes. Biomacromolecules 2013; 14:4271-7. [PMID: 24180291 PMCID: PMC3859181 DOI: 10.1021/bm401145x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/31/2013] [Indexed: 01/12/2023]
Abstract
Three-dimensional (3D) cell culture is regarded as a more physiologically relevant method of growing cells in the laboratory compared to traditional monolayer cultures. Recently, the application of polystyrene-based scaffolds produced using polyHIPE technology (porous polymers derived from high internal phase emulsions) for routine 3D cell culture applications has generated very promising results in terms of improved replication of native cellular function in the laboratory. These materials, which are now available as commercial scaffolds, are superior to many other 3D cell substrates due to their high porosity, controllable morphology, and suitable mechanical strength. However, until now there have been no reports describing the surface-modification of these materials for enhanced cell adhesion and function. This study, therefore, describes the surface functionalization of these materials with galactose, a carbohydrate known to specifically bind to hepatocytes via the asialoglycoprotein receptor (ASGPR), to further improve hepatocyte adhesion and function when growing on the scaffold. We first modify a typical polystyrene-based polyHIPE to produce a cell culture scaffold carrying pendent activated-ester functionality. This was achieved via the incorporation of pentafluorophenyl acrylate (PFPA) into the initial styrene (STY) emulsion, which upon polymerization formed a polyHIPE with a porosity of 92% and an average void diameter of 33 μm. Histological analysis showed that this polyHIPE was a suitable 3D scaffold for hepatocyte cell culture. Galactose-functionalized scaffolds were then prepared by attaching 2'-aminoethyl-β-D-galactopyranoside to this PFPA functionalized polyHIPE via displacement of the labile pentafluorophenyl group, to yield scaffolds with approximately ca. 7-9% surface carbohydrate. Experiments with primary rat hepatocytes showed that cellular albumin synthesis was greatly enhanced during the initial adhesion/settlement period of cells on the galactose-functionalized material, suggesting that the surface carbohydrates are accessible and selective to cells entering the scaffold. This porous polymer scaffold could, therefore, have important application as a 3D scaffold that offers enhanced hepatocyte adhesion and functionality.
Collapse
Affiliation(s)
- Adam S. Hayward
- School
of Biological and Biomedical Science, Durham
University, South Road, Durham DH13LE, United Kingdom
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, United Kingdom
| | - Ahmed M. Eissa
- Department of Polymers, Chemical Industries
Research Division, National Research Centre
(NRC), Dokki, Cairo, Egypt
- Department
of Chemistry, Durham University, South Road, Durham DH13LE, United
Kingdom
| | - Daniel
J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, United Kingdom
| | - Naoko Sano
- NEXUS, School of Mechanical and Systems Engineering, Newcastle University,
Stephenson Building, Newcastle-upon-Tyne NE1 7RU, United Kingdom
| | - Stefan A. Przyborski
- School
of Biological and Biomedical Science, Durham
University, South Road, Durham DH13LE, United Kingdom
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, United Kingdom
| | - Neil R. Cameron
- Department
of Chemistry, Durham University, South Road, Durham DH13LE, United
Kingdom
| |
Collapse
|
36
|
Mardyukov A, Tesch M, Studer A. Synthesis of orthogonally addressable block copolymers via reversible addition fragmentation chain transfer polymerization and subsequent chemoselective postmodification. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Artur Mardyukov
- Westfälische Wilhelms‐Universität MünsterCorrenstrasse 4048149Münster Germany
| | - Matthias Tesch
- Westfälische Wilhelms‐Universität MünsterCorrenstrasse 4048149Münster Germany
| | - Armido Studer
- Westfälische Wilhelms‐Universität MünsterCorrenstrasse 4048149Münster Germany
| |
Collapse
|