1
|
Kalmer H, Sbordone F, McMurtrie J, Nitsche C, Frisch H. Macromolecular Function Emerging from Intramolecular Peptide Stapling of Synthetic Polymers. Macromol Rapid Commun 2025; 46:e2400591. [PMID: 39437172 DOI: 10.1002/marc.202400591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Protein function results from the precise folding of polypeptides into bespoke architectures. Taking inspiration from nature, the field of single-chain nanoparticles (SCNPs), intramolecularly crosslinked synthetic polymers, emerged. In contrast to nature, the function of SCNPs is generally defined by the parent polymer or the applied crosslinker, rather than by the crosslinking process itself. This work explores the cyanopyridine-aminothiol click reaction to crosslink peptide-decorated polymers intra-macromolecularly to endow the resulting SCNPs with emerging functionality, resulting from the conversion of N-terminal cysteine units into pyridine-thiazolines. Dimethylacrylamide based polymers with different cysteine-terminated amino acid sequences tethered to their sidechains are investigated (P1 (C), P2 (GDHC), P3 (GDSC)) and intramolecularly crosslinked into SCNPs. Since the deprotection of the parent polymers yields disulfide-based SCNPs, a direct comparison between disulfide and pyridine-thiazolines crosslinked SCNPs is possible. This comparison revealed two emerging properties of the pyridine-thiazoline crosslinked SCNPs: 1) The formation of pyridine-thiazolines gave rise to metal binding sites within the SCNP, which complexed iron. 2) Depending on the peptide sequence in the precursor polymer, the hydrolytic activity of the peptide sequences is either increased (GDHC) or decreased (GDSC) upon pyridine-thiazoline formation compared to identical SCNPs based on disulfide crosslinks.
Collapse
Affiliation(s)
- Henrik Kalmer
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Federica Sbordone
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - John McMurtrie
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
2
|
Thümmler JF, Binder WH. Compartmentalised single-chain nanoparticles and their function. Chem Commun (Camb) 2024; 60:14332-14345. [PMID: 39575550 DOI: 10.1039/d4cc04387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Single-chain nanoparticles (SCNPs) are generated by intramolecular collapse and crosslinking of single polymer chains, thus conceptually resembling the structures of folded proteins. Their chemical flexibility and ability to form compartmentalised nanostructures sized ∼1 nm make them perfect candidates for numerous applications, such as in catalysis and drug delivery. In this review we discuss principles for the design, synthesis and analysis of SCNPs, with a focus on their compartmentalised structures, highlighting our own previous work. As such compartments offer the potential to generate a specific nanoenvironment e.g. for the covalent and non-covalent encapsulation of catalysts or drugs, they represent a novel, exciting, and expanding research area. Starting from the architectural and chemical design of the starting copolymers by controlling their amphiphilic profile, the embedding of blocks-, or secondary-structure-mimetic arrangements, we discuss design principles to form internal compartments inside the SCNPs. While the generation of compartments inside SCNPs is straightforward, their analysis is still challenging and often demands special techniques. We finally discuss applications of SCNPs, also linked to the compartment formation, predicting a bright future for these special nanoobjects.
Collapse
Affiliation(s)
- Justus F Thümmler
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| | - Wolfgang H Binder
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|
3
|
Zeroug-Metz L, Lee S. Biodynamers: applications of dynamic covalent chemistry in single-chain polymer nanoparticles. Drug Deliv Transl Res 2024; 14:3599-3607. [PMID: 39009930 PMCID: PMC11499429 DOI: 10.1007/s13346-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/17/2024]
Abstract
Dynamic Covalent Chemistry (DCC) enables the development of responsive molecular systems through the integration of reversible bonds at the molecular level. These systems are thermodynamically stable and capable of undergoing various molecular assemblies and transformations, allowing them to adapt to changes in environmental conditions like temperature and pH. Introducing DCC into the field of polymer science has led to the design of Single-Chain Nanoparticles (SCNPs), which are formed by self-folding via intramolecular crosslinking mechanisms. Defined by their adaptability, SCNPs mimic biopolymers in size and functionality. Biodynamers, a subclass of SCNPs, are specifically designed for their stimuli-responsive and tunable, dynamic properties. Mimicking complex biological structures, their scope of application includes target-specific and pH-responsive drug delivery, enhanced cellular uptake and endosomal escape. In this manuscript, we discuss the integration of DCC for the design of SCNPs, focusing particularly on the characteristics of biodynamers and their biomedical and pharmaceutical applications. By underlining their potential, we highlight the factors driving the growing interest in SCNPs, providing an overview of recent developments and future perspectives in this research field.
Collapse
Affiliation(s)
- Lena Zeroug-Metz
- Department of Pharmacy, Saarland University, Campus C 4.1, 66123, Saarbrücken, Germany
| | - Sangeun Lee
- Department of Pharmacy, Saarland University, Campus C 4.1, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
4
|
Gillhuber S, Holloway JO, Mundsinger K, Kammerer JA, Harmer JR, Frisch H, Barner-Kowollik C, Roesky PW. Visible light photoflow synthesis of a Cu(ii) single-chain polymer nanoparticle catalyst. Chem Sci 2024:d4sc03079f. [PMID: 39246378 PMCID: PMC11376198 DOI: 10.1039/d4sc03079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
We herein pioneer the visible light (λ max = 410 nm) mediated flow synthesis of catalytically active single-chain nanoparticles (SCNPs). Our design approach is based on a copolymer of poly(ethylene glycol) methyl ether methacrylate and a photocleavable 2-((((2-nitrobenzyl)oxy)carbonyl)amino)ethyl methacrylate monomer which can liberate amine groups upon visible light irradiation, allowing for single-chain collapse via the complexation of Cu(ii) ions. We initially demonstrate the successful applicability of our design approach for the batch photochemical synthesis of Cu(ii) SCNPs and transfer the concept to photoflow conditions, enabling, for the first time, the continuous production of functional SCNPs. Critically, we explore their ability to function as a photocatalyst for the cleavage of carbon-carbon single and double bonds on the examples of xanthene-9-carboxylic acid and oleic acid, demonstrating the advantageous effect SCNPs can provide over analogous small molecule catalysts.
Collapse
Affiliation(s)
- Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 76131 Karlsruhe Germany
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Kai Mundsinger
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Jochen A Kammerer
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland (UQ) Building 57 Research Road 4072 Brisbane QLD Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 76131 Karlsruhe Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Dykeman-Bermingham PA, Stingaciu LR, Do C, Knight AS. Dynamic Implications of Noncovalent Interactions in Amphiphilic Single-Chain Polymer Nanoparticles. ACS Macro Lett 2024; 13:889-895. [PMID: 38959296 DOI: 10.1021/acsmacrolett.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Single-chain polymer nanoparticles (SCNPs) combine the chemical diversity of synthetic polymers with the intricate structure of biopolymers, generating versatile biomimetic materials. The mobility of polymer chain segments at length scales similar to secondary structural elements in proteins is critical to SCNP structure and thus function. However, the influence of noncovalent interactions used to form SCNPs (e.g., hydrogen-bonding and biomimetic secondary-like structure) on these conformational dynamics is challenging to quantitatively assess. To isolate the effects of noncovalent interactions on SCNP structure and conformational dynamics, we synthesized a series of amphiphilic copolymers containing dimethylacrylamide and monomers capable of forming these different interactions: (1) di(phenylalanine) acrylamide that forms intramolecular β-sheet-like cross-links, (2) phenylalanine acrylamide that forms hydrogen-bonds but lacks a defined local structure, and (3) benzyl acrylamide that has the lowest propensity for hydrogen-bonding. Each SCNP formed folded structures comparable to those of intrinsically disordered proteins, as observed by size exclusion chromatography and small angle neutron scattering. The dynamics of these polymers, as characterized by a combination of dynamic light scattering and neutron spin echo spectroscopy, was well described using the Zimm with internal friction (ZIF) model, highlighting the role of each noncovalent interaction to additively restrict the internal relaxations of SCNPs. These results demonstrate the utility of local scale interactions to control SCNP polymer dynamics, guiding the design of functional biomimetic materials with refined binding sites and tunable kinetics.
Collapse
Affiliation(s)
- Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Laura R Stingaciu
- NScD, SNS, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Changwoo Do
- NScD, SNS, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Pinacho-Olaciregui J, Verde-Sesto E, Taton D, Pomposo JA. Consecutive one-pot alkyne semihydrogenation/alkene dioxygenation reactions by Pt(II)/Cu(II) single-chain nanoparticles in green solvent. NANOSCALE 2024; 16:9742-9747. [PMID: 38700515 DOI: 10.1039/d4nr01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Heterobimetallic Pt(II)/Cu(II) single-chain polymer nanoparticles (SCNPs) were sequentially synthesized from a polymeric precursor featuring both α-diazo-β-ketoester and naked β-ketoester functional groups. Photoactivated carbene generation at λexc = 365 nm from α-diazo-β-ketoester moieities was triggered for bonding Pt(II) ions from dichloro(1,5-cyclooctadiene)Pt(II) to the polymeric precursor, whereas Cu(II) ions were subsequently incorporated via Cu(II)-(β-ketoester)2 complex formation using Cu(II) acetate. Both intrachain Pt(II) bonding and Cu(II) complexation were found to contribute to the folding of the polymeric precursor generating Pt(II)/Cu(II)-SCNPs as evidenced by infrared spectroscopy, size exclusion chromatography and dynamic light scattering. These heterobimetallic SCNPs proved highly efficient as soft nanocatalysts for the consecutive one-pot alkyne semihydrogenation/alkene dioxygenation reactions at room temperature in N-butylpyrrolidone, as a non-toxic alternative solvent to N,N-dimethylformamide.
Collapse
Affiliation(s)
- Jokin Pinacho-Olaciregui
- Centro de Física de Materiales (CSIC - UPV/EHU) - Materials Physics Center MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain.
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux INP-ENSCBP, 16 av. Pey Berland, 33607 Pessac cedex, France
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC - UPV/EHU) - Materials Physics Center MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain.
- IKERBASQUE - Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux INP-ENSCBP, 16 av. Pey Berland, 33607 Pessac cedex, France
| | - José A Pomposo
- Centro de Física de Materiales (CSIC - UPV/EHU) - Materials Physics Center MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain.
- IKERBASQUE - Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología. University of the Basque Country (UPV/EHU), P° Manuel Lardizabal 3, E-20800 Donostia, Spain
| |
Collapse
|
7
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
8
|
Mundsinger K, Izuagbe A, Tuten BT, Roesky PW, Barner-Kowollik C. Single Chain Nanoparticles in Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311734. [PMID: 37852937 DOI: 10.1002/anie.202311734] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Over the last six decades folded polymer chains-so-called Single Chain Nanoparticles (SCNPs)-have evolved from the mere concept of intramolecularly crosslinked polymer chains to tailored nanoreactors, underpinned by a plethora of techniques and chemistries to tailor and analyze their morphology and function. These monomolecular polymer entities hold critical promise in a wide range of applications. Herein, we highlight the exciting progress that has been made in the field of catalytically active SCNPs in recent years.
Collapse
Affiliation(s)
- Kai Mundsinger
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 4000, Brisbane QLD, Australia
| | - Aidan Izuagbe
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 4000, Brisbane QLD, Australia
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse15, 76131, Karlsruhe, Germany
| | - Bryan T Tuten
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 4000, Brisbane QLD, Australia
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse15, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 4000, Brisbane QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Sanders MA, Chittari SS, Sherman N, Foley JR, Knight AS. Versatile Triphenylphosphine-Containing Polymeric Catalysts and Elucidation of Structure-Function Relationships. J Am Chem Soc 2023; 145:9686-9692. [PMID: 37079910 DOI: 10.1021/jacs.3c01092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Synthetic polymers are a modular solution to bridging the two most common classes of catalysts: proteins and small molecules. Polymers offer the synthetic versatility of small-molecule catalysts while simultaneously having the ability to construct microenvironments mimicking those of natural proteins. We synthesized a panel of polymeric catalysts containing a novel triphenylphosphine acrylamide monomer and investigated how their properties impact the rate of a model Suzuki-Miyaura cross-coupling reaction. Systematic variation of polymer properties, such as the molecular weight, functional density, and comonomer identity, led to tunable reaction rates and solvent compatibility, including full conversion in an aqueous medium. Studies with bulkier substrates revealed connections between polymer parameters and reaction conditions that were further elucidated with a regression analysis. Some connections were substrate-specific, highlighting the value of the rapidly tunable polymer catalyst. Collectively, these results aid in building structure-function relationships to guide the development of polymer catalysts with tunable substrates and environmental compatibility.
Collapse
Affiliation(s)
- Matthew A Sanders
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole Sherman
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jack R Foley
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Cai Y, Zhou J, Huang J, Zhou W, Wan Y, Cohen Stuart MA, Wang J. Rational design of polymeric nanozymes with robust catalytic performance via copper-ligand coordination. J Colloid Interface Sci 2023; 645:458-465. [PMID: 37156154 DOI: 10.1016/j.jcis.2023.04.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Incorporating copper (Cu) ions into polymeric particles can be a straightforward strategy for mimicking copper enzymes, but it is challenging to simultaneously control the structure of the nanozyme and of the active sites. In this report, we present a novel bis-ligand (L2) containing bipyridine groups connected by a tetra-ethylene oxide (4EO) spacer. In phosphate buffer the Cu-L2 mixture forms coordination complexes that (at proper composition) can bind polyacrylic acid (PAA) to produce catalytically active polymeric nanoparticles with well-defined structure and size, which we refer to as 'nanozymes'. Manipulating the L2/Cu mixing ratio and using phosphate as a co-binding motif, cooperative copper centres are realized that exhibit promoted oxidation activity. The structure and activity of the so-designed nanozymes remain stable upon increasing temperature and over multiple cycles of application. Increasing ionic strength causes enhanced activity, a response also seen for natural tyrosinase. By means of our rational design we obtain nanozymes with optimized structure and active sites that in several respects outperform natural enzymes. This approach therefore demonstrates a novel strategy for developing functional nanozymes, which may well stimulate the application of this class of catalysts.
Collapse
Affiliation(s)
- Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jianan Huang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Hamelmann NM, Paulusse JMJ. Single-chain polymer nanoparticles in biomedical applications. J Control Release 2023; 356:26-42. [PMID: 36804328 DOI: 10.1016/j.jconrel.2023.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Single-chain polymer nanoparticles (SCNPs) are a well-defined and uniquely sized class of polymer nanoparticles. The advances in polymer science over the past decades have enabled the development of a variety of intramolecular crosslinking systems, leading to particles in the 5-20 nm size regime. Which is aligned with the size regime of proteins and therefore making SCNPs an interesting class of NPs for biomedical applications. The high modularity of SCNP design and the ease of their functionalization have led to growing research interest. In this review, we describe different crosslinking systems, as well as the preparation of functional SCNPs and the variety of biomedical applications that have been explored.
Collapse
Affiliation(s)
- Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
12
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Catalyst-free multicomponent polymerization of sulfonyl azide, aldehyde and cyclic amino acids toward zwitterionic and amphiphilic poly(N-sulfonyl amidine) as nanocatalyst precursor. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Cheng L, Wu RJ, Li YM, Ren H, Ji CY, Li WJ. Single-chain polymer nanoparticles-encapsulated chiral bifunctional metal-organic frameworks for asymmetric sequential reactions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Qu R, Suo H, Gu Y, Weng Y, Qin Y. Sidechain Metallopolymers with Precisely Controlled Structures: Synthesis and Application in Catalysis. Polymers (Basel) 2022; 14:1128. [PMID: 35335458 PMCID: PMC8956016 DOI: 10.3390/polym14061128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity. Previous models about multi-metallic catalysts, such as cross-linked polymer-supported catalysts, failed to precisely control the number and location of their active sites, leading to low activity and selectivity. In recent years, metallopolymers with metals in the sidechain, also named as sidechain metallopolymers (SMPs), have attracted much attention because of their combination of the catalytic, magnetic, and electronic properties of metals with desirable mechanical and processing properties of polymeric backbones. Living and controlled polymerization techniques provide access to SMPs with precisely controlled structures, for example, controlled degree of polymerization (DP) and molecular weight dispersity (Đ), which may have excellent performance as multi-metallic catalysts in a variety of catalytic reactions. This review will cover the recent advances about SMPs, especially on their synthesis and application in catalysis. These tailor-made SMPs with metallic catalytic centers can precisely control the number and location of their active sites, exhibiting high catalytic efficiency.
Collapse
Affiliation(s)
- Rui Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yanan Gu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yunxuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| |
Collapse
|
16
|
Kalmer H, Sbordone F, Frisch H. Peptide based folding and function of single polymer chains. Polym Chem 2022. [DOI: 10.1039/d2py00717g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular synthetic strategy to fold single polymer chains upon deprotection of pendent cysteine terminal peptides is reported. The one step deprotection initiates both folding and catalytic activity of the macromolecular architectures.
Collapse
Affiliation(s)
- Henrik Kalmer
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Federica Sbordone
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
17
|
Leguizamon SC, Scott TF. Mimicking DNA Functions with Abiotic, Sequence-Defined Polymers. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2014519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Samuel C. Leguizamon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy F. Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Piane JJ, Huss S, Alameda LT, Koehler SJ, Chamberlain LE, Schubach MJ, Hoover AC, Elacqua E. Single‐chain
polymers as homogeneous oxidative photoredox catalysts. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jacob J. Piane
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Steven Huss
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Lucas T. Alameda
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Stephen J. Koehler
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Lauren E. Chamberlain
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Matthew J. Schubach
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Ashley C. Hoover
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Elizabeth Elacqua
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
19
|
Ferrari F, Braun J, Anson CE, Wilts BD, Moatsou D, Bizzarri C. Cyan-Emitting Cu(I) Complexes and Their Luminescent Metallopolymers. Molecules 2021; 26:2567. [PMID: 33924921 PMCID: PMC8125312 DOI: 10.3390/molecules26092567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Copper complexes have shown great versatility and a wide application range across the natural and life sciences, with a particular promise as organic light-emitting diodes. In this work, four novel heteroleptic Cu(I) complexes were designed in order to allow their integration in advanced materials such as metallopolymers. We herein present the synthesis and the electrochemical and photophysical characterisation of these Cu(I) complexes, in combination with ab initio calculations. The complexes present a bright cyan emission (λem ~ 505 nm) in their solid state, both as powder and as blends in a polymer matrix. The successful synthesis of metallopolymers embedding two of the novel complexes is shown. These copolymers were also found to be luminescent and their photophysical properties were compared to those of their polymer blends. The chemical nature of the polymer backbone contributes significantly to the photoluminescence quantum yield, paving a route for the strategic design of novel luminescent Cu(I)-based polymeric materials.
Collapse
Affiliation(s)
- Federico Ferrari
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany;
| | - Jonas Braun
- Karlsruhe Institute of Technology, Institute of Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany; (J.B.); (C.E.A.)
| | - Christopher E. Anson
- Karlsruhe Institute of Technology, Institute of Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany; (J.B.); (C.E.A.)
| | - Bodo D. Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland;
| | - Dafni Moatsou
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany;
| | - Claudia Bizzarri
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany;
| |
Collapse
|
20
|
Alqarni MAM, Waldron C, Yilmaz G, Becer CR. Synthetic Routes to Single Chain Polymer Nanoparticles (SCNPs): Current Status and Perspectives. Macromol Rapid Commun 2021; 42:e2100035. [DOI: 10.1002/marc.202100035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/07/2021] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Gokhan Yilmaz
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - C. Remzi Becer
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
21
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
De-La-Cuesta J, Verde-Sesto E, Arbe A, Pomposo JA. Self-Reporting of Folding and Aggregation by Orthogonal Hantzsch Luminophores Within a Single Polymer Chain. Angew Chem Int Ed Engl 2021; 60:3534-3539. [PMID: 33264463 DOI: 10.1002/anie.202013932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 11/06/2022]
Abstract
Self-reporting fluorescence methods for monitoring folding and aggregation of proteins have a long history in biochemistry. Placing orthogonal luminophores within individual synthetic polymer chains for self-reporting both folding (i.e., its intramolecular compaction to isolated single-chain nanoparticles, SCNPs) and unbidden aggregation (i.e., the intermolecular association of SCNPs) remains a great challenge. Herein, a simple and efficient platform to identify both single-chain compaction and intermolecular aggregation phenomena via photoluminescence is presented based on simultaneous synthesis through Hantzsch ester formation of orthogonal luminophores within the same polymer chain. Starting from non-luminescent β-ketoester-decorated chains, intramolecular compaction is visually detected through fluorescence arising from Hantzsch fluorophores generated as intra-chain connectors during folding. Complementary, intermolecular association is identified via aggregation-induced emission (AIE) from orthogonal luminophores displaying intense photoluminescence at redshifted wavelengths after formation of multi-SCNPs assemblies.
Collapse
Affiliation(s)
- Julen De-La-Cuesta
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, 20018, Donostia, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, 20018, Donostia, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, 20018, Donostia, Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, 20018, Donostia, Spain.,Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), PO Box 1072, 20800, Donostia, Spain.,IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
23
|
Xu W, Xiang D, Xu J, Ye Y, Qiu D, Yang Z. Facile intramolecular crosslinking of polymers by metallic coordination in concentrated solutions. Polym Chem 2021. [DOI: 10.1039/d0py01606c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single chain nanoparticles are obtained by intramolecular metallic coordination in concentrated solutions at ambient temperature.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Dao Xiang
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Jingjing Xu
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Yilan Ye
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Dong Qiu
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhenzhong Yang
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
24
|
Reith MA, Kardas S, Mertens C, Fossépré M, Surin M, Steinkoenig J, Du Prez FE. Using nickel to fold discrete synthetic macromolecules into single-chain nanoparticles. Polym Chem 2021. [DOI: 10.1039/d1py00229e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sequence-defined macromolecules were prepared with a thiolactone-based platform whereby ligand functionalities were introduced along the backbone enabling a nickel induced formation of single-chain nanoparticles.
Collapse
Affiliation(s)
- Melissa A. Reith
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Sinan Kardas
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Chiel Mertens
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Mathieu Fossépré
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Mathieu Surin
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Jan Steinkoenig
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
25
|
Bohlen JL, Kulendran B, Rothfuss H, Barner-Kowollik C, Roesky PW. Heterobimetallic Au( i)/Y( iii) single chain nanoparticles as recyclable homogenous catalysts. Polym Chem 2021. [DOI: 10.1039/d1py00552a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au(i)/Y(iii) single chain nanoparticles (SCNPs) are potent homogenous, recyclable catalysts for the hydroamination. The SCNPs consist of terpolymer chains with orthogonal ligand units, enabling the selective embedding of different metals.
Collapse
Affiliation(s)
- Josina L. Bohlen
- Institute for Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Bragavie Kulendran
- Institute for Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Hannah Rothfuss
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Centre for Materials Science
| | - Peter W. Roesky
- Institute for Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- Germany
| |
Collapse
|
26
|
De‐La‐Cuesta J, Verde‐Sesto E, Arbe A, Pomposo JA. Self‐Reporting of Folding and Aggregation by Orthogonal Hantzsch Luminophores Within a Single Polymer Chain. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julen De‐La‐Cuesta
- Centro de Física de Materiales (CSIC—UPV/EHU)—Materials Physics Center MPC P° Manuel de Lardizabal 5 20018 Donostia Spain
| | - Ester Verde‐Sesto
- Centro de Física de Materiales (CSIC—UPV/EHU)—Materials Physics Center MPC P° Manuel de Lardizabal 5 20018 Donostia Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC—UPV/EHU)—Materials Physics Center MPC P° Manuel de Lardizabal 5 20018 Donostia Spain
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC—UPV/EHU)—Materials Physics Center MPC P° Manuel de Lardizabal 5 20018 Donostia Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología University of the Basque Country (UPV/EHU) PO Box 1072 20800 Donostia Spain
- IKERBASQUE—Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
27
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Collot M, Schild J, Fam KT, Bouchaala R, Klymchenko AS. Stealth and Bright Monomolecular Fluorescent Organic Nanoparticles Based on Folded Amphiphilic Polymer. ACS NANO 2020; 14:13924-13937. [PMID: 33022173 DOI: 10.1021/acsnano.0c06348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent nanoparticles (NPs), owing to their superior brightness, are an attractive alternative to organic dyes. However, their cellular applications remain limited because of their large size, poor homogeneity, and nonspecific interactions in biological media. Herein, we propose a concept of monomolecular fluorescent organic nanoparticles of high brightness and very small size (10-14 nm) built of a single amphiphilic polymer bearing specially designed fluorescent dyes. We found that high PEGylation of poly(maleic anhydride-alt-1-octadecene (PMAO) favors a single-chain polymer folding into monomolecular stealth NPs with highly reduced nonspecific interactions with proteins and live cells. To ensure high stability of our NPs, the fluorophores (BODIPYs) are covalently linked to the polymer through an optimized linker. Among tested linkers of different lengths and polarity, a short medium-polar linker favoring location of the dyes at NPs interface ensures good fluorescence quantum yield and small particle size. The fluorescence brightness of these NPs has been dramatically enhanced by increasing the bulkiness of the BODIPY dyes that prevents their H-aggregation, reaching 2500000 M-1 cm-1 (extinction coefficient × quantum yield). Fluorescence microscopy revealed that the single-particle brightness of these NPs is ∼5-fold higher than that of QDot-585 using the same excitation wavelength (532 nm). Finally, when microinjected inside cells, these small and stealth NPs (10 nm diameter) distribute more evenly than 20 nm QDots inside the cytosol, showing similar spreading as a fluorescent protein. Thus, the developed monomolecular NPs, owing to their small size and stealth properties, are artificial analogues of fluorescent proteins, surpassing the latter >50-fold in terms of brightness.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Jérémy Schild
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Kyong T Fam
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Redouane Bouchaala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
29
|
Zeng R, Chen L, Yan Q. CO 2 -Folded Single-Chain Nanoparticles as Recyclable, Improved Carboxylase Mimics. Angew Chem Int Ed Engl 2020; 59:18418-18422. [PMID: 32691516 DOI: 10.1002/anie.202006842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Emulating the function of natural carboxylases to convert CO2 under atmospheric condition is a great challenge. Herein we report a class of CO2 -folded single-chain nanoparticles (SCNPs) that can function as recyclable, function-intensified carboxylase mimics. Lewis pair polymers containing bulky Lewis acidic and basic groups as the precursor, can bind CO2 to drive an intramolecular folding into SCNPs, in which CO2 as the folded nodes can form gas-bridged bonds. Such bridging linkages highly activate CO2 , which endows the SCNPs with extraordinary catalytic ability that can not only catalyze CO2 -insertion of C(sp3 )-H for imitating the natural enzyme's function, it can also act on non-natural carboxylation pathways for C(sp2 and sp)-H substrates. The nanocatalysts are of highly catalytic efficiency and recyclability, and can work at room temperature and near ambient CO2 condition, inspiring a new approach to sustainable C1 utilization.
Collapse
Affiliation(s)
- Rongjin Zeng
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Liang Chen
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Qiang Yan
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
30
|
Zeng R, Chen L, Yan Q. CO
2
‐Folded Single‐Chain Nanoparticles as Recyclable, Improved Carboxylase Mimics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rongjin Zeng
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Liang Chen
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Qiang Yan
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| |
Collapse
|
31
|
Zhang X, Vidavsky Y, Aharonovich S, Yang SJ, Buche MR, Diesendruck CE, Silberstein MN. Bridging experiments and theory: isolating the effects of metal-ligand interactions on viscoelasticity of reversible polymer networks. SOFT MATTER 2020; 16:8591-8601. [PMID: 32785407 DOI: 10.1039/d0sm01115k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polymer networks cross-linked by reversible metal-ligand interactions possess versatile mechanical properties achieved simply by varying the metal species and quantity. Although prior experiments have revealed the dependence of the network's viscoelastic behavior on the dynamics of metal-ligand interaction, a theoretical framework with quantitative relations that would enable efficient material design, is still lacking. One major challenge is isolating the effect of metal-ligand interaction from other factors in the polymer matrix. To address this challenge, we designed a linear precursor free from solvents, chain entanglements and polymer-metal phase separation to ensure that relaxation of the network is mainly governed by the dissociation and association of the metal-ligand cross-links. The rheological behavior of the networks was thoroughly characterized regarding the changes in cross-link density, binding stoichiometry and coordination stability, allowing quantitative comparison between experimental results and the sticky Rouse model. Through this process, we noticed that the presence of reversible cross-links increases the network modulus at high frequency compared to the linear polymer, and that the effective metal-ligand dissociation time increases dramatically with increasing the cross-link density. Informed by these findings, we modified the expression of the sticky Rouse model. For the polymer in which the metal center and ligands bond in a paired association, the relaxation follows our enhanced sticky Rouse model. For the polymer in which each reversible cross-link consists of multiple metal centers and ligands, the relaxation timescale is significantly extended due to greater restriction on the polymer chains. This systematic study bridges experiments and theory, providing deeper understanding of the mechanical properties of metallopolymers and facilitating material design.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yuval Vidavsky
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Sinai Aharonovich
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Steven J Yang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Michael R Buche
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
32
|
Nghiem TL, Coban D, Tjaberings S, Gröschel AH. Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis. Polymers (Basel) 2020; 12:E2190. [PMID: 32987965 PMCID: PMC7600123 DOI: 10.3390/polym12102190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. To prevent the deactivation of catalysts in water or avoid unwanted cross-reactions, catalysts are often site-isolated in nanopockets or separately stored in compartments. These concepts have inspired the design of a range of synthetic nanoreactors that allow otherwise unfeasible catalytic reactions in aqueous environments. Since the field of nanoreactors is evolving rapidly, we here summarize-from a personal perspective-prominent and recent examples for polymer nanoreactors with emphasis on their synthesis and their ability to catalyze reactions in dispersion. Examples comprise the incorporation of catalytic sites into hydrophobic nanodomains of single chain polymer nanoparticles, molecular polymer nanoparticles, and block copolymer micelles and vesicles. We focus on catalytic reactions mediated by transition metal and organocatalysts, and the separate storage of multiple catalysts for one-pot cascade reactions. Efforts devoted to the field of nanoreactors are relevant for catalytic chemistry and nanotechnology, as well as the synthesis of pharmaceutical and natural compounds. Optimized nanoreactors will aid in the development of more potent catalytic systems for green and fast reaction sequences contributing to sustainable chemistry by reducing waste of solvents, reagents, and energy.
Collapse
Affiliation(s)
| | | | | | - André H. Gröschel
- Physical Chemistry and Centre for Soft Nanoscience (SoN), University of Münster, 48149 Münster, Germany; (T.-L.N.); (D.C.); (S.T.)
| |
Collapse
|
33
|
González-Burgos M, Asenjo-Sanz I, Pomposo JA, Radulescu A, Ivanova O, Pasini S, Arbe A, Colmenero J. Structure and Dynamics of Irreversible Single-Chain Nanoparticles in Dilute Solution. A Neutron Scattering Investigation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina González-Burgos
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Isabel Asenjo-Sanz
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - José A. Pomposo
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento de Fı́sica de Materiales (UPV/EHU), Apartado 1072, E-20018 San Sebastián, Spain
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Oxana Ivanova
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Stefano Pasini
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Arantxa Arbe
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento de Fı́sica de Materiales (UPV/EHU), Apartado 1072, E-20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
34
|
Knöfel ND, Rothfuss H, Tzvetkova P, Kulendran B, Barner-Kowollik C, Roesky PW. Heterobimetallic Eu(iii)/Pt(ii) single-chain nanoparticles: a path to enlighten catalytic reactions. Chem Sci 2020; 11:10331-10336. [PMID: 34094295 PMCID: PMC8162431 DOI: 10.1039/d0sc03579c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
We introduce the formation and characterization of heterometallic single-chain nanoparticles entailing both catalytic and luminescent properties. A terpolymer containing two divergent ligand moieties, phosphines and phosphine oxides, is synthesized and intramolecularly folded into nanoparticles via a selective metal complexation of Pt(ii) and Eu(iii). The formation of heterometallic Eu(iii)/Pt(ii) nanoparticles is evidenced by size exclusion chromatography, multinuclear NMR (1H, 31P{1H}, 19F, 195Pt) as well as diffusion-ordered NMR and IR spectroscopy. Critically, we demonstrate the activity of the SCNPs as a homogeneous and luminescent catalytic system in the amination reaction of allyl alcohol.
Collapse
Affiliation(s)
- Nicolai D Knöfel
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| | - Hannah Rothfuss
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Pavleta Tzvetkova
- Institute of Organic Chemistry, Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Bragavie Kulendran
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4000 Australia
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| |
Collapse
|
35
|
Watanabe K, Katsuhara S, Mamiya H, Kawamura Y, Yamamoto T, Tajima K, Isono T, Satoh T. Highly asymmetric lamellar nanostructures from nanoparticle-linear hybrid block copolymers. NANOSCALE 2020; 12:16526-16534. [PMID: 32729868 DOI: 10.1039/d0nr05209d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The highly asymmetric lamellar (A-LAM) nanostructure is one of the most important template geometries for block copolymer (BCP) lithography. However, A-LAM is unattainable from conventional BCPs, and there is no general molecular design strategy for A-LAM-forming BCP. Herein, a nanoparticle-linear hybrid BCP system is reported, which is designed based on the intramolecular crosslinking technique, as a remarkably effective platform to obtain the A-LAM morphology. The hybrid BCPs consisting of polystyrene single-chain nanoparticles and linear polylactide segments show a remarkable capability to form the A-LAM morphology in bulk, where a maximum width ratio of 4.1 between the two domains is obtained. This unusual phase behavior is attributed to the bulky and rigid characteristics of the nanoparticle block. Furthermore, the thin films of these hybrid BCPs show perpendicularly oriented A-LAM morphology on a chemically modified Si substrate, allowing promising application in the fabrication of asymmetric line-and-space nanopatterns.
Collapse
Affiliation(s)
- Kodai Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Satoshi Katsuhara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hiroaki Mamiya
- Quantum Beam Unit, Advanced Key Technologies Division, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
| | - Yukihiko Kawamura
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai 319-1106, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
36
|
Liu Y, Bai Y. Design and Engineering of Metal Catalysts for Bio-orthogonal Catalysis in Living Systems. ACS APPLIED BIO MATERIALS 2020; 3:4717-4746. [DOI: 10.1021/acsabm.0c00581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ying Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
37
|
Song P, Wang H. High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901244. [PMID: 31215093 DOI: 10.1002/adma.201901244] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/03/2019] [Indexed: 05/17/2023]
Abstract
It has always been critical to develop high-performance polymeric materials with exceptional mechanical strength and toughness, thermal stability, and even healable properties for meeting performance requirements in industry. Conventional chemical cross-linking leads to enhanced mechanical strength and thermostability at the expense of extensibility due to mutually exclusive mechanisms. Such major challenges have recently been addressed by using noncovalent cross-linking of reversible multiple hydrogen-bonds (H-bonds) that widely exist in biological materials, such as silk and muscle. Recent decades have witnessed the development of many tailor-made high-performance H-bond cross-linked polymeric materials. Here, recent advances in H-bond cross-linking strategies are reviewed for creating high-performance polymeric materials. H-bond cross-linking of polymers can be realized via i) self-association of interchain multiple H-bonding interactions or specific H-bond cross-linking motifs, such as 2-ureido-4-pyrimidone units with self-complementary quadruple H-bonds and ii) addition of external cross-linkers, including small molecules, nanoparticles, and polymer aggregates. The resultant cross-linked polymers normally exhibit tunable high strength, large extensibility, improved thermostability, and healable capability. Such performance portfolios enable these advanced polymers to find many significant cutting-edge applications. Major challenges facing existing H-bond cross-linking strategies are discussed, and some promising approaches for designing H-bond cross-linked polymeric materials in the future are also proposed.
Collapse
Affiliation(s)
- Pingan Song
- School of Engineering, Zhejiang A & F University, Hangzhou, 311300, China
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD, 4300, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD, 4300, Australia
| |
Collapse
|
38
|
Danilov D, Sedghamiz E, Fliegl H, Frisch H, Barner-Kowollik C, Wenzel W. Tacticity dependence of single chain polymer folding. Polym Chem 2020. [DOI: 10.1039/d0py00133c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Precision polymerization techniques offer the exciting opportunity to manufacture single-chain nanoparticles (SCNPs) with intramolecular crosslinks placed in specific positions along the polymer chain.
Collapse
Affiliation(s)
- Denis Danilov
- Institute of Nanotechnology (INT)
- Hermann-von-Helmholtz-Platz 1
- 76344 Eggenstein-Leopoldshafen
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Elaheh Sedghamiz
- Institute of Nanotechnology (INT)
- Hermann-von-Helmholtz-Platz 1
- 76344 Eggenstein-Leopoldshafen
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Heike Fliegl
- Institute of Nanotechnology (INT)
- Hermann-von-Helmholtz-Platz 1
- 76344 Eggenstein-Leopoldshafen
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Hendrik Frisch
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT)
- Hermann-von-Helmholtz-Platz 1
- 76344 Eggenstein-Leopoldshafen
- Karlsruhe Institute of Technology (KIT)
- Germany
| |
Collapse
|
39
|
Nitsche T, Blanksby SJ, Blinco JP, Barner-Kowollik C. Pushing the limits of single chain compaction analysis by observing specific size reductions via high resolution mass spectrometry. Polym Chem 2020. [DOI: 10.1039/c9py01910c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we push the limits of single chain nanoparticle analysis to directly observe the specific compaction of defined single chains dependent on the number of compaction steps.
Collapse
Affiliation(s)
- Tobias Nitsche
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Stephen J. Blanksby
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Central Analytical Research Facility
| | - James P. Blinco
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| |
Collapse
|
40
|
Neumann LN, Urban DA, Lemal P, Ramani S, Petri-Fink A, Balog S, Weder C, Schrettl S. Preparation of metallosupramolecular single-chain polymeric nanoparticles and their characterization by Taylor dispersion. Polym Chem 2020. [DOI: 10.1039/c9py01264h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polymers with pendant ligands furnish single-chain polymeric nanoparticles upon intramolecular metal–ligand complex formation with different metal-ions and Taylor dispersion analysis is employed to reliably characterize the dispersed particles.
Collapse
Affiliation(s)
- Laura N. Neumann
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Dominic A. Urban
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Philipp Lemal
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Sushila Ramani
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| |
Collapse
|
41
|
Liu CH, Dugas LD, Bowman JI, Chidanguro T, Storey RF, Simon YC. Forcing single-chain nanoparticle collapse through hydrophobic solvent interactions in comb copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01235d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that we can tune the chain collapse of comb copolymers into single-chain nanoparticles upon UV irradiation through solvency control.
Collapse
Affiliation(s)
- Cheyenne H. Liu
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Logan D. Dugas
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Jared I. Bowman
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Tamuka Chidanguro
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Robson F. Storey
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| |
Collapse
|
42
|
Madeira do O J, Foralosso R, Yilmaz G, Mastrotto F, King PJS, Xerri RM, He Y, van der Walle CF, Fernandez-Trillo F, Laughton CA, Styliari I, Stolnik S, Mantovani G. Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers. NANOSCALE 2019; 11:21155-21166. [PMID: 31663091 DOI: 10.1039/c9nr05836b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic glycopolymers are increasingly investigated as multivalent ligands for a range of biological and biomedical applications. This study indicates that glycopolymers with a fine-tuned balance between hydrophilic sugar pendant units and relatively hydrophobic polymer backbones can act as single-chain targeted nanocarriers for low molecular weight hydrophobic molecules. Non-covalent complexes formed from poly(triazolyl methacrylate) glycopolymers and low molecular weight hydrophobic guest molecules were characterised through a range of analytical techniques - DLS, SLS, TDA, fluorescence spectroscopy, surface tension analysis - and molecular dynamics (MD) modelling simulations provided further information on the macromolecular characteristics of these single chain complexes. Finally, we show that these nanocarriers can be utilised to deliver a hydrophobic guest molecule, Nile red, to both soluble and surface-immobilised concanavalin A (Con A) and peanut agglutinin (PNA) model lectins with high specificity, showing the potential of non-covalent complexation with specific glycopolymers in targeted guest-molecule delivery.
Collapse
Affiliation(s)
- J Madeira do O
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - R Foralosso
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - G Yilmaz
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - F Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - P J S King
- Malvern Panalytical Ltd, Malvern, WR14 1XZ, UK
| | - R M Xerri
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - Y He
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | | | | | - C A Laughton
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - I Styliari
- University of Hertfordshire, Hatfield, Hertfordshire, UK.
| | - S Stolnik
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - G Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| |
Collapse
|
43
|
Robles-Hernández B, Monnier X, Pomposo JA, Gonzalez-Burgos M, Cangialosi D, Alegría A. Glassy Dynamics of an All-Polymer Nanocomposite Based on Polystyrene Single-Chain Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Beatriz Robles-Hernández
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Xavier Monnier
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Jose A. Pomposo
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Marina Gonzalez-Burgos
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Daniele Cangialosi
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Angel Alegría
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
44
|
Garmendia S, Lawrenson SB, Arno MC, O'Reilly RK, Taton D, Dove AP. Catalytically Active
N
‐Heterocyclic Carbene Release from Single‐Chain Nanoparticles Following a Thermolysis‐Driven Unfolding Strategy. Macromol Rapid Commun 2019; 40:e1900071. [DOI: 10.1002/marc.201900071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/17/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sofiem Garmendia
- Laboratoire de Chimie des Polymères OrganiquesUniversité de Bordeaux IPB‐ENSCBP F‐33607 Pessac Cedex France
- Laboratoire de Chimie des Polymères Organiques Centre National de la Recherche Scientifique 16 Avenue Pey‐Berland F‐33607 Pessac Cedex France
- Department of ChemistryUniversity of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- School of ChemistryThe University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Stefan B. Lawrenson
- School of ChemistryThe University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Maria C. Arno
- School of ChemistryThe University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Rachel K. O'Reilly
- School of ChemistryThe University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Daniel Taton
- Laboratoire de Chimie des Polymères OrganiquesUniversité de Bordeaux IPB‐ENSCBP F‐33607 Pessac Cedex France
- Laboratoire de Chimie des Polymères Organiques Centre National de la Recherche Scientifique 16 Avenue Pey‐Berland F‐33607 Pessac Cedex France
| | - Andrew P. Dove
- School of ChemistryThe University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
45
|
Austin MJ, Rosales AM. Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater Sci 2019; 7:490-505. [PMID: 30628589 DOI: 10.1039/c8bm01215f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric biomaterials have many applications including therapeutic delivery vehicles, medical implants and devices, and tissue engineering scaffolds. Both naturally-derived and synthetic materials have successfully been used for these applications in the clinic. However, the increasing complexity of these applications requires materials with advanced properties, especially customizable or tunable materials with bioactivity. To address this issue, there have been recent efforts to better recapitulate the properties of natural materials using synthetic biomaterials composed of sequence-controlled polymers. Sequence control mimics the primary structure found in biopolymers, and in many cases, provides an extra handle for functionality in synthetic polymers. Here, we first review the advances in synthetic methods that have enabled sequence-controlled biomaterials on a relevant scale, and discuss strategies for choosing functional sequences from a biomaterials engineering context. Then, we highlight several recent studies that show strong impact of sequence control on biomaterial properties, including in vitro and in vivo behavior, in the areas of hydrogels, therapeutic materials, and novel applications such as molecular barcodes for medical devices. The role of sequence control in biomaterials properties is an emerging research area, and there remain many opportunities for investigation. Further study of this topic may significantly advance our understanding of bioactive or smart materials, as well as contribute design rules to guide the development of synthetic biomaterials for future applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mariah J Austin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
46
|
Wen W, Huang T, Guan S, Zhao Y, Chen A. Self-Assembly of Single Chain Janus Nanoparticles with Tunable Liquid Crystalline Properties from Stilbene-Containing Block Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00154] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | - Yongbin Zhao
- Shandong Oubo New
Material Co. Ltd., Shandong 257088, P. R. China
| | | |
Collapse
|
47
|
Rubio-Cervilla J, Malo de Molina P, Robles-Hernández B, Arbe A, Moreno AJ, Alegría A, Colmenero J, Pomposo JA. Facile Access to Completely Deuterated Single-Chain Nanoparticles Enabled by Intramolecular Azide Photodecomposition. Macromol Rapid Commun 2019; 40:e1900046. [PMID: 30801882 DOI: 10.1002/marc.201900046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/14/2023]
Abstract
Access to completely deuterated single-chain nanoparticles (dSCNPs) has remained an unresolved issue. Herein, the first facile and efficient procedure to produce dSCNPs is reported, which comprises: i) the use of commercially available perdeuterated cyclic ether monomers as starting reagents, ii) a ring-opening copolymerization process performed in bulk to produce a neat dSCNP precursor, iii) a standard azidation reaction to decorate this precursor with azide moieties, and iv) a facile intramolecular azide photodecomposition step carried out under UV irradiation at high dilution providing with highly valuable, completely deuterated soft nano-objects from the precursor. dSCNPs are used to investigate by means of neutron-scattering measurements the form factor (radius of gyration, scaling exponent) of polyethylene oxide (PEO) chains in nanocomposites with different amounts of dSCNPs. Moreover, to illustrate the possibilities offered by the synthetic route disclosed in this communication for potential applications, the significant reduction in viscosity observed in a pure melt of polyether-based single-chain nanoparticles when compared to a melt of the corresponding linear polymer chains is shown.
Collapse
Affiliation(s)
- Jon Rubio-Cervilla
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain
| | - Paula Malo de Molina
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain
| | - Beatriz Robles-Hernández
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain
| | - Angel Alegría
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastian, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain.,Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastian, Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastian, Spain.,IKERBASQUE-Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
48
|
Knöfel ND, Rothfuss H, Barner-Kowollik C, Roesky PW. M24+ paddlewheel clusters as junction points in single-chain nanoparticles. Polym Chem 2019. [DOI: 10.1039/c8py01486h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward approach to incorporate copper and molybdenum dimetallic clusters into well-defined single-chain nanoparticles, featuring unique paddlewheel structures as junction points, is introduced.
Collapse
Affiliation(s)
- Nicolai D. Knöfel
- Institute of Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Hannah Rothfuss
- Macromolecular Architectures
- Institute for Technical Chemistry and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures
- Institute for Technical Chemistry and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Peter W. Roesky
- Institute of Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
49
|
Garmendia S, Dove AP, Taton D, O'Reilly RK. Self-catalysed folding of single chain nanoparticles (SCNPs) by NHC-mediated intramolecular benzoin condensation. Polym Chem 2019. [DOI: 10.1039/c9py00149b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-catalysed folding strategy to form single chain nanoparticles (SCNPs) was developed via an intramolecular N-heterocyclic carbene (NHC)-mediated benzoin condensation.
Collapse
Affiliation(s)
- Sofiem Garmendia
- Laboratoire de Chimie des Polymères Organiques
- Université de Bordeaux IPB-ENSCBP
- F-33607 Pessac Cedex
- France
- Laboratoire de Chimie des Polymères Organiques Centre National de la Recherche Scientifique
| | - Andrew P. Dove
- School of Chemistry
- The University of Birmingham
- Birmingham
- UK
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques
- Université de Bordeaux IPB-ENSCBP
- F-33607 Pessac Cedex
- France
- Laboratoire de Chimie des Polymères Organiques Centre National de la Recherche Scientifique
| | | |
Collapse
|
50
|
De-La-Cuesta J, Pomposo JA. Photoactivation of Aggregation-Induced Emission Molecules for Fast and Efficient Synthesis of Highly Fluorescent Single-Chain Nanoparticles. ACS OMEGA 2018; 3:15193-15199. [PMID: 30555999 PMCID: PMC6289576 DOI: 10.1021/acsomega.8b02374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Single-chain nanoparticles (SCNPs) are ultrasmall soft nanomaterials constructed via intrachain cross-linking of individual precursor polymer chains, with promising prospects for nanomedicine, catalysis, and sensing, among other different fields. SCNPs are versatile building blocks for the construction of new fluorescent probes with ultrasmall size, higher brightness, and better photostability than previous particle-based systems. Herein, we report on a new, fast, and efficient method to produce SCNPs with intense fluorescence emission in solution which is based on the photoactivation of appropriate aggregation-induced emission (AIE) cross-linking molecules containing azide functional groups. Remarkably, the presence of the azide moiety-that can be transformed to highly reactive nitrene species upon UV irradiation-was found to be essential for the SCNPs to display intense fluorescence emission. We attribute the fluorescence properties of the SCNPs to the immobilization of the initially nonfluorescent AIE molecules via intrachain cross-linking upon photoactivation. Such cross-linking-induced immobilization process activates the AIE mechanism and, hence, leads to fluorescent SCNPs in both solution and solid state.
Collapse
Affiliation(s)
- Julen De-La-Cuesta
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel
de Lardizabal 5, E-20018 San Sebastián, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel
de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad
del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE—Basque
Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|