1
|
Gayen AK, Singla R, Ramakrishnan S. Hyperbranched polymers: growing richer in flavours with time. Chem Commun (Camb) 2024; 60:1534-1545. [PMID: 38252017 DOI: 10.1039/d3cc05506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Hyperbranched polymers (HBPs) have been studied for over three decades now; yet several interesting aspects continue to draw the attention of researchers worldwide. This is because of the simplicity of synthesis, their unique globular structure, and the numerous peripherally located functional groups that can be utilised to impart a variety of attributes, such as core-shell amphiphilicity, Janus amphiphilicity, clickable polymeric scaffolds, multifunctional crosslinkers, etc. Several reviews have been written on HBPs with a focus on synthetic strategies, structural diversity, and their potential applications; in this short feature article, we have taken an alternate approach to highlight some of the unique structural features of HBPs and their influence on the properties of HBPs. We also discuss their versatility and adaptability for the generation of several interesting functional polymeric systems. In the latter half, we focus on the utilisation of HBPs as multifunctional scaffolds, that rely on the numerous peripheral terminal groups. We conclude by drawing a structuro-functional analogy between the range of peripherally functionalised HBPs and other analogous, but more complex, polymeric systems. We believe that this review will serve as a visual sounding board that would encourage the development of several other applications for this class of unique polymers.
Collapse
Affiliation(s)
- Arun Kumar Gayen
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Runa Singla
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - S Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Jin Y, Hu C, Wang J, Ding Y, Shi J, Wang Z, Xu S, Yuan L. Thiol-Aldehyde Polycondensation for Bio-based Adaptable and Degradable Phenolic Polymers. Angew Chem Int Ed Engl 2023; 62:e202305677. [PMID: 37204428 DOI: 10.1002/anie.202305677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/20/2023]
Abstract
Designing sustainable materials with tunable mechanical properties, intrinsic degradability, and recyclability from renewable biomass through a mild process has become vital in polymer science. Traditional phenolic resins are generally considered to be not degradable or recyclable. Here we report the design and synthesis of linear and network structured phenolic polymers using facile polycondensation between natural aldehyde-bearing phenolic compounds and polymercaptans. Linear phenolic products are amorphous with Tg between -9 °C and 12 °C. Cross-linked networks from vanillin and its di-aldehyde derivative exhibited excellent mechanical strength between 6-64 MPa. The connecting dithioacetals are associatively adaptable strong bonds and susceptible to degradation in oxidative conditions to regenerate vanillin. These results highlight the potential of biobased sustainable phenolic polymers with recyclability and selective degradation, as a complement to the traditional phenol-formaldehyde resins.
Collapse
Affiliation(s)
- Yu Jin
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Chengcheng Hu
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Jie Wang
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Yongliang Ding
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Junjie Shi
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Zhongkai Wang
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Shichao Xu
- Chinese Academy of Forestry, Institute of Chemical Industry of Forest Products, Nanjing, 210042, China
| | - Liang Yuan
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| |
Collapse
|
3
|
Mushtaq I, Akhter Z, Farooq M, Jabeen F, Rehman AU, Rehman S, Ayub S, Mirza B, Siddiq M, Zaman F. A unique amphiphilic triblock copolymer, nontoxic to human blood and potential supramolecular drug delivery system for dexamethasone. Sci Rep 2021; 11:21507. [PMID: 34728694 PMCID: PMC8563740 DOI: 10.1038/s41598-021-00871-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
The drug delivery system (DDS) often causes toxicity, triggering undesired cellular injuries. Thus, developing supramolecules used as DDS with tunable self-assembly and nontoxic behavior is highly desired. To address this, we aimed to develop a tunable amphiphilic ABA-type triblock copolymer that is nontoxic to human blood cells but also capable of self-assembling, binding and releasing the clinically used drug dexamethasone. We synthesized an ABA-type amphiphilic triblock copolymer (P2L) by incorporating tetra(aniline) TANI as a hydrophobic and redox active segment along with monomethoxy end-capped polyethylene glycol (mPEG2k; Mw = 2000 g mol-1) as biocompatible, flexible and hydrophilic part. Cell cytotoxicity was measured in whole human blood in vitro and lung cancer cells. Polymer-drug interactions were investigated by UV-Vis spectroscopy and computational analysis. Our synthesized copolymer P2L exhibited tuned self-assembly behavior with and without external stimuli and showed no toxicity in human blood samples. Computational analysis showed that P2L can encapsulate the clinically used drug dexamethasone and that drug uptake or release can also be triggered under oxidation or low pH conditions. In conclusion, copolymer P2L is nontoxic to human blood cells with the potential to carry and release anticancer/anti-inflammatory drug dexamethasone. These findings may open up further investigations into implantable drug delivery systems/devices with precise drug administration and controlled release at specific locations.
Collapse
Affiliation(s)
- Irrum Mushtaq
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Farooq
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Farukh Jabeen
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Ashfaq Ur Rehman
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Sadia Rehman
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Sidra Ayub
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Farasat Zaman
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Bioclinicum J9:30, SE-171 74, Solna, Sweden.
| |
Collapse
|
4
|
Xue X, Chen Y, Li Y, Liang K, Huang W, Yang H, Jiang L, Jiang Q, Chen F, Jiang T, Lin B, Jiang B, Pu H. Remarkable untangled dynamics behavior of multicyclic branched polystyrenes. Chem Commun (Camb) 2021; 57:399-402. [PMID: 33326513 DOI: 10.1039/d0cc07129c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A typical multicyclic branched-topology polystyrene (c-BPS) with high molecular weight (30 K ≤ Mw MALLS ≤ 300 K g mol-1) and narrow dispersity (1.2 ≤ Đ ≤ 1.3) was efficiently synthesized by combining atom transfer radical polymerization (ATRP) and atom transfer radical coupling (ATRC) techniques. The topological constraints imposed by the presence of cyclic units and branch points had a marked influence on the entanglement behaviors of the polymer chains in solution. Therefore, c-BPS possesses the lowest loss modulus (G'') and viscosity (η), the highest diffusion coefficient (D0), the largest mesh size (ξ) and the fastest terminal relaxation (TR), compared with branched and linear precursors.
Collapse
Affiliation(s)
- Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tian D, Alebrahim T, Kline GK, Chen L, Lin H, Bae C. Structure and gas transport characteristics of triethylene oxide‐grafted polystyrene‐
b
‐poly(ethylene‐
co
‐butylene)‐
b
‐polystyrene. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ding Tian
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Institute Troy New York USA
| | - Taliehsadat Alebrahim
- Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo New York USA
| | - Gregory K. Kline
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Institute Troy New York USA
| | - Liwen Chen
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Troy New York USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo New York USA
| | - Chulsung Bae
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Institute Troy New York USA
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Troy New York USA
| |
Collapse
|
6
|
Mushtaq I, Akhter Z, Shah FU. Tunable Self-Assembled Nanostructures of Electroactive PEGylated Tetra(Aniline) Based ABA Triblock Structures in Aqueous Medium. Front Chem 2019; 7:518. [PMID: 31403042 PMCID: PMC6669400 DOI: 10.3389/fchem.2019.00518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 01/22/2023] Open
Abstract
PEGylated tetra(aniline) ABA triblock structure PEG-TANI-PEG (2) consisting of tetra(aniline) (TANI) and polyethylene glycol (PEG) was synthesized by coupling the tosylated-PEG to boc-protected NH2/NH2 TANI (1) through a simple nucleophilic substitution reaction. Deprotection of 2 resulted in a leucoemeraldine base state of TANI (2-LEB), which was oxidized to stable emeraldine base (2-EB) state. 2-EB was doped with 1 M HCl to emeraldine salt (2-ES) state. FTIR, 1H and 13C NMR and UV-Vis-NIR spectroscopy, and MS (ESI) was used for structural characterization. The synthesized triblock structure exhibited good electroactivity as confirmed by CV and UV-Vis-NIR spectroscopy. Self-assembling of the triblock structure in aqueous medium was assessed by DLS, TEM, and SEM. Spherical aggregates were observed with variable sizes depicting the effect of concentration and oxidation of 2-LEB. Further, the aggregates showed acid/base sensitivity as evaluated by doping and dedoping of 2-EB with 1 M HCl and 1 M NH4OH, respectively. Future applications in drug delivery and sensors are envisaged for such tunable self-assembled nanostructures in aqueous media.
Collapse
Affiliation(s)
- Irrum Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
7
|
Xu Y, Wang L, Zhu X, Wang CQ. Hierarchical self-assembly of protoporphyrin IX-bridged Janus particles into photoresponsive vesicles. RSC Adv 2016. [DOI: 10.1039/c6ra00836d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photoresponsive vesicles formed by PPIX-bridged Janus particles exhibited excellent photostability against intense infrared radiation and good singlet oxygen producing ability.
Collapse
Affiliation(s)
- Youqian Xu
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Liang Wang
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Xinyun Zhu
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Cai-Qi Wang
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| |
Collapse
|