1
|
Chen S, Lin P, Yuan J. Enhancing strength and toughness simultaneously: Diblock-grafted cellulose nanofiber one-component nanocomposites. Int J Biol Macromol 2024; 281:136497. [PMID: 39423975 DOI: 10.1016/j.ijbiomac.2024.136497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
To overcome the drawbacks of homopolymer-grafted CNF one-component nanocomposites, a range of diblock-grafted cellulose nanofiber (CNF), CNF-g-(polybutyl acrylate-b-polymethyl methacrylate)s were synthesized through reversible-deactivation radical polymerization (RDRP) methods. The chemical structures and ratios between the two blocks were confirmed, with surface-grafted CNF observed as submicron particles. Both thermal and thermodynamic analysis revealed two glass transition temperatures (Tg) in the diblock-grafted CNF, and phase-separated morphology was observed in the nanocomposites. The densely grafted CNF displayed island structures, while sparsely grafted samples transitioned into continuous structure. Thermodynamic analysis showed that the diblock-grafted CNF nanocomposites maintained mechanical properties at high temperatures. These nanocomposites demonstrated robust strength and toughnes, with tensile strength reaching as high as 43.7 ± 1.6 MPa and elongation at break of 70.3 ± 16.2 %. Moreover, while densely grafted CNF exhibited higher modulus and strength, whereas sparsely grafted CNF displayed behavior more reminiscent of thermoplastic elastomers, indicated by lower modulus and higher elongation.
Collapse
Affiliation(s)
- Sikai Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Peng Lin
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jinglin Yuan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
2
|
Li B, Zhang PL, Sun ZY. Entropy-favorable adsorption of polymer-grafted nanoparticles at fluid-fluid interfaces. J Chem Phys 2024; 161:094905. [PMID: 39225530 DOI: 10.1063/5.0230107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The adsorption of polymer-grafted nanoparticles at interfaces is a problem of fundamental interest in physics and soft materials. This adsorption behavior is governed by the interplay between interaction potentials and entropic effects. Here, we use molecular dynamics simulations and umbrella sampling methods to study the adsorption behavior of a Janus-like homopolymer-grafted nanoparticle at fluid-fluid interfaces. By calculating the potential of the mean force as the particle moves from fluid A to the interface, the adsorption energy Ea can be obtained. When two homopolymer chains with types A and B are grafted to the opposite poles of the particle, Ea shows a scaling behavior with respect to chain length N: Ea ∝ N0.598. This is determined by the interactions between polymers and fluids. The enthalpy dominates, and the entropy effects mainly come from the rotational entropy loss of the polymer-grafted nanoparticle at interfaces, which disfavors the stabilization of particles at interfaces. When the grafted polymer number m is large, the adsorption energy exhibits a linear dependence on m. While the enthalpy dominates the behavior, the entropy becomes significant at a larger chain length of N = 15, where the configurational entropy of the polymer chains dominates the entropy of the system. The globule-coil transition occurs when polymers move from poor solvents to good solvents, increasing the configurational entropy and favoring the stabilization of particles at interfaces. Our study provides novel insights into the stabilization mechanism of polymer-grafted nanoparticles at interfaces and reveals the stabilization mechanism favored by the configurational entropy of grafted polymer chains.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Pei-Lei Zhang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Wei Y, Yue T, Li H, Duan P, Zhao H, Chen Q, Li S, Fang X, Liu J, Zhang L. Advancing elastomer performance with dynamic bond networks in polymer-grafted single-chain nanoparticles: a molecular dynamics exploration. NANOSCALE 2024; 16:11187-11202. [PMID: 38771650 DOI: 10.1039/d4nr01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
This research introduces a method to enhance the mechanical properties of elastomers by grafting polymer chains onto single-chain flexible nanoparticles (SCNPs) and incorporating dynamic functional groups. Drawing on developments in grafting polymers onto hard nanoparticle fillers, this method employs the distinct flexibility of SCNPs to diminish heterogeneity and enhance core size control. We use molecular dynamics (MD) simulations for a mesoscale analysis of structural properties, particularly the effects of dynamic functional group quantities and their distribution. The findings demonstrate that increased quantities of functional groups are correlated with enhanced mechanical strength and toughness, showing improved stress-strain responses and energy dissipation capabilities. Moreover, the uniformity in the distribution of these functional groups is crucial, promoting a more cohesive and stable dynamic bonding network. The insights gained from MD simulations not only advance our understanding of the microstructural control necessary for optimizing macroscopic properties, but also provide valuable guidance for the design and engineering of advanced polymer nanocomposites, thereby enhancing the material performance through strategic molecular design.
Collapse
Affiliation(s)
- Yuan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tongkui Yue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haoxiang Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Pengwei Duan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hengheng Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qionghai Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Sai Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoyu Fang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
4
|
Clarke RW, Sandmeier T, Franklin KA, Reich D, Zhang X, Vengallur N, Patra TK, Tannenbaum RJ, Adhikari S, Kumar SK, Rovis T, Chen EYX. Dynamic crosslinking compatibilizes immiscible mixed plastics. Nature 2023; 616:731-739. [PMID: 37100943 DOI: 10.1038/s41586-023-05858-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/16/2023] [Indexed: 04/28/2023]
Abstract
The global plastics problem is a trifecta, greatly affecting environment, energy and climate1-4. Many innovative closed/open-loop plastics recycling or upcycling strategies have been proposed or developed5-16, addressing various aspects of the issues underpinning the achievement of a circular economy17-19. In this context, reusing mixed-plastics waste presents a particular challenge with no current effective closed-loop solution20. This is because such mixed plastics, especially polar/apolar polymer mixtures, are typically incompatible and phase separate, leading to materials with substantially inferior properties. To address this key barrier, here we introduce a new compatibilization strategy that installs dynamic crosslinkers into several classes of binary, ternary and postconsumer immiscible polymer mixtures in situ. Our combined experimental and modelling studies show that specifically designed classes of dynamic crosslinker can reactivate mixed-plastics chains, represented here by apolar polyolefins and polar polyesters, by compatibilizing them via dynamic formation of graft multiblock copolymers. The resulting in-situ-generated dynamic thermosets exhibit intrinsic reprocessability and enhanced tensile strength and creep resistance relative to virgin plastics. This approach avoids the need for de/reconstruction and thus potentially provides an alternative, facile route towards the recovery of the endowed energy and materials value of individual plastics.
Collapse
Affiliation(s)
- Ryan W Clarke
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Kevin A Franklin
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Dominik Reich
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Xiao Zhang
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Nayan Vengallur
- Department of Chemical Engineering, Center for Carbon Capture Utilization and Storage, and Center for Atomistic Modeling and Materials Design, India Institute of Technology Madras, Chennai, India
| | - Tarak K Patra
- Department of Chemical Engineering, Center for Carbon Capture Utilization and Storage, and Center for Atomistic Modeling and Materials Design, India Institute of Technology Madras, Chennai, India
| | | | - Sabin Adhikari
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, NY, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Carrillo JMY, Chen Z, Premadasa UI, Steinmetz C, Coughlin EB, Doughty B, Russell TP, Sumpter BG. Assembly of polyelectrolyte star block copolymers at the oil-water interface. NANOSCALE 2023; 15:1042-1052. [PMID: 36421060 DOI: 10.1039/d2nr05113c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To understand and resolve adsorption, reconfiguration, and equilibrium conformations of charged star copolymers, we carried out an integrated experimental and coarse-grained molecular dynamics simulation study of the assembly process at the oil-water interface. This is important to guide development of novel surfactants or amphiphiles for chemical transformations and separations. The star block copolymer consisted of arms that are comprised of hydrophilic-hydrophobic block copolymers that are covalently tethered via the hydrophobic blocks to one point. The hydrophobic core represents polystyrene (PS) chains, while the hydrophilic corona represents quaternized poly(2-vinylpyridine) (P2VP) chains. The P2VP is modeled to become protonated when in contact with an acidic aqueous phase, thereby massively increasing the hydrophilicity of this block, and changing the nature of the star at the oil-water interface. This results in a configurational change whereby the chains comprising the hydrophilic corona are significantly stretched into the aqueous phase, while the hydrophobic core remains solubilized in the oil phase. In the simulations, we followed the kinetics of the anchoring and assembly of the star block copolymer at the interface, monitoring the lateral assembly, and the subsequent reconfiguration of the star via changes in the interfacial tension that varies as the degree-of-protonation increases. At low fractions of protonation, the arm cannot fully partition into the aqueous side of the interface and instead interacts with other arms in the oil phase forming a network near the interface. These insights were used to interpret the non-monotonic dependence of pH with the asymptotic interfacial tension from pendant drop tensiometry experiments and spectral signatures of aromatic stretches seen in vibrational sum frequency generation (SFG) spectroscopy. We describe the relationship of interfacial tension to the star assembly via the Frumkin isotherm, which phenomenologically describes anti-cooperativity in adsorbing stars to the interface due to crowding. Although our model explicitly considers long-range electrostatics, the contribution of electrostatics to interfacial tension is small and brought about by strong counterion condensation at the interface. These results provide key insights into resolving the adsorption, reconfiguration, and equilibrium conformations of charged star block copolymers as surfactants.
Collapse
Affiliation(s)
- Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, MA 01003, USA.
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Christian Steinmetz
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, MA 01003, USA.
| | - E Bryan Coughlin
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, MA 01003, USA.
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, MA 01003, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| |
Collapse
|
6
|
He HL, Liang FX. Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Shi J, Quevillon MJ, Amorim Valença PH, Whitmer JK. Predicting Adhesive Free Energies of Polymer-Surface Interactions with Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37161-37169. [PMID: 35917495 DOI: 10.1021/acsami.2c08891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer-surface interactions are crucial to many biological processes and industrial applications. Here we propose a machine learning method to connect a model polymer's sequence with its adhesion to decorated surfaces. We simulate the adhesive free energies of 20000 unique coarse-grained one-dimensional polymer sequences interacting with functionalized surfaces and build support vector regression models that demonstrate inexpensive and reliable prediction of the adhesive free energy as a function of sequence. Our work highlights the promising integration of coarse-grained simulation with data-driven machine learning methods for the design of functional polymers and represents an important step toward linking polymer compositions with polymer-surface interactions.
Collapse
Affiliation(s)
- Jiale Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Michael J Quevillon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Pedro H Amorim Valença
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Kulshreshtha A, Hayward RC, Jayaraman A. Impact of Composition and Placement of Hydrogen-Bonding Groups along Polymer Chains on Blend Phase Behavior: Coarse-Grained Molecular Dynamics Simulation Study. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arjita Kulshreshtha
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Ryan C. Hayward
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Tulsi DK, Simmons DS. Hierarchical Shape-Specified Model Polymer Nanoparticles via Copolymer Sequence Control. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Davindra K. Tulsi
- The University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, Florida 33620, United States
| | - David S. Simmons
- The University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, Florida 33620, United States
| |
Collapse
|
10
|
Linghu C, Xie L, Yang L, Li X, Tao Y, Xu Y, Luo Z. Preparation and characterization of maleic anhydride‐based double‐monomer grafted polylactic acid compatibilizer. J Appl Polym Sci 2022. [DOI: 10.1002/app.52234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Changkai Linghu
- College of Materials and Metallurgy Guizhou University Guiyang Guizhou China
| | - Lijin Xie
- College of Materials and Metallurgy Guizhou University Guiyang Guizhou China
| | - Le Yang
- School of Materials and Energy Engineering Guizhou Institute of Technology Guiyang Guizhou China
| | - Xiaolong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei China
| | - Yao Tao
- College of Materials and Metallurgy Guizhou University Guiyang Guizhou China
| | - Yinhan Xu
- College of Materials and Metallurgy Guizhou University Guiyang Guizhou China
| | - Zhu Luo
- College of Materials and Metallurgy Guizhou University Guiyang Guizhou China
| |
Collapse
|
11
|
Insight on compatibilization of LLDPE/PS blends from morphology, interfacial state, mechanical properties and melt properties: Comb-like copolymer vs diblock copolymer. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Li K, Wu W, Chai S, Tang L, Li J, Li Y, Liu Q, Chen L. Synthesis of functionalized copolymers and their compatibilization effects on acrylonitrile butadiene styrene/poly(butylene terephthalate) blends. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology Dongguan China
| | - Wenjian Wu
- School of Materials Science and Engineering, Dongguan University of Technology Dongguan China
| | - Shengyong Chai
- Institute of Polymer Fine Chemical, National‐certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd. Guangzhou China
| | - Lei Tang
- Institute of Polymer Fine Chemical, National‐certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd. Guangzhou China
| | - Jide Li
- Institute of Polymer Fine Chemical, National‐certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd. Guangzhou China
| | - Yan Li
- Institute of Polymer Fine Chemical, National‐certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd. Guangzhou China
| | - Qin Liu
- Institute of Polymer Fine Chemical, National‐certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd. Guangzhou China
| | - Lin Chen
- Institute of Polymer Fine Chemical, National‐certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd. Guangzhou China
| |
Collapse
|
13
|
Tamiya T, Cui X, Hsu YI, Kanno T, Asoh TA, Uyama H. Enhancement of interfacial adhesion in immiscible polymer blend by using a graft copolymer synthesized from propargyl-terminated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Gao K, Wan H, Tsen EJL, Liu J, Lyulin AV, Zhang L. Unveiling the Mechanism of the Location of the Grafted Nanoparticles in a Lamellar-Forming Block Copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:194-203. [PMID: 31820992 DOI: 10.1021/acs.langmuir.9b02955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Through coarse-grained molecular dynamics simulation of polymer-grafted nanoparticles (NPs) in a lamellar-forming diblock copolymer (BCP), we systematically study the effects of the grafting density (Ng), the compatibility between the grafted chains and the A-block of BCPs (εgA), and the NP number (N) on the distance (D) of the NPs from the interface by proposing novel characterization parameters of the orientation and distribution of the grafted chains. The NP gradually migrates away from the interface and into the A-block region with the increase of εgA for all studied Ng, while slightly returning toward the interface at high εgA and great Ng, which is the first observation of nonmonotonic migration at the molecular level. We ascribe the reason of this to the behavior of the grafted chains that are near the interface. Furthermore, we classify the grafted chains into three types along the normal direction of the interface and the migration process is illustrated by the distribution and orientation of the different types of grafted chains, together with the radial distribution function between the NP and the A-block chains. We observe the formation of the NP layers parallel to the interface for N < 20, and a similar nonmonotonic migration of the layers is as well observed. The D is the largest for a small N because of the excluded volume effects between the NPs. Increasing Ng and N pushes the neighboring NP layers toward the interface due to the mutual repulsion. Generally, this study may shed some light on how to better understand and design high-performance polymer nanocomposites with a tunable location of NPs.
Collapse
Affiliation(s)
| | | | - Emily Jia Li Tsen
- Department of Engineering, St. Anne's College , University of Oxford , OX2 6HS Oxford , U.K
| | | | - Alexey V Lyulin
- Theory of Polymers and Soft Matter, Department of Applied Physics , Technische Universiteit Eindhoven , 5600 MB Eindhoven , The Netherlands
| | | |
Collapse
|
15
|
Li BY, Zhao L, Lu ZY. Microscopic characteristics of Janus nanoparticles prepared via a grafting-from reaction at the immiscible liquid interface. Phys Chem Chem Phys 2020; 22:5347-5354. [PMID: 32096506 DOI: 10.1039/c9cp06497d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dynamic process of synthesizing Janus nanoparticles (JNPs) at a water/oil two-phase interface using a grafting-from reaction is investigated via dissipative particle dynamics simulations. We find that the interfacial tension, the initial monomer concentration, and the reaction probability can greatly influence the microscopic characteristics of JNP structure. It is difficult to synthesize a symmetric JNP with an equal volume ratio between hydrophilic and hydrophobic parts by grafting-from methods unless the physical chemical conditions in the two phases are strictly symmetric, and there is always a disordered domain on the JNP at a two immiscible solvents interface. Interestingly, for certain routes for synthesizing JNPs with a grafting-from method, the higher interfacial tension between the water and oil phases may enhance the degree of disorder of the grafted chains. The asymmetric initial monomer concentration in solution and the reaction probability can be used to control the syntheses of asymmetric JNPs.
Collapse
Affiliation(s)
- Bing-Yu Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Li Zhao
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|
16
|
Li J, Wang J, Yao Q, Yu K, Yan Y, Zhang J. Cooperative assembly of Janus particles and amphiphilic oligomers: the role of Janus balance. NANOSCALE 2019; 11:7221-7228. [PMID: 30924470 DOI: 10.1039/c9nr00581a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cooperative assembly of nanoparticles and amphiphiles has emerged as a significant strategy for constructing hybrid nanocomposites with desired architectures and properties. It is of great significance to develop novel hybrid nanostructures with controlled spatial localization of nanoparticles within hybrid assemblies. Here, by adopting dissipative particle dynamics simulations, the cooperative assembly of Janus particles and amphiphilic oligomers is studied. We demonstrate that a variety of defined hybrid nanostructures such as balls, sticks, disks, lines, vesicles, and networks can be achieved by the cooperative assembly of Janus particles and amphiphilic oligomers. Furthermore, the investigation of the kinetic pathway illustrates that the formation of hybrid assemblies is an entropy-driven process. Our simulation results suggest that the Janus balance of nanoparticles can significantly affect the structure and size of hybrid aggregates and the spatial localization of Janus particles within hybrid assemblies. These findings not only enrich our understanding of the cooperative assembly of Janus nanoparticles and amphiphiles, but also offer a feasible strategy to prepare hybrid materials with controlled localization of nanoparticles.
Collapse
Affiliation(s)
- Jiawei Li
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, Shandong, China.
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Han X, Liang X, Cai L, He A, Nie H. Amphiphilic Janus nanosheets by grafting reactive rubber brushes for reinforced rubber materials. Polym Chem 2019. [DOI: 10.1039/c9py00863b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An amphiphilic Janus nanosheet with different reactive rubber brushes on two opposite sides can simultaneously strengthen and toughen rubber blends.
Collapse
Affiliation(s)
- Xiao Han
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xincheng Liang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lei Cai
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
19
|
|
20
|
Zhu G, Huang Z, Xu Z, Yan LT. Tailoring Interfacial Nanoparticle Organization through Entropy. Acc Chem Res 2018; 51:900-909. [PMID: 29589915 DOI: 10.1021/acs.accounts.8b00001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability to tailor the interfacial behaviors of nanoparticles (NPs) is crucial not only for the design of novel nanostructured materials with superior properties and of interest for many promising applications such as water purification, enhanced oil recovery, and innovative energy transduction, but also for a better insight into many biological systems where nanoscale particles such as proteins or viruses can interact and organize at certain interfaces. As a class of emerging building blocks, Janus NPs consisting of two compartments of different chemistry or polarity are ideal candidates to generate tunable and stable interfacial nanostructures because of the asymmetric nature. However, precise control over such interfacial nanostructures toward a controllable order and even responses to various external stimuli still remains a great challenge as the interfaces do not simply serve as a scaffold but rather induce complex enthalpic and entropic interactions. In this Account, we focus on our efforts on exploiting entropy strategies based on computational design to tailor the spatial distribution and ordering of NPs at the interfaces of various systems. First, we introduce the physical principle of entropic ordering, being the theoretical basis of entropy-directed interfacial self-assembly. The typical types of entropy, which have been harnessed to manipulate the interfacial NP organization, are then summarized, including conformational entropy, shape entropy, and rotational and vibrational entropy. Next, we describe the emerging pathways in the development of novel environmentally responsive systems which involve the use of entropy to access the stimuli-responsive behaviors of interfacial nanostructures. Taking one step further, how molecular architectures can be tailored to tune the entropic contributions to the interfacial self-assembly is demonstrated, through identifying the effects of various intrinsic properties of block segments, such as chain length and stiffness, on entropy-governed precise organization of Janus NPs at block copolymer interfaces. Finally, we detail some key factors for tailoring interfacial organization through entropy. In summary, entropy strategies offer a promising and abundant framework for precisely programming the structural organization of NPs at interfaces. We discuss future directions to signify the framework in tailoring the interfacial organization of NPs. We hope that this Account will promote further efforts toward fundamental research and the wide applications of designed interfacial assemblies in new types of functional nanomaterials and beyond.
Collapse
Affiliation(s)
- Guolong Zhu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zihan Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
21
|
Nie H, Liang X, He A. Enthalpy-Enhanced Janus Nanosheets for Trapping Nonequilibrium Morphology of Immiscible Polymer Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xincheng Liang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
22
|
Fu Z, Wang H, Zhao X, Horiuchi S, Li Y. Immiscible polymer blends compatibilized with reactive hybrid nanoparticles: Morphologies and properties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Yong C, Mei C, Guan M, Wu Q, Sun X, Xu B, Wang K. Interfacial modification mechanism of nanocellulose as a compatibilizer for immiscible binary poly(vinyl alcohol)/poly(ethylene oxide) blends. J Appl Polym Sci 2017. [DOI: 10.1002/app.45896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cheng Yong
- College of Materials Science and Engineering; Nanjing Forestry University; Nanjing Jiangsu 210037 China
| | - Changtong Mei
- College of Materials Science and Engineering; Nanjing Forestry University; Nanjing Jiangsu 210037 China
| | - Mingjie Guan
- College of Materials Science and Engineering; Nanjing Forestry University; Nanjing Jiangsu 210037 China
| | - Qinglin Wu
- School of Renewable Natural Resources; Louisiana State University; Baton Rouge Louisiana 70803
| | - Xiuxuan Sun
- School of Renewable Natural Resources; Louisiana State University; Baton Rouge Louisiana 70803
| | - Bing Xu
- College of Materials Science and Engineering; Nanjing Forestry University; Nanjing Jiangsu 210037 China
| | - Ke Wang
- College of Materials Science and Engineering; Nanjing Forestry University; Nanjing Jiangsu 210037 China
| |
Collapse
|
24
|
Qin S, Yong X. Interfacial adsorption of pH-responsive polymers and nanoparticles. SOFT MATTER 2017; 13:5137-5149. [PMID: 28657632 DOI: 10.1039/c7sm00637c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using dissipative particle dynamics (DPD), we model the interfacial adsorption of pH-responsive polyelectrolytes and polyelectrolyte-grafted nanoparticles (PNPs) at a planar water-oil interface. The electrostatic interactions in the presence of the dielectric discontinuity across the interface are modeled by exploiting the Groot method, which uses an iterative method to solve the Poisson equation on a uniform grid with distributed charge. We reveal the effects of the pH and salinity of the aqueous solution and the length of the polyelectrolyte on the adsorption behavior of weak polyelectrolytes. The adsorption kinetics is monitored via the trajectory of the center of mass of the polyelectrolyte in the direction normal to the interface. The residence time at the interface and the pair correlation function between the polyelectrolyte and the oil are measured to quantitatively characterize the adsorption. Similar to the weak polyelectrolytes, the influences of pH, salinity and grafted chain length on the adsorption of an individual PNP are explored. Our results show that by grafting polyelectrolytes, the interfacial behavior of the nanoparticles can be tuned by changing the pH and salinity of the solution, which is dictated by the contact angle, the pair correlation function between the particles and the oil, the desorption energy, and the particle morphology at the interface. We also observe that the electrostatic-driven variations in the interfacial activity and morphology of the PNPs are not sensitive to the length of the grafted polyelectrolytes.
Collapse
Affiliation(s)
- Shiyi Qin
- Department of Mechanical Engineering, Binghamton University, The State University of New York, Binghamton, New York 13902, USA.
| | | |
Collapse
|
25
|
Modica KJ, Martin TB, Jayaraman A. Effect of Polymer Architecture on the Structure and Interactions of Polymer Grafted Particles: Theory and Simulations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00524] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kevin J. Modica
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| | - Tyler B. Martin
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| |
Collapse
|
26
|
Chen P, Yang Y, Dong B, Huang Z, Zhu G, Cao Y, Yan LT. Polymerization-Induced Interfacial Self-Assembly of Janus Nanoparticles in Block Copolymers: Reaction-Mediated Entropy Effects, Diffusion Dynamics, and Tailorable Micromechanical Behaviors. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pengyu Chen
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ye Yang
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bojun Dong
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zihan Huang
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Guolong Zhu
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yufei Cao
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- Key Laboratory of Advanced
Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
27
|
Meenakshisundaram V, Hung JH, Patra TK, Simmons DS. Designing Sequence-Specific Copolymer Compatibilizers Using a Molecular-Dynamics-Simulation-Based Genetic Algorithm. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b01747] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Venkatesh Meenakshisundaram
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| | - Jui-Hsiang Hung
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| | - Tarak K. Patra
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| | - David S. Simmons
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| |
Collapse
|
28
|
Yang Q, Loos K. Janus nanoparticles inside polymeric materials: interfacial arrangement toward functional hybrid materials. Polym Chem 2017. [DOI: 10.1039/c6py01795a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances and successes in interfacial behavior of Janus NPs at interfaces are summarized, with the hope to motivate additional efforts in the studies of Janus NPs in polymer matrix for the design of functional hybrid nanostructures and devices with engineered, desired and tailored properties for real-life applications.
Collapse
Affiliation(s)
- Qiuyan Yang
- Macromolecular Chemistry & New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
29
|
Zhou Y, Ma X, Zhang L, Lin J. Directed assembly of functionalized nanoparticles with amphiphilic diblock copolymers. Phys Chem Chem Phys 2017; 19:18757-18766. [DOI: 10.1039/c7cp03294c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We theoretically propose a simple approach to achieve soft nanoparticles with a self-patchiness nature, which are further directed to assemble into a rich variety of highly ordered superstructures.
Collapse
Affiliation(s)
- Yaru Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
30
|
Yang Q, Loos K. Design and Fabrication of Janus Nanoparticles for Interfacial Distribution in Block Copolymers. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiuyan Yang
- Macromolecular Chemistry and New Polymeric Materials; Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials; Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
31
|
Wang H, Fu Z, Dong W, Li Y, Li J. Formation of Interfacial Janus Nanomicelles by Reactive Blending and Their Compatibilization Effects on Immiscible Polymer Blends. J Phys Chem B 2016; 120:9240-52. [DOI: 10.1021/acs.jpcb.6b06761] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hengti Wang
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Road, Hangzhou 310036, P. R. China
- CAS
Center for Excellent on TMRS Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiang Fu
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Road, Hangzhou 310036, P. R. China
| | - Wenyong Dong
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Road, Hangzhou 310036, P. R. China
| | - Yongjin Li
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Road, Hangzhou 310036, P. R. China
| | - Jingye Li
- CAS
Center for Excellent on TMRS Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| |
Collapse
|
32
|
Quan X, Peng C, Dong J, Zhou J. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations. SOFT MATTER 2016; 12:3352-3359. [PMID: 26954721 DOI: 10.1039/c5sm02721g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, the structural properties of amphiphilic polymer-brush-grafted gold nanoparticles (AuNPs) at the oil-water interface were investigated by coarse-grained simulations. The effects of grafting architecture (diblock, mixed and Janus brush-grafted AuNPs) and hydrophilicity of polymer brushes are discussed. Simulation results indicate that functionalized AuNPs present abundant morphologies including typical core-shell, Janus-type, jellyfish-like, etc., in a water or oil-water solvent environment. It is found that hydrophobic/weak hydrophilic polymer-brush-grafted AuNPs have better phase transfer performance, especially for AuNPs modified with hydrophobic chains as outer blocks and weak hydrophilic chains as inner blocks. This kind of AuNP can cross the interface region and move into the oil phase completely. For hydrophobic/strong hydrophilic polymer-brush-grafted AuNPs, they are trapped in the interface region instead of moving into any phase. The mechanism of phase transfer is ascribed to the flexibility and mobility of outer blocks. Besides, we study the desorption energy by PMF analysis. The results demonstrate that Janus brush-grafted AuNPs show the highest interfacial stability and activity, which can be further strengthened by increasing the hydrophilicity of grafted polymer brushes. This work will promote the industrial applications of polymer-brush-grafted NPs such as phase transfer catalysis and Pickering emulsion catalysis.
Collapse
Affiliation(s)
- Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | |
Collapse
|
33
|
Sambasivam A, Sangwai AV, Sureshkumar R. Self-Assembly of Nanoparticle-Surfactant Complexes with Rodlike Micelles: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1214-1219. [PMID: 26760445 DOI: 10.1021/acs.langmuir.5b03689] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The self-assembly of nanoparticles (NPs) with cationic micelles of cetyltrimethylammonium chloride (CTAC) is known to produce stable nanogels with rich rheological and optical properties. Coarse-grained molecular dynamics (MD) simulations are performed to explore the molecular mechanisms underlying this self-assembly process. In an aqueous solution of CTAC surfactants, a negatively charged NP with a zeta potential of less than -45 mV is observed to form a stable vesicular structure in which the particle surface is almost entirely covered with a double layer of surfactants. In comparison, surfactants form a monolayer, or a corona, around an uncharged hydrophobic NP with the tailgroups physically adsorbed onto the particle. In the presence of sodium salicylate salt, such NP-surfactant complexes (NPSCs) interact with rodlike CTAC micelles, resulting in the formation of stable junctions through the opening up of the micelle end-cap followed by surfactant exchange, which is diffusion-limited. The diffusive regime spans several hundred nanoseconds, thereby necessitating MD simulations over microsecond time scales. The energetics of NPSC-micelle complexation is analyzed from the variation in the total pair-potential energy of the structures.
Collapse
|
34
|
Guan X, Fan H, Jia T, Zhang D, Zhang Y, Lei Z, Lai S. A Versatile Synthetic Approach to Covalent Binding of Polymer Brushes on CdSe/CdS Quantum Dots Surface: Multitype Modification of Nanocrystals. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials; Ministry of Education; Gansu 730070 P. R. China
- Key Laboratory of Polymer Materials; Ministry of Gansu Province; Gansu 730070 P. R. China
- College of Chemistry and Chemical Engineering; Northwest Normal University; Gansu 730070 P. R. China
| | - Hongting Fan
- Key Laboratory of Eco-Environment-Related Polymer Materials; Ministry of Education; Gansu 730070 P. R. China
- Key Laboratory of Polymer Materials; Ministry of Gansu Province; Gansu 730070 P. R. China
- College of Chemistry and Chemical Engineering; Northwest Normal University; Gansu 730070 P. R. China
| | - Tianming Jia
- Key Laboratory of Eco-Environment-Related Polymer Materials; Ministry of Education; Gansu 730070 P. R. China
- Key Laboratory of Polymer Materials; Ministry of Gansu Province; Gansu 730070 P. R. China
- College of Chemistry and Chemical Engineering; Northwest Normal University; Gansu 730070 P. R. China
| | - Donghai Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials; Ministry of Education; Gansu 730070 P. R. China
- Key Laboratory of Polymer Materials; Ministry of Gansu Province; Gansu 730070 P. R. China
- College of Chemistry and Chemical Engineering; Northwest Normal University; Gansu 730070 P. R. China
| | - Yang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials; Ministry of Education; Gansu 730070 P. R. China
- Key Laboratory of Polymer Materials; Ministry of Gansu Province; Gansu 730070 P. R. China
- College of Chemistry and Chemical Engineering; Northwest Normal University; Gansu 730070 P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials; Ministry of Education; Gansu 730070 P. R. China
- Key Laboratory of Polymer Materials; Ministry of Gansu Province; Gansu 730070 P. R. China
- College of Chemistry and Chemical Engineering; Northwest Normal University; Gansu 730070 P. R. China
| | - Shoujun Lai
- Key Laboratory of Eco-Environment-Related Polymer Materials; Ministry of Education; Gansu 730070 P. R. China
- Key Laboratory of Polymer Materials; Ministry of Gansu Province; Gansu 730070 P. R. China
- College of Chemistry and Chemical Engineering; Northwest Normal University; Gansu 730070 P. R. China
| |
Collapse
|
35
|
Bryson KC, Löbling TI, Müller AHE, Russell TP, Hayward RC. Using Janus Nanoparticles To Trap Polymer Blend Morphologies during Solvent-Evaporation-Induced Demixing. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00640] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kyle C. Bryson
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Tina I. Löbling
- Makromolekulare
Chemie II and Bayreuther Zentrum für Kolloide und Grenzflächen, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Axel H. E. Müller
- Makromolekulare
Chemie II and Bayreuther Zentrum für Kolloide und Grenzflächen, Universität Bayreuth, 95440 Bayreuth, Germany
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg
10-14, D-55128 Mainz, Germany
| | - Thomas P. Russell
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ryan C. Hayward
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|