1
|
Yang C, Guo Y, Zhang H, Guo X. Utilization of Electric Fields to Modulate Molecular Activities on the Nanoscale: From Physical Properties to Chemical Reactions. Chem Rev 2025; 125:223-293. [PMID: 39621876 DOI: 10.1021/acs.chemrev.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As a primary energy source, electricity drives broad fields from everyday electronic circuits to industrial chemical catalysis. From a chemistry viewpoint, studying electric field effects on chemical reactivity is highly important for revealing the intrinsic mechanisms of molecular behaviors and mastering chemical reactions. Recently, manipulating the molecular activity using electric fields has emerged as a new research field. In addition, because integration of molecules into electronic devices has the natural complementary metal-oxide-semiconductor compatibility, electric field-driven molecular devices meet the requirements for both electronic device miniaturization and precise regulation of chemical reactions. This Review provides a timely and comprehensive overview of recent state-of-the-art advances, including theoretical models and prototype devices for electric field-based manipulation of molecular activities. First, we summarize the main approaches to providing electric fields for molecules. Then, we introduce several methods to measure their strengths in different systems quantitatively. Subsequently, we provide detailed discussions of electric field-regulated photophysics, electron transport, molecular movements, and chemical reactions. This review intends to provide a technical manual for precise molecular control in devices via electric fields. This could lead to development of new optoelectronic functions, more efficient logic processing units, more precise bond-selective control, new catalytic paradigms, and new chemical reactions.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Heng Zhang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Nguyen AT, Louis-Goff T, Ortiz-Garcia JJ, Pham TKN, Quardokus RC, Lee EC, Brown JJ, Hyvl J, Lee W. Cluster Formation of Self-Assembled Triarylbismuthanes and Charge Transport Characterizations of Gold-Triarylbismuthane-Gold Junctions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38669-38678. [PMID: 38981101 DOI: 10.1021/acsami.4c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Organometallic molecules are promising for molecular electronic devices due to their potential to improve electrical conductance through access to complex orbital covalency that is not available to light-element organic molecules. However, studies of the formation of organometallic monolayers and their charge transport properties are scarce. Here, we report the cluster formation and charge transport properties of gold-triarylbismuthane-gold molecular junctions. We found that triarylbismuthane molecules with -CN anchoring groups form clusters during the creation of self-assembled submonolayers. This clustering is attributed to strong interactions between the bismuth (Bi) center and the nitrogen atom in the -CN group of adjacent molecules. Examination of the influence of -NH2 and -CN anchoring groups on junction conductance revealed that, despite a stronger binding energy between the -NH2 group and gold, the conductance per molecular unit (i.e., molecule for the -NH2 group and cluster for the -CN group) is higher with the -CN anchoring group. Further analysis showed that an increase in the number of -CN groups from one to three within the junctions leads to a decrease in conductance while increasing the size of the cluster. This demonstrates the significant effects of different anchoring groups and the impact of varying the number of -CN groups on both the charge transport and cluster formation. This study highlights the importance of selecting the appropriate anchoring group in the design of molecular junctions. Additionally, controlling the size and formation of clusters can be a strategic approach to engineering charge transport in molecular junctions.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Department of Mechanical Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Thomas Louis-Goff
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - José J Ortiz-Garcia
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Thi Kieu Ngan Pham
- Department of Mechanical Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Rebecca C Quardokus
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Eun-Cheol Lee
- Department of Nanoscience and Technology, Graduate School and Department of Physics, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Joseph J Brown
- Department of Mechanical Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Jakub Hyvl
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Woochul Lee
- Department of Mechanical Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
3
|
Nguyen QV, Martin P, Lacroix JC. Probing the Effect of the Density of Active Molecules in Large-Area Molecular Junctions. J Phys Chem Lett 2022; 13:11990-11995. [PMID: 36537879 DOI: 10.1021/acs.jpclett.2c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effect of the density of active molecules in molecular junctions (MJs) has been investigated by using a host/guest strategy. Mixed layers consisting of oligothiophene (BTB) encapsulated by β-cyclodextrin (BTB@β-CD) were generated. Cyclodextrins were then removed, and the pinholes generated were filled with BTB to obtain BTB@BTB films. MJs based on mixed BTB@β-CD and BTB@BTB layers, as well as single-component BTB MJs, were compared. The variation of ln J vs thickness is similar for all systems while the Jo of BTB@β-CD MJs is 20 times lower than that of BTB MJs. After β-cyclodextrin has been removed, and the pinholes filled, Jo increases and reaches the same value as for the BTB MJs, showing that the conductance scales with the number of active molecules. This strategy provides a unique method for investigating molecular interactions in direct tunneling MJs as well as the possibility of fabricating new functionalized MJs based on mixed layers.
Collapse
Affiliation(s)
- Quyen Van Nguyen
- Université Paris Cité, ITODYS, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 11307 Cau Giay, Hanoi Vietnam
| | - Pascal Martin
- Université Paris Cité, ITODYS, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean Christophe Lacroix
- Université Paris Cité, ITODYS, CNRS UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 11307 Cau Giay, Hanoi Vietnam
| |
Collapse
|
4
|
Lima MP, Miwa RH, Fazzio A. The role played by the molecular geometry on the electronic transport through nanometric organic films. Phys Chem Chem Phys 2019; 21:24584-24591. [PMID: 31664278 DOI: 10.1039/c9cp04304g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The electronic transport properties in molecular heterojunctions are intimately connected with the molecular conformation between the electrodes, and the electronic structure of the molecule/electrode interface. In this work, we perform an ab initio density-functional-theory investigation of the structural and transport properties through self-assembled CuPc molecules sandwiched between gold contacts with (111) surfaces. We demonstrated (i) a tunneling regime ruled by the π orbitals of the aromatic rings of CuPc molecules; and (ii) a high variation (up to two orders of magnitude) of the current density with the orientation of the CuPc molecules relative to the gold surface. The source of this variation is the geometrical dependence of the energy of the highest-occupied-molecular-orbital with respect to the chemical potential of the metal and the generation of intra-molecular transport channels for a configuration with CuPc molecules tilted with respect to the gold surface.
Collapse
Affiliation(s)
- Matheus P Lima
- Department of Physics, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | |
Collapse
|
5
|
Vuillaume D. Molecular Electronics: From Single‐Molecule to Large‐Area Devices. Chempluschem 2019; 84:1215-1221. [DOI: 10.1002/cplu.201900171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Dominique Vuillaume
- Institute for Electronics Microelectronics and Nanotechnology CNRSUniversité de Lille Avenue Poincaré CS60069, 59652 cedex Villeneuve d'Ascq France
| |
Collapse
|
6
|
Gryn'ova G, Corminboeuf C. Topology-Driven Single-Molecule Conductance of Carbon Nanothreads. J Phys Chem Lett 2019; 10:825-830. [PMID: 30668127 DOI: 10.1021/acs.jpclett.8b03556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Highly conductive single-molecule junctions typically involve π-conjugated molecular bridges, whose frontier molecular orbital energy levels can be fine-tuned to best match the Fermi level of the leads. Fully saturated wires, e.g., alkanes, are typically thought of as insulating rather than highly conductive. However, in this work, we demonstrate in silico that significant zero-bias conductance can be achieved in such systems by means of topology. Specifically, caged saturated hydrocarbons offering multiple σ-conductance channels afford transmission far beyond what could be expected based upon conventional superposition laws, particularly if these pathways are composed entirely from quaternary carbon atoms. Computed conductance of molecular bridges based on carbon nanothreads, e.g., polytwistane, is not only of appreciable magnitude; it also shows a very slow decay with increasing nanogap, similarly to the case of π-conjugated wires. These findings offer a way to manipulate the transport properties of molecular systems by means of their topology, alternatively to the traditionally invoked electronic structure.
Collapse
Affiliation(s)
- Ganna Gryn'ova
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| |
Collapse
|
7
|
Metal/molecule/metal junction studies of organometallic and coordination complexes; What can transition metals do for molecular electronics? Polyhedron 2018. [DOI: 10.1016/j.poly.2017.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Obersteiner V, Huhs G, Papior N, Zojer E. Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters. NANO LETTERS 2017; 17:7350-7357. [PMID: 29043825 PMCID: PMC5730946 DOI: 10.1021/acs.nanolett.7b03066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Indexed: 05/16/2023]
Abstract
Metal-molecule-metal junctions are the key components of molecular electronics circuits. Gaining a microscopic understanding of their conducting properties is central to advancing the field. In the present contribution, we highlight the fundamental differences between single-molecule and ensemble junctions focusing on the fundamentals of transport through molecular clusters. In this way, we elucidate the collective behavior of parallel molecular wires, bridging the gap between single molecule and large-area monolayer electronics, where even in the latter case transport is usually dominated by finite-size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be distinctly nonlinear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems.
Collapse
Affiliation(s)
- Veronika Obersteiner
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Georg Huhs
- Barcelona
Supercomputing Center (BSC), C/Jordi Girona 29, 08034 Barcelona, Spain
- Humboldt-Universität
zu Berlin, Zum Großen
Windkanal 6, 12489 Berlin, Germany
| | - Nick Papior
- Department
of Micro- and Nanotechnology (DTU Nanotech) and Center for Nanostructured
Graphene, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Institut Català
de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Spain
| | - Egbert Zojer
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
9
|
Borges A, Xia J, Liu SH, Venkataraman L, Solomon GC. The Role of Through-Space Interactions in Modulating Constructive and Destructive Interference Effects in Benzene. NANO LETTERS 2017; 17:4436-4442. [PMID: 28650176 DOI: 10.1021/acs.nanolett.7b01592] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantum interference effects, whether constructive or destructive, are key to predicting and understanding the electrical conductance of single molecules. Here, through theory and experiment, we investigate a family of benzene-like molecules that exhibit both constructive and destructive interference effects arising due to more than one contact between the molecule and each electrode. In particular, we demonstrate that the π-system of meta-coupled benzene can exhibit constructive interference and its para-coupled analog can exhibit destructive interference, and vice versa, depending on the specific through-space interactions. As a peculiarity, this allows a meta-coupled benzene molecule to exhibit higher conductance than a para-coupled benzene. Our results provide design principles for molecular electronic components with high sensitivity to through-space interactions and demonstrate that increasing the number of contacts between the molecule and electrodes can both increase and decrease the conductance.
Collapse
Affiliation(s)
- Anders Borges
- Department of Applied Physics, Columbia University , New York 10027, United States
- Nano-Science Center and Department of Chemistry, University of Copenhagen , 1017 Copenhagen Ø, Denmark
| | - Jianlong Xia
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology , Wuhan 430070, China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, 430079, China
| | - Latha Venkataraman
- Department of Applied Physics and Department of Chemistry, Columbia University , New York 10027, United States
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry, University of Copenhagen , 1017 Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Trasobares J, Rech J, Jonckheere T, Martin T, Aleveque O, Levillain E, Diez-Cabanes V, Olivier Y, Cornil J, Nys JP, Sivakumarasamy R, Smaali K, Leclere P, Fujiwara A, Théron D, Vuillaume D, Clément N. Estimation of π-π Electronic Couplings from Current Measurements. NANO LETTERS 2017; 17:3215-3224. [PMID: 28358215 DOI: 10.1021/acs.nanolett.7b00804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The π-π interactions between organic molecules are among the most important parameters for optimizing the transport and optical properties of organic transistors, light-emitting diodes, and (bio-) molecular devices. Despite substantial theoretical progress, direct experimental measurement of the π-π electronic coupling energy parameter t has remained an old challenge due to molecular structural variability and the large number of parameters that affect the charge transport. Here, we propose a study of π-π interactions from electrochemical and current measurements on a large array of ferrocene-thiolated gold nanocrystals. We confirm the theoretical prediction that t can be assessed from a statistical analysis of current histograms. The extracted value of t ≈35 meV is in the expected range based on our density functional theory analysis. Furthermore, the t distribution is not necessarily Gaussian and could be used as an ultrasensitive technique to assess intermolecular distance fluctuation at the subangström level. The present work establishes a direct bridge between quantum chemistry, electrochemistry, organic electronics, and mesoscopic physics, all of which were used to discuss results and perspectives in a quantitative manner.
Collapse
Affiliation(s)
- J Trasobares
- Institute of Electronics, Microelectronics and Nanotechnology, CNRS, University of Lille , Avenue Poincaré, BP60069, 59652, Villeneuve d'Ascq France
| | - J Rech
- Aix Marseille University, Universite de Toulon, CNRS, CPT , 163 Avenue de Luminy, 13288 Marseille cedex 9, France
| | - T Jonckheere
- Aix Marseille University, Universite de Toulon, CNRS, CPT , 163 Avenue de Luminy, 13288 Marseille cedex 9, France
| | - T Martin
- Aix Marseille University, Universite de Toulon, CNRS, CPT , 163 Avenue de Luminy, 13288 Marseille cedex 9, France
| | - O Aleveque
- Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou , 2 bd Lavoisier, 49045 Angers cedex, France
| | - E Levillain
- Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou , 2 bd Lavoisier, 49045 Angers cedex, France
| | - V Diez-Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons , Place du Parc 20, B-7000 Mons, Belgium
| | - Y Olivier
- Laboratory for Chemistry of Novel Materials, University of Mons , Place du Parc 20, B-7000 Mons, Belgium
| | - J Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons , Place du Parc 20, B-7000 Mons, Belgium
| | - J P Nys
- Institute of Electronics, Microelectronics and Nanotechnology, CNRS, University of Lille , Avenue Poincaré, BP60069, 59652, Villeneuve d'Ascq France
| | - R Sivakumarasamy
- Institute of Electronics, Microelectronics and Nanotechnology, CNRS, University of Lille , Avenue Poincaré, BP60069, 59652, Villeneuve d'Ascq France
| | - K Smaali
- Institute of Electronics, Microelectronics and Nanotechnology, CNRS, University of Lille , Avenue Poincaré, BP60069, 59652, Villeneuve d'Ascq France
| | - P Leclere
- Laboratory for Chemistry of Novel Materials, University of Mons , Place du Parc 20, B-7000 Mons, Belgium
| | - A Fujiwara
- NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi-shi, kanagawa 243-0198, Japan
| | - D Théron
- Institute of Electronics, Microelectronics and Nanotechnology, CNRS, University of Lille , Avenue Poincaré, BP60069, 59652, Villeneuve d'Ascq France
| | - D Vuillaume
- Institute of Electronics, Microelectronics and Nanotechnology, CNRS, University of Lille , Avenue Poincaré, BP60069, 59652, Villeneuve d'Ascq France
| | - N Clément
- Institute of Electronics, Microelectronics and Nanotechnology, CNRS, University of Lille , Avenue Poincaré, BP60069, 59652, Villeneuve d'Ascq France
- NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi-shi, kanagawa 243-0198, Japan
| |
Collapse
|
11
|
Majumdar S, Malen JA, McGaughey AJH. Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions. NANO LETTERS 2017; 17:220-227. [PMID: 28073270 DOI: 10.1021/acs.nanolett.6b03894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of the local molecular environment on thermal transport through organic-inorganic heterojunctions is investigated using binary self-assembled monolayer (SAM) junctions built from a mixture of alkanethiol and alkanedithiol species sandwiched between gold leads. Thermoreflectance measurements and molecular dynamics simulations demonstrate that the thermal conductances of the binary SAM junctions vary with molecular composition and are greater than predictions of a parallel resistance model. The enhancement results from increased thermal transport through the alkanethiols, whose terminal methyl groups are confined by the anchored alkanedithiols. This confinement effect extends over length scales that are more than twice the range of the van der Waals interactions between molecules and are commensurate to the sizes of experimentally observed molecular domains. Conversely, for a partially packed (i.e., submonolayer) alkanedithiol unary SAM, increasing the molecular packing density decreases the per molecule thermal conductance. This finding indicates that thermal transport measurements of SAMs cannot be used to predict the thermal transport properties of single molecules.
Collapse
Affiliation(s)
- Shubhaditya Majumdar
- Department of Mechanical Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jonathan A Malen
- Department of Mechanical Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Materials Science and Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J H McGaughey
- Department of Mechanical Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Materials Science and Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Kilgour M, Segal D. Charge transport in molecular junctions: From tunneling to hopping with the probe technique. J Chem Phys 2016; 143:024111. [PMID: 26178094 DOI: 10.1063/1.4926395] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ϵB > 1/25, with ϵB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.
Collapse
Affiliation(s)
- Michael Kilgour
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Kilgour M, Segal D. Inelastic effects in molecular transport junctions: The probe technique at high bias. J Chem Phys 2016; 144:124107. [DOI: 10.1063/1.4944470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Kilgour
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
14
|
Obersteiner V, Egger D, Zojer E. Impact of Anchoring Groups on Ballistic Transport: Single Molecule vs Monolayer Junctions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:21198-21208. [PMID: 26401191 PMCID: PMC4568541 DOI: 10.1021/acs.jpcc.5b06110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/31/2015] [Indexed: 05/20/2023]
Abstract
Tuning the transport properties of molecular junctions by chemically modifying the molecular structure is one of the key challenges for advancing the field of molecular electronics. In the present contribution, we investigate current-voltage characteristics of differently linked metal-molecule-metal systems that comprise either a single molecule or a molecular assembly. This is achieved by employing density functional theory in conjunction with a Green's function approach. We show that the conductance of a molecular system with a specific anchoring group is fundamentally different depending on whether a single molecule or a continuous monolayer forms the junction. This is a consequence of collective electrostatic effects that arise from dipolar elements contained in the monolayer and from interfacial charge rearrangements. As a consequence of these collective effects, the "ideal" choice for an anchoring group is clearly different for monolayer and single molecule devices. A particularly striking effect is observed for pyridine-docked systems. These are subject to Fermi-level pinning at high molecular packing densities, causing an abrupt increase of the junction current already at small voltages.
Collapse
Affiliation(s)
- Veronika Obersteiner
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - David
A. Egger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovoth 76100, Israel
| | - Egbert Zojer
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
- E-mail:
| |
Collapse
|
15
|
Kretz B, Egger DA, Zojer E. A Toolbox for Controlling the Energetics and Localization of Electronic States in Self-Assembled Organic Monolayers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1400016. [PMID: 27547707 PMCID: PMC4973851 DOI: 10.1002/advs.201400016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/27/2015] [Indexed: 05/28/2023]
Abstract
Controlling the nature of the electronic states within organic layers holds the promise of truly molecular electronics. To achieve that we, here, develop a modular concept for a versatile tuning of electronic properties in organic monolayers and their interfaces. The suggested strategy relies on directly exploiting collective electrostatic effects, which emerge naturally in an ensemble of polar molecules. By means of quantum-mechanical modeling we show that in this way monolayer-based quantum-cascades and quantum-well structures can be realized, which allow a precise control of the local electronic structure and the localization of electronic states. Extending that concept, we furthermore discuss strategies for activating spin sensitivity in specific regions of an organic monolayer.
Collapse
Affiliation(s)
- Bernhard Kretz
- Institute of Solid State Physics, NAWI Graz Graz University of Technology Petersgasse 16 A-8010 Graz Austria
| | - David A Egger
- Institute of Solid State Physics, NAWI Graz Graz University of Technology Petersgasse 16A-8010 Graz Austria; Department of Materials and Interfaces Weizmann Institute of Science Rehovoth 76100 Israel
| | - Egbert Zojer
- Institute of Solid State Physics, NAWI Graz Graz University of Technology Petersgasse 16 A-8010 Graz Austria
| |
Collapse
|
16
|
Li X, Liu H, Zhao J. Length-dependent Conductance in Conjugated Molecules in Parallel. CHEM LETT 2015. [DOI: 10.1246/cl.140969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaolong Li
- Institute of Condensed Matter Physics, Linyi University
| | - Hongmei Liu
- Institute of Condensed Matter Physics, Linyi University
| | - Jianwei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University
| |
Collapse
|
17
|
Jackson NE, Heitzer HM, Savoie BM, Reuter MG, Marks TJ, Ratner MA. Emergent Properties in Locally Ordered Molecular Materials. Isr J Chem 2014. [DOI: 10.1002/ijch.201400021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Gillemot K, Evangeli C, Leary E, La Rosa A, González MT, Filippone S, Grace I, Rubio-Bollinger G, Ferrer J, Martín N, Lambert CJ, Agraït N. A detailed experimental and theoretical study into the properties of C60 dumbbell junctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3812-3822. [PMID: 23630169 DOI: 10.1002/smll.201300310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/04/2013] [Indexed: 06/02/2023]
Abstract
A combined experimental and theoretical investigation is carried out into the electrical transport across a fullerene dumbbell one-molecule junction. The newly designed molecule comprises two C60 s connected to a fluorene backbone via cyclopropyl groups. It is wired between gold electrodes under ambient conditions by pressing the tip of a scanning tunnelling microscope (STM) onto one of the C60 groups. The STM allows us to identify a single molecule before the junction is formed through imaging, which means unambiguously that only one molecule is wired. Once lifted, the same molecule could be wired many times as it was strongly fixed to the tip, and a high conductance state close to 10(-2) G0 is found. The results also suggest that the relative conductance fluctuations are low as a result of the low mobility of the molecule. Theoretical analysis indicates that the molecule is connected directly to one electrode through the central fluorene, and that to bind it to the gold fully it has to be pushed through a layer of adsorbates naturally present in the experiment.
Collapse
Affiliation(s)
- Katalin Gillemot
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
An intriguing observation of photosynthetic light-harvesting systems is the N-fold symmetry of light-harvesting complex 2 (LH2) of purple bacteria. We calculate the optimal rotational configuration of N-fold rings on a hexagonal lattice and establish two related mechanisms for the promotion of maximum excitation energy transfer (EET). (i) For certain fold numbers, there exist optimal basis cells with rotational symmetry, extendable to the entire lattice for the global optimization of the EET network. (ii) The type of basis cell can reduce or remove the frustration of EET rates across the photosynthetic network. We find that the existence of a basis cell and its type are directly related to the number of matching points S between the fold symmetry and the hexagonal lattice. The two complementary mechanisms provide selection criteria for the fold number and identify groups of consecutive numbers. Remarkably, one such group consists of the naturally occurring 8-, 9-, and 10-fold rings. By considering the inter-ring distance and EET rate, we demonstrate that this group can achieve minimal rotational sensitivity in addition to an optimal packing density, achieving robust and efficient EET. This corroborates our findings i and ii and, through their direct relation to S, suggests the design principle of matching the internal symmetry with the lattice order.
Collapse
|
20
|
Zu FX, Liu ZL, Yao KL, Fu HH, Gao GY, Yao W. Large negative differential resistance and rectifying behaviors in isolated thiophene nanowire devices. J Chem Phys 2013; 138:154707. [PMID: 23614436 DOI: 10.1063/1.4801439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We design isolated molecular nanowires composed of thiophene oligomers sandwiched between two one-dimensional gold electrodes. Electronic transport through the molecular junctions with two interface geometries is studied by performing the first principles calculations based on density functional theory and nonequilibrium Green's function. The current-voltage (I-V) curves of the molecular wires display an unexpected negative differential resistance and rectifying behaviors along with the oscillation effects, different from other theoretical and experimental studies about the analogous thiophene devices. The significant difference is attributed to the design of the one-dimensional gold electrodes with large enough vacuum layer in transverse direction in order to suppress the interaction between wires. Such transport behaviors indicate that the thiophene molecular device would be an important candidate in future molecular electronics.
Collapse
Affiliation(s)
- Feng-Xia Zu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
21
|
McCreery RL, Yan H, Bergren AJ. A critical perspective on molecular electronic junctions: there is plenty of room in the middle. Phys Chem Chem Phys 2013; 15:1065-81. [DOI: 10.1039/c2cp43516k] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Abstract
Several aspects of intermolecular effects in molecular conduction have been studied in recent years. These experimental and theoretical studies, made on several setups of molecular conduction junctions, have focused on the current-voltage characteristic that is usually dominated by the elastic transmission properties of such junctions. In this paper, we address cooperative intermolecular effects in the inelastic tunneling signal calculated for simple generic models of such systems. We find that peak heights in the inelastic (d(2)I/dE(2) vs E) spectrum may be affected by such cooperative effects even when direct intermolecular interactions can be disregarded. This finding suggests that comparing experimental results to calculations made on single-molecule junctions should be done with care.
Collapse
Affiliation(s)
- Michael Galperin
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
23
|
Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L, Hybertsen MS. Probing the conductance superposition law in single-molecule circuits with parallel paths. NATURE NANOTECHNOLOGY 2012; 7:663-667. [PMID: 22941403 DOI: 10.1038/nnano.2012.147] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference effects dramatically reduce the electron transfer rate through a meta-connected benzene ring when compared with a para-connected benzene ring. For longer conjugated and cross-conjugated molecules, destructive interference effects have been observed in the tunnelling conductance through molecular junctions. Here, we investigate the conductance superposition law for parallel components in single-molecule circuits, particularly the role of interference. We synthesize a series of molecular systems that contain either one backbone or two backbones in parallel, bonded together cofacially by a common linker on each end. Single-molecule conductance measurements and transport calculations based on density functional theory show that the conductance of a double-backbone molecular junction can be more than twice that of a single-backbone junction, providing clear evidence for constructive interference.
Collapse
Affiliation(s)
- H Vazquez
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 W. 120th Street, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Egger DA, Rissner F, Zojer E, Heimel G. Polarity switching of charge transport and thermoelectricity in self-assembled monolayer devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4403-4407. [PMID: 22807087 DOI: 10.1002/adma.201200872] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/09/2012] [Indexed: 05/28/2023]
Abstract
Self-assembled monolayer devices can exhibit drastically different charge-transport characteristics and thermoelectric properties despite being composed of isomeric molecules with essentially identical frontier-orbital energies. This is rationalized by the cooperative electrostatic action of local intramolecular dipoles in otherwise nonpolar species, thus revealing new challenges but also new opportunities for the targeted design of functional building blocks in future nanoelectronics.
Collapse
Affiliation(s)
- David A Egger
- Institut für Physik, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 6, 12489 Berlin, Germany
| | | | | | | |
Collapse
|