1
|
Smith RS, Weaver DR, King GM, Kosztin I. Chain-Length Dependence of Peptide-Lipid Bilayer Interaction Strength and Binding Kinetics: A Combined Theoretical and Experimental Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14467-14475. [PMID: 38963062 DOI: 10.1021/acs.langmuir.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Physical interactions between polypeptide chains and lipid membranes underlie critical cellular processes. Yet, despite fundamental importance, key mechanistic aspects of these interactions remain elusive. Bulk experiments have revealed a linear relationship between free energy and peptide chain length in a model system, but does this linearity extend to the interaction strength and to the kinetics of lipid binding? To address these questions, we utilized a combination of coarse-grained molecular dynamics (CG MD) simulations, analytical modeling, and atomic force microscopy (AFM)-based single molecule force spectroscopy. Following previous bulk experiments, we focused on interactions between short hydrophobic peptides (WLn, n = 1, ..., 5) with 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers, a simple system that probes peptide primary structure effects. Potentials of mean force extracted from CG MD recapitulated the linearity of free energy with the chain length. Simulation results were quantitatively connected to bulk biochemical experiments via a single scaling factor of order unity, corroborating the methodology. Additionally, CG MD revealed an increase in the distance to the transition state, a result that weakens the dependence of the dissociation force on the peptide chain length. AFM experiments elucidated rupture force distributions and, through modeling, intrinsic dissociation rates. Taken together, the analysis indicates a rupture force plateau in the WLn-POPC system, suggesting that the final rupture event involves the last 2 or 3 residues. In contrast, the linear dependence on chain length was preserved in the intrinsic dissociation rate. This study advances the understanding of peptide-lipid interactions and provides potentially useful insights for the design of peptides with tailored membrane-interacting properties.
Collapse
Affiliation(s)
- Ryan S Smith
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Dylan R Weaver
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ioan Kosztin
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Feng Y, Roos WH. Atomic Force Microscopy: An Introduction. Methods Mol Biol 2024; 2694:295-316. [PMID: 37824010 DOI: 10.1007/978-1-0716-3377-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Imaging of nano-sized particles and sample features is crucial in a variety of research fields, for instance, in biological sciences, where it is paramount to investigate structures at the single particle level. Often, two-dimensional images are not sufficient, and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. New developments in AFM are discussed, and by including approaches such as bimodal AFM and high-speed AFM (HS-AFM), we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Manesco C, Saavedra-Villanueva O, Martin M, de Lizaraga J, Varga B, Cloitre T, Gerber YN, Perrin FE, Gergely C. Organization of collagen fibers and tissue hardening: Markers of fibrotic scarring after spinal cord injury in mice revealed by multiphoton-atomic force microscopy imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102699. [PMID: 37572769 DOI: 10.1016/j.nano.2023.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/14/2023]
Abstract
Spinal cord injury is a dramatic disease leading to severe motor, sensitive and autonomic impairments. After injury the axonal regeneration is partly inhibited by the glial scar, acting as a physical and chemical barrier. The scarring process involves microglia, astrocytes and extracellular matrix components, such as collagen, constructing the fibrotic component of the scar. To investigate the role of collagen, we used a multimodal label-free imaging approach combining multiphoton and atomic force microscopy. The second harmonic generation signal exhibited by fibrillar collagen enabled to specifically monitor it as a biomarker of the lesion. An increase in collagen density and the formation of more tortuous fibers over time after injury are observed. Nano-mechanical investigations revealed a noticeable hardening of the injured area, correlated with collagen fibers' formation. These observations indicate the concomitance of important structural and mechanical modifications during the fibrotic scar evolution.
Collapse
Affiliation(s)
| | | | - Marta Martin
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Yannick Nicolas Gerber
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; IUF, Intitut Universitaire de, France, Paris
| | | | | |
Collapse
|
4
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Abstract
Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezers can thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Min Ju Shon
- Department of Physics and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology (POSTECH), Pohang, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
6
|
Li Q, Apostolidou D, Marszalek PE. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations. Methods 2021; 197:39-53. [PMID: 34020035 DOI: 10.1016/j.ymeth.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022] Open
Abstract
Most proteins in proteomes are large, typically consist of more than one domain and are structurally complex. This often makes studying their mechanical unfolding pathways challenging. Proteins composed of tandem repeat domains are a subgroup of multi-domain proteins that, when stretched, display a saw-tooth pattern in their mechanical unfolding force extension profiles due to their repetitive structure. However, the assignment of force peaks to specific repeats undergoing mechanical unraveling is complicated because all repeats are similar and they interact with their neighbors and form a contiguous tertiary structure. Here, we describe in detail a combination of experimental and computational single-molecule force spectroscopy methods that proved useful for examining the mechanical unfolding and refolding pathways of ankyrin repeat proteins. Specifically, we explain and delineate the use of atomic force microscope-based single molecule force spectroscopy (SMFS) to record the mechanical unfolding behavior of ankyrin repeat proteins and capture their unusually strong refolding propensity that is responsible for generating impressive refolding force peaks. We also describe Coarse Grain Steered Molecular Dynamic (CG-SMD) simulations which complement the experimental observations and provide insights in understanding the unfolding and refolding of these proteins. In addition, we advocate the use of novel coiled-coils-based mechanical polypeptide probes which we developed to demonstrate the vectorial character of folding and refolding of these repeat proteins. The combination of AFM-based SMFS on native and CC-equipped proteins with CG-SMD simulations is powerful not only for ankyrin repeat polypeptides, but also for other repeat proteins and more generally to various multidomain, non-repetitive proteins with complex topologies.
Collapse
Affiliation(s)
- Qing Li
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States.
| |
Collapse
|
7
|
Energy landscapes of fast-folding proteins pushing the limits of atomic force microscope (AFM) pulling. Proc Natl Acad Sci U S A 2021; 118:2102946118. [PMID: 33893176 DOI: 10.1073/pnas.2102946118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
9
|
Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations. Proc Natl Acad Sci U S A 2021; 118:2015728118. [PMID: 33723041 DOI: 10.1073/pnas.2015728118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Single-molecule force spectroscopy is a powerful tool for studying protein folding. Over the last decade, a key question has emerged: how are changes in intrinsic biomolecular dynamics altered by attachment to μm-scale force probes via flexible linkers? Here, we studied the folding/unfolding of α3D using atomic force microscopy (AFM)-based force spectroscopy. α3D offers an unusual opportunity as a prior single-molecule fluorescence resonance energy transfer (smFRET) study showed α3D's configurational diffusion constant within the context of Kramers theory varies with pH. The resulting pH dependence provides a test for AFM-based force spectroscopy's ability to track intrinsic changes in protein folding dynamics. Experimentally, however, α3D is challenging. It unfolds at low force (<15 pN) and exhibits fast-folding kinetics. We therefore used focused ion beam-modified cantilevers that combine exceptional force precision, stability, and temporal resolution to detect state occupancies as brief as 1 ms. Notably, equilibrium and nonequilibrium force spectroscopy data recapitulated the pH dependence measured using smFRET, despite differences in destabilization mechanism. We reconstructed a one-dimensional free-energy landscape from dynamic data via an inverse Weierstrass transform. At both neutral and low pH, the resulting constant-force landscapes showed minimal differences (∼0.2 to 0.5 k B T) in transition state height. These landscapes were essentially equal to the predicted entropic barrier and symmetric. In contrast, force-dependent rates showed that the distance to the unfolding transition state increased as pH decreased and thereby contributed to the accelerated kinetics at low pH. More broadly, this precise characterization of a fast-folding, mechanically labile protein enables future AFM-based studies of subtle transitions in mechanoresponsive proteins.
Collapse
|
10
|
Abstract
In the scanning probe microscope system, the weak signal detection of cantilever vibration is one of the important factors affecting the sensor sensitivity. In our current work, we present a novel design concept for an atomic force microscope (AFM) combined with optomechanics with an ultra-high quality factor and a low thermal noise. The detection system consists of a fixed mirror placed on the cantilever of the AFM and pump-probe beams that is equivalent to a Fabry-Perot cavity. We realize that the AFM combined with an optical cavity can achieve ultra-sensitive detection of force gradients of 10-12 N m-1 in the case of high-vacuum and low effective temperature of 1 mK, which may open up new avenues for super-high resolution imaging and super-high precision force spectroscopy.
Collapse
Affiliation(s)
- Fei He
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| | - Jian Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| | - Ka-Di Zhu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
11
|
King GM, Kosztin I. Towards a Quantitative Understanding of Protein-Lipid Bilayer Interactions at the Single Molecule Level: Opportunities and Challenges. J Membr Biol 2020; 254:17-28. [PMID: 33196888 DOI: 10.1007/s00232-020-00151-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
Protein-lipid interfaces are among the most fundamental in biology. Yet applying conventional techniques to study the biophysical attributes of these systems is challenging and has left many unknowns. For example, what is the kinetic pathway and energy landscape experienced by a polypeptide chain when in close proximity to a fluid lipid bilayer? Here we review the experimental and theoretical progress we have made in addressing this question from a single molecule perspective. Some remaining impediments are also discussed.
Collapse
Affiliation(s)
- Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Ioan Kosztin
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| |
Collapse
|
12
|
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF, Alsteens D. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev 2020; 121:11701-11725. [PMID: 33166471 DOI: 10.1021/acs.chemrev.0c00617] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last three decades, a series of key technological improvements turned atomic force microscopy (AFM) into a nanoscopic laboratory to directly observe and chemically characterize molecular and cell biological systems under physiological conditions. Here, we review key technological improvements that have established AFM as an analytical tool to observe and quantify native biological systems from the micro- to the nanoscale. Native biological systems include living tissues, cells, and cellular components such as single or complexed proteins, nucleic acids, lipids, or sugars. We showcase the procedures to customize nanoscopic chemical laboratories by functionalizing AFM tips and outline the advantages and limitations in applying different AFM modes to chemically image, sense, and manipulate biosystems at (sub)nanometer spatial and millisecond temporal resolution. We further discuss theoretical approaches to extract the kinetic and thermodynamic parameters of specific biomolecular interactions detected by AFM for single bonds and extend the discussion to multiple bonds. Finally, we highlight the potential of combining AFM with optical microscopy and spectroscopy to address the full complexity of biological systems and to tackle fundamental challenges in life sciences.
Collapse
Affiliation(s)
- Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hermann E Gaub
- Applied Physics, Ludwig-Maximilians-Universität Munich, Amalienstrasse 54, 80799 München, Germany
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics and Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
14
|
Matin TR, Utjesanovic M, Sigdel KP, Smith VF, Kosztin I, King GM. Characterizing the Locus of a Peripheral Membrane Protein-Lipid Bilayer Interaction Underlying Protein Export Activity in E. coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2143-2152. [PMID: 32011890 DOI: 10.1021/acs.langmuir.9b03606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative characterization of the strength of peripheral membrane protein-lipid bilayer interactions is fundamental in the understanding of many protein targeting pathways. SecA is a peripheral membrane protein that plays a central role in translocating precursor proteins across the inner membrane of E. coli. The membrane binding activity of the extreme N-terminus of SecA is critical for translocase function. Yet, the mechanical strength of the interaction and the kinetic pathways that this segment of SecA experiences when in proximity of an E. coli polar lipid bilayer has not been characterized. We directly measured the N-terminal SecA-lipid bilayer interaction using precision single molecule atomic force microscope (AFM)-based dynamic force spectroscopy. To provide conformational data inaccessible to AFM, we also performed all-atom molecular dynamics simulations and circular dichroism measurements. The N-terminal 10 amino acids of SecA have little secondary structure when bound to zwitterionic lipid head groups, but secondary structure, which rigidifies the lipid-bound protein segment, emerges when negatively charged lipids are present. Analysis of the single molecule protein-lipid dissociation data converged to a well-defined lipid-bound-state lifetime in the absence of force, τ0lipid = 0.9 s, which is well separated from and longer than the fundamental time scale of the secretion process, defined as the time required to translocate a single amino acid residue (∼50 ms). This value of τ0lipid is likely to represent a lower limit of the in vivo membrane-bound lifetime due to factors including the minimal system employed here.
Collapse
Affiliation(s)
- Tina R Matin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Milica Utjesanovic
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Virginia F Smith
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Ioan Kosztin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Wang B, Nakano A, Vashishta PD, Kalia RK. Nanoindentation on Monolayer MoS 2 Kirigami. ACS OMEGA 2019; 4:9952-9956. [PMID: 31460087 PMCID: PMC6649064 DOI: 10.1021/acsomega.9b00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Mechanical properties of materials can be altered significantly by the ancient art of kirigami. We study the mechanical properties of atomically thin kirigami membranes of MoS2 using molecular dynamics simulations. Nanoindentation simulations are performed to study the mechanical response of rectangular and hexagonal kirigami structures. Dramatic changes are observed in the ductility of monolayer kirigami MoS2 compared with those of a pristine MoS2 monolayer. Load-displacement curves of kirigami structures exhibit negligible hysteresis, and kirigami structures display remarkable elastic recovery upon unloading. Defects formed at the edges and corners of kirigami structures play an important role in the mechanical response of the membranes.
Collapse
Affiliation(s)
- Beibei Wang
- Collaboratory
of Advanced Computing and Simulations, Department of Physics and Astronomy, Mork Family Department
of Chemical Engineering and Materials Science, and Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
| | - Aiichiro Nakano
- Collaboratory
of Advanced Computing and Simulations, Department of Physics and Astronomy, Mork Family Department
of Chemical Engineering and Materials Science, and Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
| | - Priya D. Vashishta
- Collaboratory
of Advanced Computing and Simulations, Department of Physics and Astronomy, Mork Family Department
of Chemical Engineering and Materials Science, and Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
| | - Rajiv K. Kalia
- Collaboratory
of Advanced Computing and Simulations, Department of Physics and Astronomy, Mork Family Department
of Chemical Engineering and Materials Science, and Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
16
|
Marszalek PE. Warhammers for Peaceful Times. Biophys J 2019; 114:1-2. [PMID: 29320677 DOI: 10.1016/j.bpj.2017.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022] Open
Abstract
The Perkins group has recently developed a number of improved atomic force microscopy cantilevers using the focused ion beam technology. They compared the performance of these cantilevers in "real-life" biophysical single-molecule force spectroscopy measurements on protein unfolding, and the results of this comparison are reported in this issue of Biophysical Journal.
Collapse
Affiliation(s)
- Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
17
|
Hu KH, Bruce MA, Liu J, Butte MJ. Biochemical Stimulation of Immune Cells and Measurement of Mechanical Responses Using Atomic Force Microscopy. ACTA ACUST UNITED AC 2019; 11:e63. [PMID: 30707509 DOI: 10.1002/cpch.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This manuscript details methods to ligate cell-surface receptors on live cells with precise spatiotemporal control using an atomic force microscope (AFM) to deliver ligands. This approach can be used to image cellular responses upon activating T cell receptors when the AFM is mounted on an optical microscope. Moreover, the AFM measures forces generated by the cell during the contact. Using AFM to trigger cellular responses adds an important capability to the field of mechanobiology. We describe how to incorporate anti-CD3 antibodies or other molecules onto an AFM cantilever and how to use AFM to activate T cells. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kenneth H Hu
- Department of Pathology, University of California San Francisco, San Francisco, California
| | | | - Jianwei Liu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, and Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
18
|
Multiple stochastic pathways in forced peptide-lipid membrane detachment. Sci Rep 2019; 9:451. [PMID: 30679525 PMCID: PMC6345752 DOI: 10.1038/s41598-018-36528-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
We have used high resolution AFM based dynamic force spectroscopy to investigate peptide-lipid membrane interactions by measuring the detachment (last-rupture) force distribution, P(F), and the corresponding force dependent rupture rate, k(F), for two different peptides and lipid bilayers. The measured quantities, which differed considerably for different peptides, lipid-membranes, AFM tips (prepared under identical conditions), and retraction speeds of the AFM cantilever, could not be described in terms of the standard theory, according to which detachment occurs along a single pathway, corresponding to a diffusive escape process across a free energy barrier. In particular, the prominent retraction speed dependence of k(F) was a clear indication that peptide-lipid membrane dissociation occurs stochastically along several detachment pathways. Thereby, we have formulated a general theoretical approach for describing P(F) and k(F), by assuming that peptide detachment from lipid membranes occurs, with certain probability, along a few dominant diffusive pathways. This new method was validated through a consistent interpretation of the experimental data. Furthermore, we have found that for moderate retraction speeds at intermediate force values, k(F) exhibits catch-bond behavior (i.e. decreasing detachment rate with increasing force). According to the proposed model this behavior is due to the stochastic mixing of individual detachment pathways which do not convert or cross during rupture. To our knowledge, such catch-bond mechanism has not been proposed and demonstrated before for a peptide-lipid interaction.
Collapse
|
19
|
Xiao A, Li H. Direct monitoring of equilibrium protein folding–unfolding by atomic force microscopy: pushing the limit. Chem Commun (Camb) 2019; 55:12920-12923. [DOI: 10.1039/c9cc06293a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the direct observation of equilibrium folding–unfolding dynamics of a mechanically labile, three helix bundle protein GA using a commercial atomic force microscope (AFM).
Collapse
Affiliation(s)
- Adam Xiao
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Hongbin Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
20
|
Nanoscale fiber-optic force sensors for mechanical probing at the molecular and cellular level. Nat Protoc 2018; 13:2714-2739. [PMID: 30367169 DOI: 10.1038/s41596-018-0059-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is an ongoing need to develop ultrasensitive nanomechanical instrumentation that has high spatial and force resolution, as well as an ability to operate in various biological environments. Here, we present a compact nanofiber optic force transducer (NOFT) with sub-piconewton force sensitivity and a nanoscale footprint that paves the way to the probing of complex mechanical phenomena inside biomolecular systems. The NOFT platform comprises a SnO2 nanofiber optic equipped with a thin, compressible polymer cladding layer studded with plasmonic nanoparticles (NPs). This combination allows angstrom-level movements of the NPs to be quantified by tracking the optical scattering of the NPs as they interact with the near-field of the fiber. The distance-dependent optical signals can be converted to force once the mechanical properties of the compressible cladding are fully characterized. In this protocol, the details of the synthesis, characterization, and calibration of the NOFT system are described. The overall protocol, from the synthesis of the nanofiber optic devices to acquisition of nanomechanical data, takes ~72 h.
Collapse
|
21
|
Walder R, Van Patten WJ, Ritchie DB, Montange RK, Miller TW, Woodside MT, Perkins TT. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy. NANO LETTERS 2018; 18:6318-6325. [PMID: 30234311 DOI: 10.1021/acs.nanolett.8b02597] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The folding of RNA into a wide range of structures is essential for its diverse biological functions from enzymatic catalysis to ligand binding and gene regulation. The unfolding and refolding of individual RNA molecules can be probed by single-molecule force spectroscopy (SMFS), enabling detailed characterization of the conformational dynamics of the molecule as well as the free-energy landscape underlying folding. Historically, high-precision SMFS studies of RNA have been limited to custom-built optical traps. Although commercial atomic force microscopes (AFMs) are widely deployed and offer significant advantages in ease-of-use over custom-built optical traps, traditional AFM-based SMFS lacks the sensitivity and stability to characterize individual RNA molecules precisely. Here, we developed a high-precision SMFS assay to study RNA folding using a commercial AFM and applied it to characterize a small RNA hairpin from HIV that plays a key role in stimulating programmed ribosomal frameshifting. We achieved rapid data acquisition in a dynamic assay, unfolding and then refolding the same individual hairpin more than 1,100 times in 15 min. In comparison to measurements using optical traps, our AFM-based assay featured a stiffer force probe and a less compliant construct, providing a complementary measurement regime that dramatically accelerated equilibrium folding dynamics. Not only did kinetic analysis of equilibrium trajectories of the HIV RNA hairpin yield the traditional parameters used to characterize folding by SMFS (zero-force rate constants and distances to the transition state), but we also reconstructed the full 1D projection of the folding free-energy landscape comparable to state-of-the-art studies using dual-beam optical traps, a first for this RNA hairpin and AFM studies of nucleic acids in general. Looking forward, we anticipate that the ease-of-use of our high-precision assay implemented on a commercial AFM will accelerate studying folding of diverse nucleic acid structures.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - William J Van Patten
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Dustin B Ritchie
- Department of Physics , University of Alberta , Edmonton AB T6G 2E1 , Canada
| | - Rebecca K Montange
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Ty W Miller
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Michael T Woodside
- Department of Physics , University of Alberta , Edmonton AB T6G 2E1 , Canada
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
22
|
Yang P, Song Y, Feng W, Zhang W. Unfolding of a Single Polymer Chain from the Single Crystal by Air-Phase Single-Molecule Force Spectroscopy: Toward Better Force Precision and More Accurate Description of Molecular Behaviors. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Heenan PR, Perkins TT. FEATHER: Automated Analysis of Force Spectroscopy Unbinding and Unfolding Data via a Bayesian Algorithm. Biophys J 2018; 115:757-762. [PMID: 30122292 DOI: 10.1016/j.bpj.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022] Open
Abstract
Single-molecule force spectroscopy (SMFS) provides a powerful tool to explore the dynamics and energetics of individual proteins, protein-ligand interactions, and nucleic acid structures. In the canonical assay, a force probe is retracted at constant velocity to induce a mechanical unfolding/unbinding event. Next, two energy landscape parameters, the zero-force dissociation rate constant (ko) and the distance to the transition state (Δx‡), are deduced by analyzing the most probable rupture force as a function of the loading rate, the rate of change in force. Analyzing the shape of the rupture force distribution reveals additional biophysical information, such as the height of the energy barrier (ΔG‡). Accurately quantifying such distributions requires high-precision characterization of the unfolding events and significantly larger data sets. Yet, identifying events in SMFS data is often done in a manual or semiautomated manner and is obscured by the presence of noise. Here, we introduce, to our knowledge, a new algorithm, FEATHER (force extension analysis using a testable hypothesis for event recognition), to automatically identify the locations of unfolding/unbinding events in SMFS records and thereby deduce the corresponding rupture force and loading rate. FEATHER requires no knowledge of the system under study, does not bias data interpretation toward the dominant behavior of the data, and has two easy-to-interpret, user-defined parameters. Moreover, it is a linear algorithm, so it scales well for large data sets. When analyzing a data set from a polyprotein containing both mechanically labile and robust domains, FEATHER featured a 30-fold improvement in event location precision, an eightfold improvement in a measure of the accuracy of the loading rate and rupture force distributions, and a threefold reduction of false positives in comparison to two representative reference algorithms. We anticipate FEATHER being leveraged in more complex analysis schemes, such as the segmentation of complex force-extension curves for fitting to worm-like chain models and extended in future work to data sets containing both unfolding and refolding transitions.
Collapse
Affiliation(s)
- Patrick R Heenan
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado, Boulder, Colorado
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
24
|
Walder R, Van Patten WJ, Adhikari A, Perkins TT. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy. ACS NANO 2018; 12:198-207. [PMID: 29244486 DOI: 10.1021/acsnano.7b05721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - William J Van Patten
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - Ayush Adhikari
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
Structure and elasticity of bush and brush-like models of the endothelial glycocalyx. Sci Rep 2018; 8:240. [PMID: 29321567 PMCID: PMC5762753 DOI: 10.1038/s41598-017-18577-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
The endothelial glycocalyx (EG), a sugar-rich layer that lines the luminal surface of blood vessels, is an important constituent of the vascular system. Although the chemical composition of the EG is fairly well known, there is no consensus regarding its ultrastructure. While previous experiments probed the properties of the layer at the continuum level, they did not provide sufficient insight into its molecular organisation. In this work, we investigate the EG mechanics using two simple brush and bush-like simulation models, and use these models to describe its molecular structure and elastic response to indentation. We analyse the relationship between the mechanical properties of the EG layer and several molecular parameters, including the filament bending rigidity, grafting density, and the type of ultrastructure . We show that variations in the glycan density determine the elasticity of the EG for small deformations, and that the normal stress may be effectively dampened by the EG layer, preventing the stress from being transferred to the cell membrane. Furthermore, our bush-like model allows us to evaluate the forces and energies required to overcome the mechanical resistance of the EG.
Collapse
|
26
|
Abstract
Imaging of nano-sized particles and sample features is crucial in a variety of research fields. For instance in biological sciences, where it is paramount to investigate structures at the single particle level. Often two-dimensional images are not sufficient and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. By including new approaches such as high-speed AFM (HS-AFM) we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
- Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
27
|
Abstract
Atomic force microscopy (AFM)-based force spectroscopy is a powerful technique which has seen significant enhancements in both force and time resolution in recent years. This chapter details two AFM cantilever modification procedures that yield high force precision over different temporal bandwidths. Specifically, it explains a fairly straightforward method to achieve sub-pN force precision and stability at low frequencies (<50 Hz) by removing the metal coatings from a commercially available cantilever. A more involved procedure utilizing a focused ion beam milling machine is required to maintain high force precision at enhanced bandwidths. Both modification methods allow site-specific attachment of biomolecules onto the apex area of the tips for force spectroscopy. The chapter concludes with a comparative demonstration using the two cantilever modification methods to study a lipid-protein interaction.
Collapse
Affiliation(s)
- Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
| | - Anna E Pittman
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
| | - Tina R Matin
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA.
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
28
|
Van Patten WJ, Walder R, Adhikari A, Okoniewski SR, Ravichandran R, Tinberg CE, Baker D, Perkins TT. Improved Free-Energy Landscape Quantification Illustrated with a Computationally Designed Protein-Ligand Interaction. Chemphyschem 2017; 19:19-23. [PMID: 29069529 DOI: 10.1002/cphc.201701147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/09/2022]
Abstract
Quantifying the energy landscape underlying protein-ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single-molecule technique is atomic force microscopy (AFM)-based force spectroscopy, which generally yields the zero-force dissociation rate constant (koff ) and the distance to the transition state (Δx≠ ). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG≠ =6.3±0.2 kcal mol-1 ) and the shape of the energy barrier at the transition state (linear-cubic) in addition to the traditional parameters [koff (=4±0.1×10-4 s-1 ) and Δx≠ (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein-ligand interactions and, more broadly, the diverse systems studied by AFM-based force spectroscopy.
Collapse
Affiliation(s)
- William J Van Patten
- JILA, National Institute of Standards and Technology and the University of Colorado, Department of Physics and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 440 UCB, Boulder, CO, 80309-0440, USA
| | - Robert Walder
- JILA, National Institute of Standards and Technology and the University of Colorado, Department of Physics and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 440 UCB, Boulder, CO, 80309-0440, USA
| | - Ayush Adhikari
- JILA, National Institute of Standards and Technology and the University of Colorado, Department of Physics and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 440 UCB, Boulder, CO, 80309-0440, USA
| | - Stephen R Okoniewski
- JILA, National Institute of Standards and Technology and the University of Colorado, Department of Physics and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 440 UCB, Boulder, CO, 80309-0440, USA
| | - Rashmi Ravichandran
- University of Washington, Seattle, Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, Seattle, Washington, 98195, USA
| | - Christine E Tinberg
- University of Washington, Seattle, Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, Seattle, Washington, 98195, USA
| | - David Baker
- University of Washington, Seattle, Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, Seattle, Washington, 98195, USA
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and the University of Colorado, Department of Physics and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 440 UCB, Boulder, CO, 80309-0440, USA
| |
Collapse
|
29
|
Edwards DT, Faulk JK, LeBlanc MA, Perkins TT. Force Spectroscopy with 9-μs Resolution and Sub-pN Stability by Tailoring AFM Cantilever Geometry. Biophys J 2017; 113:2595-2600. [PMID: 29132641 DOI: 10.1016/j.bpj.2017.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize the unfolding/refolding dynamics of individual molecules and resolve closely spaced, transiently occupied folding intermediates. On a modern commercial AFM, these applications and others are now limited by the mechanical properties of the cantilever. Specifically, AFM-based SMFS data quality is degraded by a commercial cantilever's limited combination of temporal resolution, force precision, and force stability. Recently, we modified commercial cantilevers with a focused ion beam to optimize their properties for SMFS. Here, we extend this capability by modifying a 40 × 18 μm2 cantilever into one terminated with a gold-coated, 4 × 4 μm2 reflective region connected to an uncoated 2-μm-wide central shaft. This "Warhammer" geometry achieved 8.5-μs resolution coupled with improved force precision and sub-pN stability over 100 s when measured on a commercial AFM. We highlighted this cantilever's biological utility by first resolving a calmodulin unfolding intermediate previously undetected by AFM and then measuring the stabilization of calmodulin by myosin light chain kinase at dramatically higher unfolding velocities than in previous AFM studies. More generally, enhancing data quality via an improved combination of time resolution, force precision, and force stability will broadly benefit biological applications of AFM.
Collapse
Affiliation(s)
- Devin T Edwards
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado
| | - Jaevyn K Faulk
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado
| | - Marc-André LeBlanc
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
30
|
Walder R, LeBlanc MA, Van Patten WJ, Edwards DT, Greenberg JA, Adhikari A, Okoniewski SR, Sullan RMA, Rabuka D, Sousa MC, Perkins TT. Rapid Characterization of a Mechanically Labile α-Helical Protein Enabled by Efficient Site-Specific Bioconjugation. J Am Chem Soc 2017; 139:9867-9875. [PMID: 28677396 DOI: 10.1021/jacs.7b02958] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize mechanical properties of biomolecules. Historically, accessibility relies upon the nonspecific adhesion of biomolecules to a surface and a cantilever and, for proteins, the integration of the target protein into a polyprotein. However, this assay results in a low yield of high-quality data, defined as the complete unfolding of the polyprotein. Additionally, nonspecific surface adhesion hinders studies of α-helical proteins, which unfold at low forces and low extensions. Here, we overcame these limitations by merging two developments: (i) a polyprotein with versatile, genetically encoded short peptide tags functionalized via a mechanically robust Hydrazino-Pictet-Spengler ligation and (ii) the efficient site-specific conjugation of biomolecules to PEG-coated surfaces. Heterobifunctional anchoring of this polyprotein construct and DNA via copper-free click chemistry to PEG-coated substrates and a strong but reversible streptavidin-biotin linkage to PEG-coated AFM tips enhanced data quality and throughput. For example, we achieved a 75-fold increase in the yield of high-quality data and repeatedly probed the same individual polyprotein to deduce its dynamic force spectrum in just 2 h. The broader utility of this polyprotein was demonstrated by measuring three diverse target proteins: an α-helical protein (calmodulin), a protein with internal cysteines (rubredoxin), and a computationally designed three-helix bundle (α3D). Indeed, at low loading rates, α3D represents the most mechanically labile protein yet characterized by AFM. Such efficient SMFS studies on a commercial AFM enable the rapid characterization of macromolecular folding over a broader range of proteins and a wider array of experimental conditions (pH, temperature, denaturants). Further, by integrating these enhancements with optical traps, we demonstrate how efficient bioconjugation to otherwise nonstick surfaces can benefit diverse single-molecule studies.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | - William J Van Patten
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Devin T Edwards
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | - Ayush Adhikari
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Stephen R Okoniewski
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Ruby May A Sullan
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - David Rabuka
- Catalent Biologics-West , Emeryville, California 94608, United States
| | | | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
31
|
Matin TR, Sigdel KP, Utjesanovic M, Marsh BP, Gallazzi F, Smith VF, Kosztin I, King GM. Single-Molecule Peptide-Lipid Affinity Assay Reveals Interplay between Solution Structure and Partitioning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4057-4065. [PMID: 28343391 DOI: 10.1021/acs.langmuir.7b00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interactions between short protein segments and phospholipid bilayers dictate fundamental aspects of cellular activity and have important applications in biotechnology. Yet, the lack of a suitable methodology for directly probing these interactions has hindered the mechanistic understanding. We developed a precision atomic force microscopy-based single-molecule force spectroscopy assay and probed partitioning into lipid bilayers by measuring the mechanical force experienced by a peptide. Protein segments were constructed from the peripheral membrane protein SecA, a key ATPase in bacterial secretion. We focused on the first 10 amino-terminal residues of SecA (SecA2-11) that are lipophilic. In addition to the core SecA2-11 sequence, constructs with nearly identical chemical composition but with differing geometry were used: two copies of SecA2-11 linked in series and two copies SecA2-11 linked in parallel. Lipid bilayer partitioning interactions of peptides with differing structures were distinguished. To model the energetic landscape, a theory of diffusive barrier crossing was extended to incorporate a superposition of potential barriers with variable weights. Analysis revealed two dissociation pathways for the core SecA2-11 sequence with well-separated intrinsic dissociation rates. Molecular dynamics simulations showed that the three peptides had significant conformational differences in solution that correlated well with the measured variations in the propensity to partition into the bilayer. The methodology is generalizable and can be applied to other peptide and lipid species.
Collapse
Affiliation(s)
| | | | | | | | | | - Virginia F Smith
- Department of Chemistry, United States Naval Academy , Annapolis, Maryland 21402, United States
| | | | | |
Collapse
|
32
|
Edwards DT, Perkins TT. Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution. J Struct Biol 2017; 197:13-25. [DOI: 10.1016/j.jsb.2016.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
|
33
|
Single-molecule force spectroscopy on polyproteins and receptor–ligand complexes: The current toolbox. J Struct Biol 2017; 197:3-12. [DOI: 10.1016/j.jsb.2016.02.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022]
|
34
|
Milles LF, Bayer EA, Nash MA, Gaub HE. Mechanical Stability of a High-Affinity Toxin Anchor from the Pathogen Clostridium perfringens. J Phys Chem B 2016; 121:3620-3625. [PMID: 27991799 DOI: 10.1021/acs.jpcb.6b09593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Clostridium perfringens assembles its toxins and carbohydrate-active enzymes by the high-affinity cohesin-dockerin (Coh-Doc) interaction. Coh-Doc interactions characterized previously have shown considerable resilience toward mechanical stress. Here, we aimed to determine the mechanics of this interaction from C. perfringens in the context of a pathogen. Using atomic force microscopy based single-molecule force spectroscopy (AFM-SMFS) we probed the mechanical properties of the interaction of a dockerin from the μ-toxin with the GH84C X82 cohesin domain of C. perfringens. Most probable complex rupture forces were found to be approximately 60 pN and an estimate of the binding potential width was performed. The dockerin was expressed with its adjacent FIVAR (found in various architectures) domain, whose mechanostability we determined to be very similar to the complex. Additionally, fast refolding of this domain was observed. The Coh-Doc interaction from C. perfringens is the mechanically weakest observed to date. Our results establish the relevant force range of toxin assembly mechanics in pathogenic Clostridia.
Collapse
Affiliation(s)
- Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University , Amalienstr. 54, 80799 Munich, Germany
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Michael A Nash
- Department of Chemistry, University of Basel , Klingelbergstr. 80, 4056 Basel, Switzerland.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH-Zürich) , Mattenstr. 26, 4058 Basel, Switzerland
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University , Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
35
|
Kim Y, Kim W, Park JW. Principles and Applications of Force Spectroscopy Using Atomic Force Microscopy. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.11022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youngkyu Kim
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| | - Woong Kim
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| | - Joon Won Park
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| |
Collapse
|
36
|
Manibog K, Yen CF, Sivasankar S. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy. Methods Enzymol 2016; 582:297-320. [PMID: 28062039 DOI: 10.1016/bs.mie.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges.
Collapse
Affiliation(s)
- K Manibog
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States
| | - C F Yen
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States
| | - S Sivasankar
- Iowa State University, Ames, IA, United States; Ames Laboratory, U.S. Department of Energy, Ames, IA, United States.
| |
Collapse
|
37
|
Faulk JK, Edwards DT, Bull MS, Perkins TT. Improved Force Spectroscopy Using Focused-Ion-Beam-Modified Cantilevers. Methods Enzymol 2016; 582:321-351. [PMID: 28062041 DOI: 10.1016/bs.mie.2016.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Atomic force microscopy (AFM) is widely used in biophysics, including force-spectroscopy studies of protein folding and protein-ligand interactions. The precision of such studies increases with improvements in the underlying quality of the data. Currently, data quality is limited by the mechanical properties of the cantilever when using a modern commercial AFM. The key tradeoff is force stability vs short-term force precision and temporal resolution. Here, we present a method that avoids this compromise: efficient focused-ion-beam (FIB) modification of commercially available cantilevers. Force precision is improved by reducing the cantilever's hydrodynamic drag, and force stability is improved by reducing the cantilever stiffness and by retaining a cantilever's gold coating only at its free end. When applied to a commonly used short cantilever (L=40μm), we achieved sub-pN force precision over 5 decades of bandwidth (0.01-1000Hz) without significantly sacrificing temporal resolution (~75μs). Extending FIB modification to an ultrashort cantilever (L=9μm) also improved force precision and stability, while maintaining 1-μs-scale temporal resolution. Moreover, modifying ultrashort cantilevers also eliminated their inherent underdamped high-frequency motion and thereby avoided applying a rapidly oscillating force across the stretched molecule. Importantly, fabrication of FIB-modified cantilevers is accessible after an initial investment in training. Indeed, undergraduate researchers routinely modify 2-4 cantilevers per hour with the protocol detailed here. Furthermore, this protocol offers the individual user the ability to optimize a cantilever for a particular application. Hence, we expect FIB-modified cantilevers to improve AFM-based studies over broad areas of biophysical research.
Collapse
Affiliation(s)
- J K Faulk
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, United States
| | - D T Edwards
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, United States
| | - M S Bull
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, United States
| | - T T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, United States; University of Colorado, Boulder, CO, United States.
| |
Collapse
|
38
|
Kronlage C, Schäfer-Herte M, Böning D, Oberleithner H, Fels J. Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium. Biophys J 2016; 109:687-98. [PMID: 26287621 PMCID: PMC4547164 DOI: 10.1016/j.bpj.2015.06.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/07/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Contact-mode atomic force microscopy (AFM) has been shown to reveal cortical actin structures. Using live endothelial cells, we visualized cortical actin dynamics simultaneously by AFM and confocal fluorescence microscopy. We present a method that quantifies dynamic changes in the mechanical ultrastructure of the cortical actin web. We argue that the commonly used, so-called error signal imaging in AFM allows a qualitative, but not quantitative, analysis of cortical actin dynamics. The approach we used comprises fast force-curve-based topography imaging and subsequent image processing that enhances local height differences. Dynamic changes in the organization of the cytoskeleton network can be observed and quantified by surface roughness calculations and automated morphometrics. Upon treatment with low concentrations of the actin-destabilizing agent cytochalasin D, the cortical cytoskeleton network is thinned out and the average mesh size increases. In contrast, jasplakinolide, a drug that enhances actin polymerization, consolidates the cytoskeleton network and reduces the average mesh area. In conclusion, cortical actin dynamics can be quantified in live cells. To our knowledge, this opens a new pathway for conducting quantitative structure-function analyses of the endothelial actin web just beneath the apical plasma membrane.
Collapse
Affiliation(s)
| | - Marco Schäfer-Herte
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
| | - Daniel Böning
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | | | - Johannes Fels
- Institute of Physiology II, University of Münster, Münster, Germany; Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany.
| |
Collapse
|
39
|
Labuda A. Daniell method for power spectral density estimation in atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:033704. [PMID: 27036781 DOI: 10.1063/1.4943292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An alternative method for power spectral density (PSD) estimation--the Daniell method--is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion--the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.
Collapse
Affiliation(s)
- Aleksander Labuda
- Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117, USA
| |
Collapse
|
40
|
Cazaux S, Sadoun A, Biarnes-Pelicot M, Martinez M, Obeid S, Bongrand P, Limozin L, Puech PH. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies. Ultramicroscopy 2015; 160:168-181. [PMID: 26521163 DOI: 10.1016/j.ultramic.2015.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand.
Collapse
Affiliation(s)
- Séverine Cazaux
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Anaïs Sadoun
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Martine Biarnes-Pelicot
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Manuel Martinez
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Sameh Obeid
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Pierre Bongrand
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France; APHM, Hôpital de la Conception, Laboratoire d'Immunologie, Marseille F-13385, France
| | - Laurent Limozin
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Pierre-Henri Puech
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France.
| |
Collapse
|
41
|
Edwards DT, Faulk JK, Sanders AW, Bull MS, Walder R, LeBlanc MA, Sousa M, Perkins TT. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope. NANO LETTERS 2015; 15:7091-7098. [PMID: 26421945 PMCID: PMC4663051 DOI: 10.1021/acs.nanolett.5b03166] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/21/2015] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.
Collapse
Affiliation(s)
- Devin T. Edwards
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Jaevyn K. Faulk
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Aric W. Sanders
- Quantum
Electronics and Photonics Division, National
Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Matthew S. Bull
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Robert Walder
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Marc-Andre LeBlanc
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| | - Marcelo
C. Sousa
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| | - Thomas T. Perkins
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Molecular, Cellular, and Developmental
Biology, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
42
|
Direct Observation of the Reversible Two-State Unfolding and Refolding of an α/β Protein by Single-Molecule Atomic Force Microscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
He C, Hu C, Hu X, Hu X, Xiao A, Perkins TT, Li H. Direct Observation of the Reversible Two‐State Unfolding and Refolding of an α/β Protein by Single‐Molecule Atomic Force Microscopy. Angew Chem Int Ed Engl 2015; 54:9921-5. [DOI: 10.1002/anie.201502938] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Chengzhi He
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
| | - Chunguang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Xiaodong Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
| | - Thomas T. Perkins
- JILA, NIST and University of Colorado Boulder, Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, 440 UCB Boulder, CO 80309 (USA)
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| |
Collapse
|
44
|
Chen Y, Radford SE, Brockwell DJ. Force-induced remodelling of proteins and their complexes. Curr Opin Struct Biol 2015; 30:89-99. [PMID: 25710390 PMCID: PMC4499843 DOI: 10.1016/j.sbi.2015.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/23/2022]
Abstract
Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study.
Collapse
Affiliation(s)
- Yun Chen
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
45
|
Sirbuly DJ, Friddle RW, Villanueva J, Huang Q. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:024101. [PMID: 25629797 DOI: 10.1088/0034-4885/78/2/024101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.
Collapse
Affiliation(s)
- Donald J Sirbuly
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA. Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | |
Collapse
|
46
|
van Rosmalen MGM, Roos WH, Wuite GJL. Material properties of viral nanocages explored by atomic force microscopy. Methods Mol Biol 2015; 1252:115-137. [PMID: 25358778 DOI: 10.1007/978-1-4939-2131-7_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.
Collapse
|
47
|
Li M, Liu L, Xi N, Wang Y. Research progress in quantifying the mechanical properties of single living cells using atomic force microscopy. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0581-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Jo W, Digonnet MJF. Piconewton force measurement using a nanometric photonic crystal diaphragm. OPTICS LETTERS 2014; 39:4533-4536. [PMID: 25078221 DOI: 10.1364/ol.39.004533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A compact force fiber sensor capable of measuring forces at the piconewton level is reported. It consists of a miniature Fabry-Perot cavity fabricated at the tip a single-mode fiber, in which the external reflector is a compliant photonic-crystal diaphragm that deflects when subjected to a force. In the laboratory environment, this sensor was able to detect a force of only ∼4 pN generated by the radiation pressure of a laser beam. Its measured minimum detectable force (MDF) at 3 kHz was as weak as 1.3 pN/√Hz. In a quiet environment, the measured noise was ∼16 times lower, and the MDF predicted to be ∼76 fN/√Hz.
Collapse
|
49
|
Cai J, Jelezko F, Plenio MB. Hybrid sensors based on colour centres in diamond and piezoactive layers. Nat Commun 2014; 5:4065. [PMID: 24909637 DOI: 10.1038/ncomms5065] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/08/2014] [Indexed: 11/09/2022] Open
Abstract
The ability to measure weak signals such as pressure, force, electric field and temperature with nanoscale devices and high spatial resolution offers a wide range of applications in fundamental and applied sciences. Here we present a proposal for a hybrid device composed of thin film layers of diamond with colour centres and piezoactive elements for the transduction and measurement of physical signals. The magnetic response of a piezomagnetic layer to an external stress or a stress induced by a signal is shown to affect significantly the spin properties of nitrogen-vacancy centres in diamond. Under ambient conditions, realistic environmental noise and material imperfections, we show that this hybrid device can achieve significant improvements in sensitivity over the pure diamond-based approach in combination with nanometre-scale spatial resolution. Furthermore, the proposed hybrid architecture offers novel possibilities for engineering strong coherent couplings between nanomechanical oscillator and solid state spin qubits.
Collapse
Affiliation(s)
- Jianming Cai
- 1] Institut für Theoretische Physik, Universität Ulm, Albert-Einstein Allee 11, 89069 Ulm, Germany [2] Centre for Integrated Quantum Science and Technology, Universität Ulm, 89069 Ulm, Germany
| | - Fedor Jelezko
- 1] Centre for Integrated Quantum Science and Technology, Universität Ulm, 89069 Ulm, Germany [2] Institut für Quantenoptik, Universität Ulm, Albert-Einstein Allee 11, 89069 Ulm, Germany
| | - Martin B Plenio
- 1] Institut für Theoretische Physik, Universität Ulm, Albert-Einstein Allee 11, 89069 Ulm, Germany [2] Centre for Integrated Quantum Science and Technology, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
50
|
Bull MS, Sullan RMA, Li H, Perkins TT. Improved single molecule force spectroscopy using micromachined cantilevers. ACS NANO 2014; 8:4984-95. [PMID: 24670198 DOI: 10.1021/nn5010588] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Enhancing the short-term force precision of atomic force microscopy (AFM) while maintaining excellent long-term force stability would result in improved performance across multiple AFM modalities, including single molecule force spectroscopy (SMFS). SMFS is a powerful method to probe the nanometer-scale dynamics and energetics of biomolecules (DNA, RNA, and proteins). The folding and unfolding rates of such macromolecules are sensitive to sub-pN changes in force. Recently, we demonstrated sub-pN stability over a broad bandwidth (Δf = 0.01-16 Hz) by removing the gold coating from a 100 μm long cantilever. However, this stability came at the cost of increased short-term force noise, decreased temporal response, and poor sensitivity. Here, we avoided these compromises while retaining excellent force stability by modifying a short (L = 40 μm) cantilever with a focused ion beam. Our process led to a ∼10-fold reduction in both a cantilever's stiffness and its hydrodynamic drag near a surface. We also preserved the benefits of a highly reflective cantilever while mitigating gold-coating induced long-term drift. As a result, we extended AFM's sub-pN bandwidth by a factor of ∼50 to span five decades of bandwidth (Δf ≈ 0.01-1000 Hz). Measurements of mechanically stretching individual proteins showed improved force precision coupled with state-of-the-art force stability and no significant loss in temporal resolution compared to the stiffer, unmodified cantilever. Finally, these cantilevers were robust and were reused for SFMS over multiple days. Hence, we expect these responsive, yet stable, cantilevers to broadly benefit diverse AFM-based studies.
Collapse
Affiliation(s)
- Matthew S Bull
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|