1
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
2
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Li X, Liu X, Liu X. Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chem Soc Rev 2021; 50:2074-2101. [PMID: 33325927 DOI: 10.1039/d0cs00436g] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of colloidal nanoparticles has made it possible to bridge the nanoscopic and macroscopic worlds and to make complex nanostructures. The nanoparticle-mediated assembly enables many potential applications, from biodetection and nanomedicine to optoelectronic devices. Properties of assembled materials are determined not only by the nature of nanoparticle building blocks, but also by spatial positions of nanoparticles within the assemblies. A deep understanding of nanoscale interactions between nanoparticles is a prerequisite to controlling nanoparticle arrangement during assembly. In this review, we present an overview of interparticle interactions governing their assembly in a liquid phase. Considerable attention is devoted to examples that illustrate nanoparticle assembly into ordered superstructures using different types of building blocks, including plasmonic nanoparticles, magnetic nanoparticles, lanthanide-doped nanophosphors, and quantum dots. We also cover the physicochemical properties of nanoparticle ensembles, especially those arising from particle coupling effects. We further discuss future research directions and challenges in controlling self-assembly at a level of precision that is most crucial to technology development.
Collapse
Affiliation(s)
- Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Institute of Flexible Electronics (SIFE), 8. Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaogang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore. and Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, China and The N.1 Institute for Health, National University of Singapore, 117456, Singapore
| |
Collapse
|
4
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
5
|
Huang TC, Zhou XP, Ren CL, Zhan P, Ma YQ. Self-Assembled Binary Photonic Crystals under the Active Confinement and Their Light Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4224-4230. [PMID: 32216353 DOI: 10.1021/acs.langmuir.9b03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembly of oppositely charged colloidal ellipsoids and spheres under active confinement is first proposed to achieve long-range ordered photonic crystals. Compared with the conventional passive confinement, a characteristic of the active confinement is that boundaries are movable. Our Brownian dynamics simulations show that dynamic steady structures, similar to quasi-2D colloidal crystals, can be obtained under the strong confinement when the two boundaries periodically oscillate together. The in-plane structures can be regulated by changing the charge ratio of the two kinds of particles. These dynamic steady structures are determined by the minimum electrostatic energy with the aid of increased mobility of confined particles, which are not available in equilibrium. Numerical simulations verify that light can be perfectly confined in this dielectric binary photonic slab without any radiation, which corresponds to a typical optical bound state with divergent lifetime and ultrasharp spectral profile. Given the changeable geometry of this photonic slab, the trapped optical field might be applicable to enhanced light-matter interactions. In addition, for thicker layers, layer-by-layer ordered structures occur spontaneously, driven by the active confinement, while no global order occurs in the passive confinement. Our results show that the boundary motion can become an important factor affecting self-assembled structure and function.
Collapse
Affiliation(s)
- Tian-Chen Huang
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xing-Ping Zhou
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Peng Zhan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Martínez-Ratón Y, Velasco E. Highly confined mixtures of parallel hard squares: A density-functional-theory study. Phys Rev E 2020; 100:062604. [PMID: 31962445 DOI: 10.1103/physreve.100.062604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/06/2022]
Abstract
Using the fundamental-measure density-functional theory, we study theoretically the phase behavior of extremely confined mixtures of parallel hard squares in slit geometry. The pore width is chosen such that configurations consisting of two consecutive big squares, or three small squares, in the transverse direction, perpendicular to the walls, are forbidden. We analyze two different mixtures with edge lengths of species selected so as to allow or forbid one big plus one small square to fit into the channel. For the first mixture we obtain first-order transitions between symmetric and asymmetric packings of particles: Small and big squares are preferentially adsorbed at different walls. Asymmetric configurations are shown to lead to more efficient packing at finite pressures. We argue that the stability region of the asymmetric phase in the pressure-composition plane is bounded so that the symmetric phase is stable at low and very high pressure. For the second mixture, we observe strong demixing between phases which are rich in different species. Demixing occurs in the lateral direction, i.e., the dividing interface is perpendicular to the walls, and phases exhibit symmetric density profiles. The possible experimental realization of this behavior (which in practical terms is precluded by jamming) in strictly two-dimensional systems is discussed. Finally, the phase behavior of a mixture with periodic boundary conditions is analyzed and the differences and similarities between the latter and the confined system are discussed. We claim that, although exact calculations exclude the existence of true phase transitions in (1+ε)-dimensional systems, density-functional theory is still successful in describing packing properties of large clusters of particles.
Collapse
Affiliation(s)
- Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
7
|
Cai C, Ge Y, Lin J, Xu Z, Gao H, Xu W. Assembly of silica rods into tunable branched living nanostructures mediated by coalescence of catalyst droplets. Chem Commun (Camb) 2019; 55:4391-4394. [PMID: 30916080 DOI: 10.1039/c9cc00959k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Branched nanostructures with tunable arm numbers were prepared through the assembly of silica rods mediated by coalescence of catalyst droplets on the end of the rods. The formed primary branched colloids retain living characteristics similar to the original ones, that is, they can further assemble into multilevel and hierarchical branched structures.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
8
|
Avendaño C, Jackson G, Wensink HH. Nanorings in planar confinement: the role of repulsive surfaces on the formation of lacuna smectics. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1484950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Henricus H. Wensink
- Laboratoire de Physique des Solides UMR 8502, CNRS, Universite Paris-Sud, Universite Paris-Saclay, Orsay, France
| |
Collapse
|
9
|
Understanding and tailoring ligand interactions in the self-assembly of branched colloidal nanocrystals into planar superlattices. Nat Commun 2018; 9:1141. [PMID: 29559652 PMCID: PMC5861251 DOI: 10.1038/s41467-018-03550-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/22/2018] [Indexed: 01/26/2023] Open
Abstract
Colloidal nanocrystals can self-assemble into highly ordered superlattices. Recent studies have focused on changing their morphology by tuning the nanocrystal interactions via ligand-based surface modification for simple particle shapes. Here we demonstrate that this principle is transferable to and even enriched in the case of a class of branched nanocrystals made of a CdSe core and eight CdS pods, so-called octapods. Through careful experimental analysis, we show that the octapods have a heterogeneous ligand distribution, resembling a cone wrapping the individual pods. This induces location-specific interactions that, combined with variation of the pod aspect ratio and ligands, lead to a wide range of planar superlattices assembled at an air–liquid interface. We capture these findings using a simple simulation model, which reveals the necessity of including ligand-based interactions to achieve these superlattices. Our work evidences the sensitivity that ligands offer for the self-assembly of branched nanocrystals, thus opening new routes for metamaterial creation. The self-organization of nanocrystals into complex superlattices involves the interplay of different interactions. Here, the authors systematically reveal the effects of particle shape and ligand coverage on the assembly behavior of branched octapods into planar superlattices.
Collapse
|
10
|
Wang Q, Wang Z, Li Z, Xiao J, Shan H, Fang Z, Qi L. Controlled growth and shape-directed self-assembly of gold nanoarrows. SCIENCE ADVANCES 2017; 3:e1701183. [PMID: 29098180 PMCID: PMC5659655 DOI: 10.1126/sciadv.1701183] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/29/2017] [Indexed: 05/20/2023]
Abstract
Self-assembly of colloidal nanocrystals into complex superstructures offers notable opportunities to create functional devices and artificial materials with unusual properties. Anisotropic nanoparticles with nonspherical shapes, such as rods, plates, polyhedra, and multipods, enable the formation of a diverse range of ordered superlattices. However, the structural complexity and tunability of nanocrystal superlattices are restricted by the limited geometries of the anisotropic nanoparticles available for supercrystal self-assembly. We show that uniform gold nanoarrows (GNAs) consisting of two pyramidal heads connected by a four-wing shaft are readily synthesized through controlled overgrowth of gold nanorods. The distinct concave geometry endows the GNAs with unique packing and interlocking ability and allows for the shape-directed assembly of sophisticated two-dimensional (2D) and 3D supercrystals with unprecedented architectures. Net-like 2D supercrystals are assembled through the face-to-face contact of the GNAs lying on the pyramidal edges, whereas zipper-like and weave-like 2D supercrystals are constructed by the interlocked GNAs lying on the pyramidal {111} facets. Furthermore, multilayer packing of net-like and weave-like 2D assemblies of GNAs leads to non-close-packed 3D supercrystals with varied packing efficiencies and pore structures. Electromagnetic simulation of the diverse nanoarrow supercrystals exhibits exotic patterns of nanoscale electromagnetic field confinement. This study may open new avenues toward tunable self-assembly of nanoparticle superstructures with increased complexity and unusual functionality and may advance the design of novel plasmonic metamaterials for nanophotonics and reconfigurable architectured materials.
Collapse
Affiliation(s)
- Qian Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Zongpeng Wang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhe Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Junyan Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Hangyong Shan
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheyu Fang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China
- Corresponding author.
| |
Collapse
|
11
|
Taniguchi Y, Sazali MAB, Kobayashi Y, Arai N, Kawai T, Nakashima T. Programmed Self-Assembly of Branched Nanocrystals with an Amphiphilic Surface Pattern. ACS NANO 2017; 11:9312-9320. [PMID: 28872823 DOI: 10.1021/acsnano.7b04719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Site-selective surface modification on the shape-controlled nanocrystals is a key approach in the programmed self-assembly of inorganic colloidal materials. This study demonstrates a simple methodology to gain self-assemblies of semiconductor nanocrystals with branched shapes through tip-to-tip attachment. Short-chained water-soluble cationic thiols are employed as a surface ligand for CdSe tetrapods and CdSe/CdS core/shell octapods. Because of the less affinity of arm-tip to the surface ligands compared to the arm-side wall, the tip-surface becomes uncapped to give a hydrophobic nature, affording an amphiphilic surface pattern. The amphiphilic tetrapods aggregated into porous agglomerates through tip-to-tip connection in water, while they afforded a hexagonally arranged Kagome-like two-dimensional (2D) assembly by the simple casting of aqueous dispersion with the aid of a convective self-assembly mechanism. A 2D net-like assembly was similarly obtained from amphiphilic octapods. A dissipative particle dynamics simulation using a planar tripod model with an amphiphilic surface pattern reproduced the formation of the Kagome-like assembly in a 2D confined space, demonstrating that the lateral diffusion of nanoparticles and the firm contacts between the hydrophobic tips play crucial roles in the self-assembly.
Collapse
Affiliation(s)
- Yuki Taniguchi
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST) , Ikoma, Nara 630-0192, Japan
| | | | - Yusei Kobayashi
- Department of Mechanical Engineering, Kindai Unversity , Higashiosaka, Osaka 577-8502, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Kindai Unversity , Higashiosaka, Osaka 577-8502, Japan
| | - Tsuyoshi Kawai
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST) , Ikoma, Nara 630-0192, Japan
| | - Takuya Nakashima
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST) , Ikoma, Nara 630-0192, Japan
| |
Collapse
|
12
|
Packing, entropic patchiness, and self-assembly of non-convex colloidal particles: A simulation perspective. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
McBride JM, Avendaño C. Phase behaviour and gravity-directed self assembly of hard convex spherical caps. SOFT MATTER 2017; 13:2085-2098. [PMID: 28225134 DOI: 10.1039/c6sm02678h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the phase behaviour and self-assembly of convex spherical caps using Monte Carlo simulations. This model is used to represent the main features observed in experimental colloidal particles with mushroom-cap shape [Riley et al., Langmuir, 2010, 26, 1648]. The geometry of this non-centrosymmetric convex model is fully characterized by the aspect ratio χ* defined as the spherical cap height to diameter ratio. We use NPT Monte Carlo simulations combined with free energy calculations to determine the most stable crystal structures and the phase behaviour of convex spherical caps with different aspect ratios. We find a variety of crystal structures at each aspect ratio, including plastic and dimer-based crystals; small differences in chemical potential between the structures with similar morphology suggest that convex spherical caps have the tendency to form polycrystalline phases rather than crystallising into a single uniform structure. With the exception of plastic crystals observed at large aspect ratios (χ* > 0.75), crystallisation kinetics seem to be too slow, hindering the spontaneous formation of ordered structures. As an alternative, we also present a study of directing the self-assembly of convex spherical caps via sedimentation onto solid substrates. This study contributes to show how small changes to particle shape can significantly alter the self-assembly of crystal structures, and how a simple gravity field and a template can substantially enhance the process.
Collapse
Affiliation(s)
- John M McBride
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, UK.
| | - Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, UK.
| |
Collapse
|
14
|
Ferrari S, Bianchi E, Kahl G. Spontaneous assembly of a hybrid crystal-liquid phase in inverse patchy colloid systems. NANOSCALE 2017; 9:1956-1963. [PMID: 28098297 PMCID: PMC5315017 DOI: 10.1039/c6nr07987c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 05/11/2023]
Abstract
Materials with well-defined architectures are heavily sought after in view of their diverse technological applications. Among the desired target architectures, lamellar phases stand out for their exceptional mechanical and optical features. Here we show that charged colloids, decorated on their poles with two oppositely charged regions possess the unusual ability to spontaneously assemble in different morphologies of (semi-)ordered, layered particle arrangements which maintain their structural stability over a surprisingly large temperature range. This remarkable capacity is related to a characteristic bonding mechanism: stable intra-layer bonds guarantee the formation of planar aggregates, while strong inter-layer bonds favor the stacking of the emerging planar assemblies. These two types of bonds together are responsible for the self-healing processes occurring during the spontaneous assembly. The resulting phases are characterized by parallel, densely packed, particle layers connected by a relatively small number of intra-layer particles. We investigate the properties of the (semi-)ordered phases in terms of static and dynamic correlation functions, focusing in particular on a novel hybrid crystal-liquid phase that prevails at intermediate temperatures where the inter-layer particles form a mobile, fluid phase.
Collapse
Affiliation(s)
- Silvano Ferrari
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| | - Gerhard Kahl
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| |
Collapse
|
15
|
Agthe M, Wetterskog E, Bergström L. Following the Assembly of Iron Oxide Nanocubes by Video Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:303-310. [PMID: 27991791 DOI: 10.1021/acs.langmuir.6b03570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have studied the growth of ordered arrays by evaporation-induced self-assembly of iron oxide nanocubes with edge lengths of 6.8 and 10.1 nm using video microscopy (VM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ex situ electron diffraction of the ordered arrays demonstrates that the crystal axes of the nanocubes are coaligned and confirms that the ordered arrays are mesocrystals. Time-resolved video microscopy shows that growth of the highly ordered arrays at slow solvent evaporation is controlled by particle diffusion and can be described by a simple growth model. The growth of each mesocrystal depends only on the number of nanoparticles within the accessible region irrespective of the relative time of formation. The mass of the dried mesocrystals estimated from the analysis of the bandwidth-shift-to-frequency-shift ratio correlates well with the total mass of the oleate-coated nanoparticles in the deposited dispersion drop.
Collapse
Affiliation(s)
- Michael Agthe
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| | - Erik Wetterskog
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University , SE-75121 Uppsala, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| |
Collapse
|
16
|
Zhu J, Hersam MC. Assembly and Electronic Applications of Colloidal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603895. [PMID: 27862354 DOI: 10.1002/adma.201603895] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Artificial solids and thin films assembled from colloidal nanomaterials give rise to versatile properties that can be exploited in a range of technologies. In particular, solution-based processes allow for the large-scale and low-cost production of nanoelectronics on rigid or mechanically flexible substrates. To achieve this goal, several processing steps require careful consideration, including nanomaterial synthesis or exfoliation, purification, separation, assembly, hybrid integration, and device testing. Using a ubiquitous electronic device - the field-effect transistor - as a platform, colloidal nanomaterials in three electronic material categories are reviewed systematically: semiconductors, conductors, and dielectrics. The resulting comparative analysis reveals promising opportunities and remaining challenges for colloidal nanomaterials in electronic applications, thereby providing a roadmap for future research and development.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois, 60208-3108, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois, 60208-3108, USA
- Graduate Program in Applied Physics, Department of Chemistry, Department of Medicine, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208-3108, USA
| |
Collapse
|
17
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1074] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
18
|
Mkhonta SK, Elder KR, Huang ZF. Emergence of Chirality from Isotropic Interactions of Three Length Scales. PHYSICAL REVIEW LETTERS 2016; 116:205502. [PMID: 27258877 DOI: 10.1103/physrevlett.116.205502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 06/05/2023]
Abstract
Chirality is known to play a pivotal role in determining material properties and functionalities. However, it remains a great challenge to understand and control the emergence of chirality and the related enantioselective process particularly when the building components of the system are achiral. Here we explore the generic mechanisms driving the formation of two-dimensional chiral structures in systems characterized by isotropic interactions and three competing length scales. We demonstrate that starting from isotropic and rotationally invariant interactions, a variety of chiral ordered patterns and superlattices with anisotropic but achiral units can self-assemble. The mechanisms for selecting specific states are related to the length-scale coupling and the selection of resonant density wave vectors. Sample phase diagrams and chiral elastic properties are identified. These findings provide a viable route for predicting chiral phases and selecting the desired handedness.
Collapse
Affiliation(s)
- S K Mkhonta
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
- Department of Physics, University of Swaziland, Private Bag 4, Kwaluseni M201, Swaziland
| | - K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
19
|
Castelli A, de Graaf J, Prato M, Manna L, Arciniegas MP. Tic-Tac-Toe Binary Lattices from the Interfacial Self-Assembly of Branched and Spherical Nanocrystals. ACS NANO 2016; 10:4345-53. [PMID: 27027973 DOI: 10.1021/acsnano.5b08018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The self-organization of nanocrystals has proven to be a versatile route to achieve increasingly sophisticated structures of materials, where the shape and properties of individual particles impact the final functionalities. Recent works have addressed this topic by combining various shapes to achieve more complex arrangements of particles than are possible in single-component samples. However, the ability to create intricate architectures over large regions by exploiting the shape of multiply branched nanocrystals to host a second component remains unexplored. Here, we show how the concave shape of a branched nanocrystal, the so-called octapod, is able to anchor a sphere. The two components self-assemble into a locally ordered monolayer consisting of an intercalated square lattice of octapods and spheres, which is reminiscent of the "tic-tac-toe" game. These tic-tac-toe domains form through an interfacial self-assembly that occurs by the dewetting of a hexane layer containing both particle types. By varying the experimental conditions and performing molecular dynamics simulations, we show that the ligands coating the octapods are crucial to the formation of this structure. We find that the tendency of an octapod to form an interlocking-type structure with a second octapod strongly depends on the ligand shell of the pods. Breaking this tendency by ligand exchange allows the octapods to assemble into a more relaxed configuration, which is able to form a lock-and-key-type structure with a sphere, when they have a suitable size ratio. Our findings provide an example of a more versatile use of branched nanocrystals in self-assembled functional materials.
Collapse
Affiliation(s)
- Andrea Castelli
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Joost de Graaf
- Institute for Computational Physics (ICP), University of Stuttgart , Allmandring 3, 70569 Stuttgart, Germany
| | - Mirko Prato
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Liberato Manna
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Milena P Arciniegas
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| |
Collapse
|
20
|
In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat Commun 2016; 7:11213. [PMID: 27040366 PMCID: PMC4822026 DOI: 10.1038/ncomms11213] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/02/2016] [Indexed: 11/14/2022] Open
Abstract
Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution. Understanding the structure and transformation of colloidal matter requires probing configurations from monomers to extended assemblies. Here, the authors use liquid-cell electron microscopy to elucidate the nucleation and growth properties of linear chains of branched nanocrystals in solution.
Collapse
|
21
|
Varga S, Martínez-Ratón Y, Velasco E, Bautista-Carbajal G, Odriozola G. Effect of orientational restriction on monolayers of hard ellipsoids. Phys Chem Chem Phys 2016; 18:4547-56. [PMID: 26796794 DOI: 10.1039/c5cp05702g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of out-of-plane orientational freedom on the orientational ordering properties of a monolayer of hard ellipsoids is studied using the Parsons-Lee scaling approach and replica exchange Monte Carlo computer simulation. Prolate and oblate ellipsoids exhibit very different ordering properties, namely, the axes of revolution of prolate particles tend to lean out, while those of oblate ones prefer to lean into the confining plane. The driving mechanism of this is that the particles try to maximize the available free area on the confining surface, which can be achieved by minimizing the cross section areas of the particles with the plane. In the lack of out-of-plane orientational freedom the monolayer of prolate particles is identical to a two-dimensional hard ellipse system, which undergoes an isotropic-nematic ordering transition with increasing density. With gradually switching on the out-of-plane orientational freedom the prolate particles lean out from the confining plane and destabilisation of the in-plane isotropic-nematic phase transition is observed. The system of oblate particles behaves oppositely to that of prolates. It corresponds to a two-dimensional system of hard disks in the lack of out-of-plane freedom, while it behaves similar to that of hard ellipses in the freely rotating case. Solid phases can be realised by lower surface coverage due to the out-of-plane orientation freedom for both oblate and prolate shapes.
Collapse
Affiliation(s)
- Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, PO Box 158, Veszprém, H-8201 Hungary
| | - Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Gustavo Bautista-Carbajal
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México, Distrito Federal, Mexico and Academia de Matemáticas, Universidad Autónoma de la Ciudad de México, 07160, México, D. F., Mexico
| | - Gerardo Odriozola
- Area de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 México, D. F., Mexico.
| |
Collapse
|
22
|
Kagan CR, Murray CB. Charge transport in strongly coupled quantum dot solids. NATURE NANOTECHNOLOGY 2015; 10:1013-26. [PMID: 26551016 DOI: 10.1038/nnano.2015.247] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/21/2015] [Indexed: 05/20/2023]
Abstract
The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.
Collapse
Affiliation(s)
- Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV, Kagan CR, Klimov VI, Rogach AL, Reiss P, Milliron DJ, Guyot-Sionnnest P, Konstantatos G, Parak WJ, Hyeon T, Korgel BA, Murray CB, Heiss W. Prospects of nanoscience with nanocrystals. ACS NANO 2015; 9:1012-57. [PMID: 25608730 DOI: 10.1021/nn506223h] [Citation(s) in RCA: 606] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today's strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.
Collapse
Affiliation(s)
- Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich , CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Soligno G, Dijkstra M, van Roij R. The equilibrium shape of fluid-fluid interfaces: Derivation and a new numerical method for Young’s and Young-Laplace equations. J Chem Phys 2014; 141:244702. [DOI: 10.1063/1.4904391] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
DeSantis CJ, Sue AC, Radmilovic A, Liu H, Losovyj YB, Skrabalak SE. Shaping the synthesis and assembly of symmetrically stellated Au/Pd nanocrystals with aromatic additives. NANO LETTERS 2014; 14:4145-4150. [PMID: 24915627 DOI: 10.1021/nl501802u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Au/Pd octopods were synthesized with enhanced sample homogeneity through the use of aromatic additives. This increase in sample monodispersity facilitates large-area periodic assembly of stellated metal nanostructures for the first time. The aromatic additives were also found to influence the structures of the stellated nanocrystals with subtle shape modifications observed that can alter the packing arrangement of the Au/Pd octopods. These results indicate the possibility of tailored assembly of stellated nanostructures, which would be useful for optical applications that require strong and predictable coupling between plasmonic building blocks.
Collapse
|
26
|
Bianchi E, Likos C, Kahl G. Tunable assembly of heterogeneously charged colloids. NANO LETTERS 2014; 14:3412-8. [PMID: 24842542 PMCID: PMC4055618 DOI: 10.1021/nl500934v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The self-assembly of colloidal particles is a route to designed materials production that combines high flexibility, cost effectiveness, and the opportunity to create ordered structures at length scales ranging from nano- to micrometers. For many practical applications in electronics, photovoltaics, and biomimetic material synthesis, ordered mono- and bilayers are often needed. Here we present a novel and simple way to tune via external parameters the ordering of heterogeneously charged colloids into quasi two-dimensional structures. Depending on the charges of the underlying substrate and of the particles, a rich and versatile assembly scenario takes place, resulting from the complex interplay between directional attractive and repulsive particle-particle and particle-substrate interactions. Upon subtle variations of the relative charge of the system components, emerging via pH modification, reversible changes either from extended aggregates to a monomeric phase or from triangular to square domains are observed.
Collapse
Affiliation(s)
- Emanuela Bianchi
- Institut
für Theoretische Physik and Center for Computational Materials
Science (CMS), Technische Universität
Wien, Wiedner Hauptstraße
8-10, A-1040 Wien, Austria
- E-mail:
| | - Christos
N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Gerhard Kahl
- Institut
für Theoretische Physik and Center for Computational Materials
Science (CMS), Technische Universität
Wien, Wiedner Hauptstraße
8-10, A-1040 Wien, Austria
| |
Collapse
|
27
|
Bautista-Carbajal G, Odriozola G. Phase diagram of two-dimensional hard ellipses. J Chem Phys 2014; 140:204502. [DOI: 10.1063/1.4878411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Varga S, Meneses-Júarez E, Odriozola G. Empty liquid phase of colloidal ellipsoids: The role of shape and interaction anisotropy. J Chem Phys 2014; 140:134905. [DOI: 10.1063/1.4869938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Zamani RR, Ibáñez M, Luysberg M, García-Castelló N, Houben L, Prades JD, Grillo V, Dunin-Borkowski RE, Morante JR, Cabot A, Arbiol J. Polarity-driven polytypic branching in cu-based quaternary chalcogenide nanostructures. ACS NANO 2014; 8:2290-2301. [PMID: 24575876 DOI: 10.1021/nn405747h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An appropriate way of realizing property nanoengineering in complex quaternary chalcogenide nanocrystals is presented for Cu2CdxSnSey(CCTSe) polypods. The pivotal role of the polarity in determining morphology, growth, and the polytypic branching mechanism is demonstrated. Polarity is considered to be responsible for the formation of an initial seed that takes the form of a tetrahedron with four cation-polar facets. Size and shape confinement of the intermediate pentatetrahedral seed is also attributed to polarity, as their external facets are anion-polar. The final polypod extensions also branch out as a result of a cation-polarity-driven mechanism. Aberration-corrected scanning transmission electron microscopy is used to identify stannite cation ordering, while ab initio studies are used to show the influence of cation ordering/distortion, stoichiometry, and polytypic structural change on the electronic band structure.
Collapse
Affiliation(s)
- Reza R Zamani
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra 08193, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
van der Stam W, Gantapara AP, Akkerman QA, Soligno G, Meeldijk JD, van Roij R, Dijkstra M, de Mello Donega C. Self-assembly of colloidal hexagonal bipyramid- and bifrustum-shaped ZnS nanocrystals into two-dimensional superstructures. NANO LETTERS 2014; 14:1032-7. [PMID: 24433112 DOI: 10.1021/nl4046069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a combined experimental, theoretical, and simulation study on the self-assembly of colloidal hexagonal bipyramid- and hexagonal bifrustum-shaped ZnS nanocrystals (NCs) into two-dimensional superlattices. The simulated NC superstructures are in good agreement with the experimental ones. This shows that the self-assembly process is primarily driven by minimization of the interfacial free-energies and maximization of the packing density. Our study shows that a small truncation of the hexagonal bipyramids is sufficient to change the symmetry of the resulting superlattice from hexagonal to tetragonal, highlighting the crucial importance of precise shape control in the fabrication of functional metamaterials by self-assembly of colloidal NCs.
Collapse
Affiliation(s)
- Ward van der Stam
- Condensed Matter and Interfaces and §Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University , 3508 TA Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Arciniegas M, Kim MR, De Graaf J, Brescia R, Marras S, Miszta K, Dijkstra M, van Roij R, Manna L. Self-assembly of octapod-shaped colloidal nanocrystals into a hexagonal ballerina network embedded in a thin polymer film. NANO LETTERS 2014; 14:1056-63. [PMID: 24447264 PMCID: PMC3924848 DOI: 10.1021/nl404732m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanoparticles with unconventional shapes may exhibit different types of assembly architectures that depend critically on the environmental conditions under which they are formed. Here, we demonstrate how the presence of polymer (polymethyl methacrylate, PMMA) molecules in a solution, in which CdSe(core)/CdS(pods) octapods are initially dispersed, affects the octapod-polymer organization upon solvent evaporation. We show that a fast drop-drying process can induce a remarkable two-dimensional (2D) self-assembly of octapods at the polymer/air interface. In the resulting structure, each octapod is oriented like a "ballerina", that is, only one pod sticks out of the polymer film and is perpendicular to the polymer-air interface, while the opposite pod (with respect to the octapod's center) is fully immersed in the film and points toward the substrate, like a ballerina performing a grand battement. In some areas, a hexagonal-like pattern is formed by the ballerinas in which the six nonvertical pods, which are all embedded in the film, maintain a pod-pod parallel configuration with respect to neighboring particles. We hypothesize that the mechanism responsible for such a self-assembly is based on a fast adsorption of the octapods from bulk solution to the droplet/air interface during the early stages of solvent evaporation. At this interface, the octapods maintain enough rotational freedom to organize mutually in a pod-pod parallel configuration between neighboring octapods. As the solvent evaporates, the octapods form a ballerina-rich octapod-polymer composite in which the octapods are in close contact with the substrate. Finally, we found that the resulting octapod-polymer composite is less hydrophilic than the polymer-only film.
Collapse
Affiliation(s)
| | - Mee R. Kim
- Istituto
Italiano di Tecnologia (IIT), via Morego 30, IT-16163 Genova, Italy
| | - Joost De Graaf
- Institute
for Computational Physics (ICP), University
of Stuttgart, Allmandring
3, 70569 Stuttgart, Germany
| | - Rosaria Brescia
- Istituto
Italiano di Tecnologia (IIT), via Morego 30, IT-16163 Genova, Italy
| | - Sergio Marras
- Istituto
Italiano di Tecnologia (IIT), via Morego 30, IT-16163 Genova, Italy
| | - Karol Miszta
- Istituto
Italiano di Tecnologia (IIT), via Morego 30, IT-16163 Genova, Italy
| | - Marjolein Dijkstra
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - René van Roij
- Institute
for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CE Utrecht, The Netherlands
| | - Liberato Manna
- Istituto
Italiano di Tecnologia (IIT), via Morego 30, IT-16163 Genova, Italy
- E-mail:
| |
Collapse
|
32
|
Zhang SY, Regulacio MD, Han MY. Self-assembly of colloidal one-dimensional nanocrystals. Chem Soc Rev 2014; 43:2301-23. [DOI: 10.1039/c3cs60397k] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Ashton DJ, Jack RL, Wilding NB. Self-assembly of colloidal polymers via depletion-mediated lock and key binding. SOFT MATTER 2013; 9:9661-9666. [PMID: 26029775 DOI: 10.1039/c3sm51839f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study the depletion-induced self-assembly of indented colloids. Using state-of-the-art Monte Carlo simulation techniques that treat the depletant particles explicitly, we demonstrate that colloids assemble by a lock-and-key mechanism, leading to colloidal polymerization. The morphology of the chains that are formed depends sensitively on the size of the colloidal indentation, with smaller values additionally permitting chain branching. In contrast to the case of spheres with attractive patches, Wertheim's thermodynamic perturbation theory fails to provide a fully quantitative description of the polymerization transition. We trace this failure to a neglect of packing effects and we introduce a modified theory that accounts better for the shape of the colloids, yielding improved agreement with simulation.
Collapse
Affiliation(s)
- Douglas J Ashton
- Department of Physics, University of Bath, Bath BA2 7AY, UK. E-mail:
| | | | | |
Collapse
|
34
|
Li H, Kanaras AG, Manna L. Colloidal branched semiconductor nanocrystals: state of the art and perspectives. Acc Chem Res 2013; 46:1387-96. [PMID: 23369428 DOI: 10.1021/ar3002409] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colloidal inorganic nanocrystals are versatile nanoscale building blocks. Advances in their synthesis have yielded nanocrystals with various morphologies including spheres, polyhedra, rods, disks, sheets, wires, and a wide range of branched shapes. Recent developments in chemical methods have allowed the synthesis of colloidal nanocrystals made of sections of different inorganic materials connected together. Many research groups are investigating these nanocrystals' structural and photophysical properties experimentally and theoretically, and many have examined their prospects for commercial applications. Branched nanocrystals, in particular, are gaining attention, in part for their potential applications in solar cells or electronic devices. In this Account, we review recent developments in synthesis and controlled assembly of colloidal branched nanocrystals. Synthesis of branched nanocrystals builds on previous work with spherical nanocrystals and nanorods, but a unique factor is the need to control the branching event. Multiple arms can branch from a nucleus, or secondary branches can form from a growing arm. Branching can be governed by mechanisms including twinning, crystal splitting, polymorphism, oriented attachment, and others. One of the most relevant parameters is the choice of appropriate surfactant molecules, which can bind selectively to certain crystal facets or can even promote specific crystallographic phases during nucleation and growth. Also, seeded growth approaches recently have allowed great progress in the synthesis of nanocrystals with elaborate shapes. In this approach, nanocrystals with a specified chemical composition, size, shape, crystalline habit, and phase act as seeds on which multiple branches of a second material nucleate and grow. These approaches yield nanostructures with improved homogeneity in distribution of branch length and cross section. Ion exchange reactions allow further manipulation of branched nanocrystals by transforming crystals of one material into crystals with the same size, shape, and anion sublattice but with a new cation. Combining seeded growth with ion exchange provides a method for greatly expanding the library of branched nanocrystals. Assembly of morphologically complex nanocrystals is evolving in parallel to developments in chemical synthesis. While researchers have made many advances in the past decade in controlled assembly of nanocrystals with simple polyhedral shapes, modeling and experimental realization of ordered superstructures of branched nanocrystals are still in their infancy. In the only case of ordered superstructure reported so far, the assembly proceeds by steps in a hierarchical fashion, in analogy to several examples of assembly found in nature. Meanwhile, disordered assemblies of branched nanocrystals are also interesting and may find applications in various fields.
Collapse
Affiliation(s)
- Hongbo Li
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Antonios G. Kanaras
- Physics and Astronomy, Faculty of Physical and Applied Sciences, University of Southampton, SO171BJ Southampton, U.K
| | - Liberato Manna
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
35
|
Paik T, Murray CB. Shape-directed binary assembly of anisotropic nanoplates: a nanocrystal puzzle with shape-complementary building blocks. NANO LETTERS 2013; 13:2952-6. [PMID: 23668826 DOI: 10.1021/nl401370n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present the binary self-assembly of two anisotropic nanoplate building blocks mediated by shape complementarity. We use rhombic GdF3 and tripodal Gd2O3 nanoplates as building blocks in which the size and shape are designed to be optimal for complementary organization. A liquid interfacial assembly technique allows the formation of self-assembled binary superlattices from two anisotropic nanoplates over a micrometer length scale. Shape-directed self-assembly guides the position of each anisotropic nanoplate in the binary superlattices, allowing for long-range orientational and positional order of each building block. The design of shape complementary anisotropic building blocks offers the possibility to self-assemble binary superlattices with predictable and designable structures.
Collapse
Affiliation(s)
- Taejong Paik
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
36
|
Qi W, de Graaf J, Qiao F, Marras S, Manna L, Dijkstra M. Phase diagram of octapod-shaped nanocrystals in a quasi-two-dimensional planar geometry. J Chem Phys 2013; 138:154504. [DOI: 10.1063/1.4799269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
37
|
Kim MR, Miszta K, Povia M, Brescia R, Christodoulou S, Prato M, Marras S, Manna L. Influence of chloride ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth. ACS NANO 2012; 6:11088-96. [PMID: 23176381 DOI: 10.1021/nn3048846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We studied the influence of chloride ions (Cl(-)), introduced as CdCl(2), on the seeded growth synthesis of colloidal branched CdSe(core)/CdS(pods) nanocrystals. This is carried out by growing wurtzite CdS pods on top of preformed octahedral sphalerite CdSe seeds. When no CdCl(2) is added, the synthesis of multipods has a low reproducibility, and the side nucleation of CdS nanorods is often observed. At a suitable concentration of CdCl(2), octapods are formed and they are stable in solution during the synthesis. Our experiments indicate that Cl(-) ions introduced in the reaction reduce the availability of Cd(2+) ions in solution, most likely via formation of strong complexes with both Cd and the various surfactants. This prevents homogeneous nucleation of CdS nanocrystals, so that the heterogeneous nucleation of CdS pods on top of the CdSe seeds is the preferred process. Once such optimal concentration of CdCl(2) is set for a stable growth of octapods, the pod lengths can be tuned by varying the relative ratios of the various alkyl phosphonic acids used. Furthermore, at higher concentrations of CdCl(2) added, octapods are initially formed, but many of them evolve into tetrapods over time. This transformation points to an additional role of Cl species in regulating the growth rate and stability of various crystal facets of the CdS pods.
Collapse
Affiliation(s)
- Mee Rahn Kim
- Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
de Graaf J, Filion L, Marechal M, van Roij R, Dijkstra M. Crystal-structure prediction via the Floppy-Box Monte Carlo algorithm: Method and application to hard (non)convex particles. J Chem Phys 2012; 137:214101. [DOI: 10.1063/1.4767529] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
De Caro L, Altamura D, Vittoria FA, Carbone G, Qiao F, Manna L, Giannini C. A superbright X-ray laboratory microsource empowered by a novel restoration algorithm. J Appl Crystallogr 2012. [DOI: 10.1107/s0021889812042161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The properties of nanoscale materials vary with the size and shape of the building blocks, which can be measured by (grazing-incidence) small-angle X-ray scattering along with the mutual positions of the nanoparticles. The accuracy in the determination of such parameters is dependent on the signal-to-noise ratio of the X-ray scattering pattern and on the visibility of the interference fringes. Here, a first-generation-synchrotron-class X-ray laboratory microsource was used in combination with a new restoration algorithm to probe nanoscale-assembled superstructures. The proposed algorithm, based on a maximum likelihood approach, allows one to deconvolve the beam-divergence effects from data and to restore, at least partially, missing data cut away by the beam stopper. It is shown that the combination of a superbright X-ray laboratory microsource with the data-restoring method allows a virtual enhancement of the instrument brilliance, improving signal-to-noise ratio and fringe visibility and reaching levels of performance comparable to third-generation synchrotron radiation beamlines.
Collapse
|