1
|
Gordon R, Peters M, Ying C. Optical scattering methods for the label-free analysis of single biomolecules. Q Rev Biophys 2024; 57:e12. [PMID: 39443300 DOI: 10.1017/s0033583524000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Single-molecule techniques to analyze proteins and other biomolecules involving labels and tethers have allowed for new understanding of the underlying biophysics; however, the impact of perturbation from the labels and tethers has recently been shown to be significant in several cases. New approaches are emerging to measure single proteins through light scattering without the need for labels and ideally without tethers. Here, the approaches of interference scattering, plasmonic scattering, microcavity sensing, nanoaperture optical tweezing, and variants are described and compared. The application of these approaches to sizing, oligomerization, interactions, conformational dynamics, diffusion, and vibrational mode analysis is described. With early commercial successes, these approaches are poised to have an impact in the field of single-molecule biophysics.
Collapse
Affiliation(s)
- Reuven Gordon
- Department of Electrical Engineering, University of Victoria, Victoria, BC, Canada
| | - Matthew Peters
- Department of Electrical Engineering, University of Victoria, Victoria, BC, Canada
| | - Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
2
|
Xu W, Ma C, Wang G, Fu F, Sha J. Trapping and recapturing single DNA molecules with pore-cavity-pore device. NANOTECHNOLOGY 2024; 35:335302. [PMID: 38772350 DOI: 10.1088/1361-6528/ad4e3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Single-molecule detection technology is a technique capable of detecting molecules at the single-molecule level, characterized by high sensitivity, high resolution, and high specificity. Nanopore technology, as one of the single-molecule detection tools, is widely used to study the structure and function of biomolecules. In this study, we constructed a small-sized nanopore with a pore-cavity-pore structure, which can achieve a higher reverse capture rate. Through simulation, we investigated the electrical potential distribution of the nanopore with a pore-cavity-pore structure and analyzed the influence of pore size on the potential distribution. Accordingly, different pore sizes can be designed based on the radius of gyration of the target biomolecules, restricting their escape paths inside the chamber. In the future, nanopores with a pore-cavity-pore structure based on two-dimensional thin film materials are expected to be applied in single-molecule detection research, which provides new insights for various detection needs.
Collapse
Affiliation(s)
- Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Fangzhou Fu
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
3
|
Wang S, Zhang Z, Ma X, Yue Y, Li K, Meng Y, Wu Y. Bidirectional and Stepwise Rotation of Cells and Particles Using Induced Charge Electroosmosis Vortexes. BIOSENSORS 2024; 14:112. [PMID: 38534219 PMCID: PMC10968096 DOI: 10.3390/bios14030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
The rotation of cells is of significant importance in various applications including bioimaging, biophysical analysis and microsurgery. Current methods usually require complicated fabrication processes. Herein, we proposed an induced charged electroosmosis (ICEO) based on a chip manipulation method for rotating cells. Under an AC electric field, symmetric ICEO flow microvortexes formed above the electrode surface can be used to trap and rotate cells. We have discussed the impact of ICEO and dielectrophoresis (DEP) under the experimental conditions. The capabilities of our method have been tested by investigating the precise rotation of yeast cells and K562 cells in a controllable manner. By adjusting the position of cells, the rotation direction can be changed based on the asymmetric ICEO microvortexes via applying a gate voltage to the gate electrode. Additionally, by applying a pulsed signal instead of a continuous signal, we can also precisely and flexibly rotate cells in a stepwise way. Our ICEO-based rotational manipulation method is an easy to use, biocompatible and low-cost technique, allowing rotation regardless of optical, magnetic or acoustic properties of the sample.
Collapse
Affiliation(s)
- Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Zhexin Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yingqi Meng
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
- Research & Development Institute, Northwestern Polytechnical University, Shenzhen 518000, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China
| |
Collapse
|
4
|
Anyika T, Hong I, Ndukaife JC. Mirror-Enhanced Plasmonic Nanoaperture for Ultrahigh Optical Force Generation with Minimal Heat Generation. NANO LETTERS 2023; 23:11416-11423. [PMID: 37987748 PMCID: PMC11271985 DOI: 10.1021/acs.nanolett.3c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Double Nanohole Plasmonic Tweezers (DNH) have emerged as a powerful approach for confining light to sub-wavelength volume, enabling the trapping of nanoscale particles much smaller than the wavelength of light. However, to circumvent plasmonic heating effects, DNH tweezers are typically operated off-resonance, resulting in reduced optical forces and field enhancements. In this study, we introduce a novel DNH design with a reflector layer, enabling on-resonance illumination while minimizing plasmonic heating. This design efficiently dissipates heat and redistributes the electromagnetic hotspots, making them more accessible for trapping nanoscale particles and enhancing light-matter interactions. We also demonstrate low-power trapping and release of small extracellular vesicles. Our work opens new possibilities for trapping-assisted Surface Enhanced Raman Spectroscopy (SERS), plasmon-enhanced imaging, and single photon emission applications that demand strong light-matter interactions.
Collapse
Affiliation(s)
- Theodore Anyika
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Conteduca D, Khan SN, Martínez Ruiz MA, Bruce GD, Krauss TF, Dholakia K. Fano Resonance-Assisted All-Dielectric Array for Enhanced Near-Field Optical Trapping of Nanoparticles. ACS PHOTONICS 2023; 10:4322-4328. [PMID: 38145167 PMCID: PMC10740001 DOI: 10.1021/acsphotonics.3c01126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/26/2023]
Abstract
Near-field optics can overcome the diffraction limit by creating strong optical gradients to enable the trapping of nanoparticles. However, it remains challenging to achieve efficient, stable trapping without heating and thermal effects. Dielectric structures have been used to address this issue but usually offer weak trap stiffness. In this work, we exploit the Fano resonance effect in an all-dielectric quadrupole nanostructure to realize a 20-fold enhancement of trap stiffness, compared to the off-resonance case. This enables a high effective trap stiffness of 1.19 fN/nm for 100 nm diameter polystyrene nanoparticles with 4.2 mW/μm2 illumination. Furthermore, we demonstrate the capability of the structure to simultaneously trap two particles at distinct locations within the nanostructure array.
Collapse
Affiliation(s)
- Donato Conteduca
- School
of Physics, Engineering and Technology, University of York, Heslington, YO10 5DD York, U.K.
| | - Saba N. Khan
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews KY16 9SS, U.K.
| | - Manuel A. Martínez Ruiz
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews KY16 9SS, U.K.
| | - Graham D. Bruce
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews KY16 9SS, U.K.
| | - Thomas F. Krauss
- School
of Physics, Engineering and Technology, University of York, Heslington, YO10 5DD York, U.K.
| | - Kishan Dholakia
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews KY16 9SS, U.K.
- School
of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
of Light for Life, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
6
|
Asadzadeh H, Renkes S, Kim M, Alexandrakis G. Multi-physics simulations and experimental comparisons for the optical and electrical forces acting on a silica nanoparticle trapped by a double-nanohole plasmonic nanopore sensor. SENSING AND BIO-SENSING RESEARCH 2023; 41:100581. [PMID: 39239382 PMCID: PMC11376433 DOI: 10.1016/j.sbsr.2023.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Bimodal optical-electrical data generated when a 20 nm diameter silica (SiO2) nanoparticle was trapped by a plasmonic nanopore sensor were simulated using Multiphysics COMSOL and compared with sensor measurements for closely matching experimental parameters. The nanosensor, employed self-induced back action (SIBA) to optically trap nanoparticles in the center of a double nanohole (DNH) structure on top a solid-state nanopores (ssNP). This SIBA actuated nanopore electrophoresis (SANE) sensor enables simultaneous capture of optical and electrical data generated by several underlying forces acting on the trapped SiO2 nanoparticle: plasmonic optical trapping, electroosmosis, electrophoresis, viscous drag, and heat conduction forces. The Multiphysics simulations enabled dissecting the relative contributions of those forces acting on the nanoparticle as a function of its location above and through the sensor's ssNP. Comparisons between simulations and experiments demonstrated qualitative similarities in the optical and electrical time-series data generated as the nanoparticle entered and exited from the SANE sensor. These experimental parameter-matched simulations indicated that the competition between optical and electrical forces shifted the trapping equilibrium position close to the top opening of the ssNP, relative to the optical trapping force maximum that was located several nm above. The experimentally estimated minimum for the optical force needed to trap a SiO2 nanoparticle was consistent with corresponding simulation predictions of optical-electrical force balance. The comparison of Multiphysics simulations with experiments improves our understanding of the interplay between optical and electrical forces as a function of nanoparticle position across this plasmonic nanopore sensor.
Collapse
Affiliation(s)
- Homayoun Asadzadeh
- University of Texas at Arlington, Bioengineering Department, Arlington, TX 76010, USA
| | - Scott Renkes
- University of Texas at Arlington, Bioengineering Department, Arlington, TX 76010, USA
| | - MinJun Kim
- Southern Methodist University, Department of Mechanical Engineering, Dallas, TX 75275, USA
| | - George Alexandrakis
- University of Texas at Arlington, Bioengineering Department, Arlington, TX 76010, USA
| |
Collapse
|
7
|
Bouloumis TD, Kotsifaki DG, Nic Chormaic S. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers. NANO LETTERS 2023. [PMID: 37256850 DOI: 10.1021/acs.nanolett.2c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The pursuit for efficient nanoparticle trapping with low powers has led to optical tweezers technology moving from the conventional free-space configuration to advanced plasmonic systems. However, trapping nanoparticles smaller than 10 nm still remains a challenge even for plasmonic tweezers. Proper nanocavity design and excitation has given rise to the self-induced back-action (SIBA) effect offering enhanced trap stiffness with decreased laser power. In this work, we investigate the SIBA effect in metamaterial tweezers and its synergy with the exhibited Fano resonance. We demonstrate stable trapping of 20 nm gold particles with trap stiffnesses as high as 4.18 ± 0.2 (fN/nm)/(mW/μm2) and very low excitation intensity. Simulations reveal the existence of two different groups of hotspots on the plasmonic array. The two hotspots exhibit tunable trap stiffnesses, a unique feature that can allow for sorting of particles and biological molecules based on their characteristics.
Collapse
Affiliation(s)
- Theodoros D Bouloumis
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Domna G Kotsifaki
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Natural and Applied Sciences, Duke Kunshan University, No. 8 Duke Avenue, Kunshan, Jiangsu Province 215316, China
| | - Síle Nic Chormaic
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
8
|
Zhou LM, Shi Y, Zhu X, Hu G, Cao G, Hu J, Qiu CW. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS NANO 2022; 16:13264-13278. [PMID: 36053722 DOI: 10.1021/acsnano.2c05634] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
| | - Xiaoyu Zhu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangtao Cao
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
| | - Jigang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
9
|
Zhang H, Moazzezi P, Ren J, Henderson B, Cordoba C, Yeddu V, Blackburn AM, Saidaminov MI, Paci I, Hughes S, Gordon R. Coupling Perovskite Quantum Dot Pairs in Solution using a Nanoplasmonic Assembly. NANO LETTERS 2022; 22:5287-5293. [PMID: 35767329 DOI: 10.1021/acs.nanolett.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskite quantum dots (PQDs) provide a robust solution-based approach to efficient solar cells, bright light emitting devices, and quantum sources of light. Quantifying heterogeneity and understanding coupling between dots is critical for these applications. We use double-nanohole optical trapping to size individual dots and correlate to emission energy shifts from quantum confinement. We were able to assemble a second dot in the trap, which allows us to observe the coupling between dots. We observe a systematic red-shift of 1.1 ± 0.6 meV in the emission wavelength. Theoretical analysis shows that the observed shift is consistent with resonant energy transfer and is unusually large due to moderate-to-large quantum confinement in PQDs. This demonstrates the promise of PQDs for entanglement in quantum information applications. This work enables future in situ control of PQD growth as well as studies of the coupling between small PQD assemblies with quantum information applications in mind.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| | - Parinaz Moazzezi
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, V8P 5C2 Victoria, Canada
| | - Juanjuan Ren
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston K7L 3N6, Canada
| | - Brett Henderson
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
- Quantum Algorithms Institute, Surrey V3T 5X3, Canada
| | - Cristina Cordoba
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, V8P 5C2 Victoria, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria V8P 5C2, Canada
| | - Vishal Yeddu
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
| | - Arthur M Blackburn
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria V8P 5C2, Canada
| | - Makhsud I Saidaminov
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
| | - Irina Paci
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
| | - Stephen Hughes
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston K7L 3N6, Canada
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria V8P 5C2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| |
Collapse
|
10
|
Booth LS, Browne EV, Mauranyapin NP, Madsen LS, Barfoot S, Mark A, Bowen WP. Modelling of the dynamic polarizability of macromolecules for single-molecule optical biosensing. Sci Rep 2022; 12:1995. [PMID: 35132077 PMCID: PMC8821610 DOI: 10.1038/s41598-022-05586-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
The structural dynamics of macromolecules is important for most microbiological processes, from protein folding to the origins of neurodegenerative disorders. Noninvasive measurements of these dynamics are highly challenging. Recently, optical sensors have been shown to allow noninvasive time-resolved measurements of the dynamic polarizability of single-molecules. Here we introduce a method to efficiently predict the dynamic polarizability from the atomic configuration of a given macromolecule. This provides a means to connect the measured dynamic polarizability to the underlying structure of the molecule, and therefore to connect temporal measurements to structural dynamics. To illustrate the methodology we calculate the change in polarizability as a function of time based on conformations extracted from molecular dynamics simulations and using different conformations of motor proteins solved crystalographically. This allows us to quantify the magnitude of the changes in polarizablity due to thermal and functional motions.
Collapse
Affiliation(s)
- Larnii S Booth
- ARC Centre for Engineered Quantum Systems (EQUS), School of Mathematics and Physics, The University of Queensland, Brisbane, Australia
| | - Eloise V Browne
- ARC Centre for Engineered Quantum Systems (EQUS), School of Mathematics and Physics, The University of Queensland, Brisbane, Australia
| | - Nicolas P Mauranyapin
- ARC Centre for Engineered Quantum Systems (EQUS), School of Mathematics and Physics, The University of Queensland, Brisbane, Australia
| | - Lars S Madsen
- ARC Centre for Engineered Quantum Systems (EQUS), School of Mathematics and Physics, The University of Queensland, Brisbane, Australia
| | - Shelley Barfoot
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Alan Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Warwick P Bowen
- ARC Centre for Engineered Quantum Systems (EQUS), School of Mathematics and Physics, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
11
|
Fränzl M, Cichos F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat Commun 2022; 13:656. [PMID: 35115502 PMCID: PMC8813924 DOI: 10.1038/s41467-022-28212-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Manipulation of nano-objects at the microscale is of great technological importance for constructing new functional materials, manipulating tiny amounts of fluids, reconfiguring sensor systems, or detecting tiny concentrations of analytes in medical screening. Here, we show that hydrodynamic boundary flows enable the trapping and manipulation of nano-objects near surfaces. We trigger thermo-osmotic flows by modulating the van der Waals and double layer interactions at a gold-liquid interface with optically generated local temperature fields. The hydrodynamic flows, attractive van der Waals and repulsive double layer forces acting on the suspended nanoparticles enable precise nanoparticle positioning and guidance. A rapid multiplexing of flow fields permits the parallel manipulation of many nano-objects and the generation of complex flow fields. Our findings have direct implications for the field of plasmonic nanotweezers and other thermo-plasmonic trapping systems, paving the way for nanoscopic manipulation with boundary flows.
Collapse
Affiliation(s)
- Martin Fränzl
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Frank Cichos
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
12
|
Hajisalem G, Babaei E, Dobinson M, Iwamoto S, Sharifi Z, Eby J, Synakewicz M, Itzhaki LS, Gordon R. Accessible high-performance double nanohole tweezers. OPTICS EXPRESS 2022; 30:3760-3769. [PMID: 35209628 DOI: 10.1364/oe.446756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Nanohole optical tweezers have been used by several groups to trap and analyze proteins. In this work, we demonstrate that it is possible to create high-performance double nanohole (DNH) substrates for trapping proteins without the need for any top-down approaches (such as electron microscopy or focused-ion beam milling). Using polarization analysis, we identify DNHs as well as determine their orientation and then use them for trapping. We are also able to identify other hole configurations, such as single, trimers and other clusters. We explore changing the substrate from glass to polyvinyl chloride to enhance trapping ability, showing 7 times lower minimum trapping power, which we believe is due to reduced surface repulsion. Finally, we present tape exfoliation as a means to expose DNHs without damaging sonication or chemical methods. Overall, these approaches make high quality optical trapping using DNH structures accessible to a broad scientific community.
Collapse
|
13
|
Simulation of Optical Nano-Manipulation with Metallic Single and Dual Probe Irradiated by Polarized Near-Field Laser. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nano-manipulation technology, as a kind of “bottom-up” tool, has exhibited an excellent capacity in the field of measurement and fabrication on the nanoscale. Although variety manipulation methods based on probes and microscopes were proposed and widely used due to locating and imaging with high resolution, the development of non-contacted schemes for these methods is still indispensable to operate small objects without damage. However, optical manipulation, especially near-field trapping, is a perfect candidate for establishing brilliant manipulation systems. This paper reports about simulations on the electric and force fields at the tips of metallic probes irradiated by polarized laser outputted coming from a scanning near-field optical microscope probe. Distributions of electric and force field at the tip of a probe have proven that the polarized laser can induce nanoscale evanescent fields with high intensity, which arouse effective force to move nanoparticles. Moreover, schemes with dual probes are also presented and discussed in this paper. Simulation results indicate that different combinations of metallic probes and polarized lasers will provide diverse near-field and corresponding optical force. With the suitable direction of probes and polarization direction, the dual probe exhibits higher trapping force and wider effective wavelength range than a single probe. So, these results give more novel and promising selections for realizing optical manipulation in experiments, so that distinguished multi-functional manipulation systems can be developed.
Collapse
|
14
|
Yang W, van Dijk M, Primavera C, Dekker C. FIB-milled plasmonic nanoapertures allow for long trapping times of individual proteins. iScience 2021; 24:103237. [PMID: 34746702 PMCID: PMC8551080 DOI: 10.1016/j.isci.2021.103237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
We have developed a fabrication methodology for label-free optical trapping of individual nanobeads and proteins in inverted-bowtie-shaped plasmonic gold nanopores. Arrays of these nanoapertures can be reliably produced using focused ion beam (FIB) milling with gap sizes of 10–20 nm, single-nanometer variation, and with a remarkable stability that allows for repeated use. We employ an optical readout where the presence of the protein entering the trap is marked by an increase in the transmission of light through the nanoaperture from the shift of the plasmonic resonance. In addition, the optical trapping force of the plasmonic nanopores allows 20-nm polystyrene beads and proteins, such as beta-amylase and Heat Shock Protein (HSP90), to be trapped for very long times (approximately minutes). On demand, we can release the trapped molecule for another protein to be interrogated. Our work opens up new routes to acquire information on the conformation and dynamics of individual proteins. We demonstrate fabrication of arrays of inverted-bowtie-shaped plasmonic gold nanopores Arrays (>64) of bowties with 10 to 20-nm size gap and single-nanometer variation can be produced We optically tweeze and detect single 20-nm polystyrene beads and individual proteins Our system allows for long observations (approximately minutes) of protein dynamics
Collapse
Affiliation(s)
- Wayne Yang
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Madeleine van Dijk
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Christian Primavera
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
15
|
Lou Y, Wan X, Pang Y. Nano-optical trapping using an all-dielectric optical fiber supporting a TEM-like mode. NANOTECHNOLOGY 2021; 33:045201. [PMID: 34530419 DOI: 10.1088/1361-6528/ac2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Fiber optical tweezers benefit from compact structures and compatibility with fiber optic technology, however, trapping of nano-objects are rarely demonstrated. Here, we predict stable optical trapping of a 30 nm polystyrene particle using an all-dielectric coaxial optical fiber supporting an axisymmetric TEM-like mode. We demonstrate, via comprehensive finite-difference time-domain simulations, that the trapping behavior arises from a significant shift of the fiber-end-fire radiation directivity originated from the nanoparticle-induced symmetry breaking, rather than the gradient force which assumes an invariant optical field. Fabrication of the fiber involved is entirely feasible with existing techniques, such as thermal-drawn and electrospinning, and therefore can be mass-produced.
Collapse
Affiliation(s)
- Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xinchen Wan
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
16
|
Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metallic nanowires have been utilized as a platform for propagating surface plasmon (SPs) fields. To be exploited for applications such as plasmonic circuits, manipulation of localized field propagating pattern is also important. In this study, we calculated the field distributions of localized surface plasmons (LSPs) on the specifically shaped nanostructures and explored the feasibility of manipulating LSP fields. Specifically, plasmonic fields were calculated at different wavelengths for a nanoscale rod array (I-shaped), an array connected with two nanoscale rods at right angles (T-shaped), and an array with three nanoscale rods at 120° to each other (Y-shaped). Three different types of nanostructures are suggested to manipulate the positions of LSP fields collaborating with adjustment of wavelength, polarization, and incident orientation of light source. The results of this study are important not only for the understanding of the wavelength-dependent surface plasmon field localization mechanism but also for the applicability of swept source-based plasmonic techniques or designing a plasmonic circuit.
Collapse
|
17
|
Wang M, Guan C, Cheng L, Liu J, Yang J, Shi J, Liu Z, Yang J, Yuan L. Multicore fiber integrated beam shaping devices for long-range plasmonic trapping. OPTICS EXPRESS 2021; 29:28416-28426. [PMID: 34614973 DOI: 10.1364/oe.435643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The multicore fiber beam shaping devices based on surface plasmon polaritons (SPPs) have been proposed and demonstrated. The gold film is covered on the end face of the optical fiber. An air slit is perforated in the center of each core and the gratings with a fixed period are designed on the gold film on one side of the slit to obtain a deflected beam. Multiple deflected beams based on the multicore fiber interfere and form a periodic field, where the period of the interference field is determined by the deflection angle of the beams and the spacing between the cores. The interference field of the multiple deflected beams can be used to trap the nanosphere. The Maxwell stress tensor method is used to calculate the transverse and longitudinal trapping forces on a nanosphere. The nanosphere can be stably trapped at 45 μm away from the end face of the fiber. Such an all-fiber trapping system is compact and flexible integration, and is promising for long-working-distance and multiple-particle trapping.
Collapse
|
18
|
Jiang Q, Roy P, Claude JB, Wenger J. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot. NANO LETTERS 2021; 21:7030-7036. [PMID: 34398613 DOI: 10.1021/acs.nanolett.1c02449] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single photon sources with high brightness and subnanosecond lifetimes are key components for quantum technologies. Optical nanoantennas can enhance the emission properties of single quantum emitters, but this approach requires accurate nanoscale positioning of the source at the plasmonic hotspot. Here, we use plasmonic nanoantennas to simultaneously trap single colloidal quantum dots and enhance their photoluminescence. The nano-optical trapping automatically locates the quantum emitter at the nanoantenna hotspot without further processing. Our dedicated nanoantenna design achieves a high trap stiffness of 0.6 (fN/nm)/mW for quantum dot trapping, together with a relatively low trapping power of 2 mW/μm2. The emission from the nanoantenna-trapped single quantum dot shows 7× increased brightness, 50× reduced blinking, 2× shortened lifetime, and a clear antibunching below 0.5 demonstrating true single photon emission. Combining nano-optical tweezers with plasmonic enhancement is a promising route for quantum technologies and spectroscopy of single nano-objects.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Prithu Roy
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
19
|
Temperature Effects on Optical Trapping Stability. MICROMACHINES 2021; 12:mi12080954. [PMID: 34442576 PMCID: PMC8400024 DOI: 10.3390/mi12080954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 01/11/2023]
Abstract
In recent years, optically trapped luminescent particles have emerged as a reliable probe for contactless thermal sensing because of the dependence of their luminescence on environmental conditions. Although the temperature effect in the optical trapping stability has not always been the object of study, the optical trapping of micro/nanoparticles above room temperature is hindered by disturbances caused by temperature increments of even a few degrees in the Brownian motion that may lead to the release of the particle from the trap. In this report, we summarize recent experimental results on thermal sensing experiments in which micro/nanoparticles are used as probes with the aim of providing the contemporary state of the art about temperature effects in the stability of potential trapping processes.
Collapse
|
20
|
Peng X, Kotnala A, Rajeeva BB, Wang M, Yao K, Bhatt N, Penley D, Zheng Y. Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications. ADVANCED OPTICAL MATERIALS 2021; 9:2100050. [PMID: 34434691 PMCID: PMC8382230 DOI: 10.1002/adom.202100050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 05/12/2023]
Abstract
The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kan Yao
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Neel Bhatt
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Penley
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Corsetti S, Dholakia K. Optical manipulation: advances for biophotonics in the 21st century. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210127-PER. [PMID: 34235899 PMCID: PMC8262092 DOI: 10.1117/1.jbo.26.7.070602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
SIGNIFICANCE Optical trapping is a technique capable of applying minute forces that has been applied to studies spanning single molecules up to microorganisms. AIM The goal of this perspective is to highlight some of the main advances in the last decade in this field that are pertinent for a biomedical audience. APPROACH First, the direct determination of forces in optical tweezers and the combination of optical and acoustic traps, which allows studies across different length scales, are discussed. Then, a review of the progress made in the direct trapping of both single-molecules, and even single-viruses, and single cells with optical forces is outlined. Lastly, future directions for this methodology in biophotonics are discussed. RESULTS In the 21st century, optical manipulation has expanded its unique capabilities, enabling not only a more detailed study of single molecules and single cells but also of more complex living systems, giving us further insights into important biological activities. CONCLUSIONS Optical forces have played a large role in the biomedical landscape leading to exceptional new biological breakthroughs. The continuous advances in the world of optical trapping will certainly lead to further exploitation, including exciting in-vivo experiments.
Collapse
Affiliation(s)
- Stella Corsetti
- University of St Andrews, SUPA, School of Physics and Astronomy, St. Andrews, United Kingdom
- Address all correspondence to Stella Corsetti,
| | - Kishan Dholakia
- University of St Andrews, SUPA, School of Physics and Astronomy, St. Andrews, United Kingdom
- University of Adelaide, School of Biological Sciences, Adelaide, South Australia, Australia
- Yonsei University, College of Science, Department of Physics, Seoul, Republic of Korea
| |
Collapse
|
22
|
Kotnala A, Ding H, Zheng Y. Enhancing Single-Molecule Fluorescence Spectroscopy with Simple and Robust Hybrid Nanoapertures. ACS PHOTONICS 2021; 8:1673-1682. [PMID: 35445142 PMCID: PMC9017716 DOI: 10.1021/acsphotonics.1c00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plasmonic nanoapertures have found exciting applications in optical sensing, spectroscopy, imaging, and nanomanipulation. The subdiffraction optical field localization, reduced detection volume (~attoliters), and background-free operation make them particularly attractive for single-particle and single-molecule studies. However, in contrast to the high field enhancements by traditional "nanoantenna"-based structures, small field enhancement in conventional nanoapertures results in weak light-matter interactions and thus small enhancement of spectroscopic signals (such as fluorescence and Raman signals) of the analytes interacting with the nanoapertures. In this work, we propose a hybrid nanoaperture design termed "gold-nanoislands-embedded nanoaperture" (AuNIs-e-NA), which provides multiple electromagnetic "hotspots" within the nanoaperture to achieve field enhancements of up to 4000. The AuNIs-e-NA was able to improve the fluorescence signals by more than 2 orders of magnitude with respect to a conventional nanoaperture. With simple design and easy fabrication, along with strong signal enhancements and operability over variable light wavelengths and polarizations, the AuNIs-e-NA will serve as a robust platform for surface-enhanced optical sensing, imaging, and spectroscopy.
Collapse
Affiliation(s)
- Abhay Kotnala
- Walker Department of Mechanical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Li J, Chen Z, Liu Y, Kollipara PS, Feng Y, Zhang Z, Zheng Y. Opto-refrigerative tweezers. SCIENCE ADVANCES 2021; 7:7/26/eabh1101. [PMID: 34172454 PMCID: PMC8232904 DOI: 10.1126/sciadv.abh1101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 05/29/2023]
Abstract
Optical tweezers offer revolutionary opportunities for both fundamental and applied research in materials science, biology, and medical engineering. However, the requirement of a strongly focused and high-intensity laser beam results in potential photon-induced and thermal damages to target objects, including nanoparticles, cells, and biomolecules. Here, we report a new type of light-based tweezers, termed opto-refrigerative tweezers, which exploit solid-state optical refrigeration and thermophoresis to trap particles and molecules at the laser-generated cold region. While laser refrigeration can avoid photothermal heating, the use of a weakly focused laser beam can further reduce the photodamages to the target object. This novel and noninvasive optical tweezing technique will bring new possibilities in the optical control of nanomaterials and biomolecules for essential applications in nanotechnology, photonics, and life science.
Collapse
Affiliation(s)
- Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78705, USA
| | | | - Yichao Feng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Zhenglong Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78705, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
24
|
Sharifi Z, Dobinson M, Hajisalem G, Shariatdoust MS, Frencken AL, van Veggel FCJM, Gordon R. Isolating and enhancing single-photon emitters for 1550 nm quantum light sources using double nanohole optical tweezers. J Chem Phys 2021; 154:184204. [PMID: 34241038 DOI: 10.1063/5.0048728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-photon sources are required for quantum technologies and can be created from individual atoms and atom-like defects. Erbium ions produce single photons at low-loss fiber optic wavelengths, but they have low emission rates, making them challenging to isolate reliably. Here, we tune the size of gold double nanoholes (DNHs) to enhance the emission of single erbium emitters, achieving 50× enhancement over rectangular apertures previously demonstrated. This produces enough enhancement to show emission from single nanocrystals at wavelengths not seen in our previous work, i.e., 400 and 1550 nm. We observe discrete levels of emission for nanocrystals with low numbers of emitters and demonstrate isolating single emitters. We describe how the trapping time is proportional to the enhancement factor for a given DNH structure, giving us an independent way to measure the enhancement. This shows a promising path to achieving single emitter sources at 1550 nm.
Collapse
Affiliation(s)
- Zohreh Sharifi
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Michael Dobinson
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ghazal Hajisalem
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mirali Seyed Shariatdoust
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Adriaan L Frencken
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Frank C J M van Veggel
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
25
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
26
|
Morita A, Sumitomo T, Uesugi A, Sugano K, Isono Y. Dynamic electrical measurement of biomolecule behavior via plasmonically-excited nanogap fabricated by electromigration. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abe9c0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
The dynamic motion of DNA oligomers at the nanoscale gap between nanoelectrodes is measured under plasmonic excitation using laser irradiation. The use of a nanogap enables highly sensitive detection of individual molecules using an electrical readout or an optical readout such as Raman spectroscopy. However, the target molecule must reach the nanogap in order to be detected. This study focuses on the use of plasmonic excitation to trap molecules at the nanogap surface. The nanogap electrode is fabricated by electromigration and is, therefore, a much smaller nanogap than the top-down fabrication in the conventional plasmonic trapping studies. To demonstrate the individual molecule detection and to investigate the molecular behavior, the molecules are monitored using an electrical readout under a bias voltage instead of an optical readout used in the conventional studies. The conductance change due to DNA oligomer penetration to the nanogap is observed with the irradiated light intensity of over 1.23 mW. The single-molecule detection is confirmed irradiating the laser to the nanogap. The results suggest that DNA oligomers are spontaneously attracted and concentrated to the nanogap corresponding to the detection point, resulting in high detection probability and sensitivity.
Collapse
|
27
|
Jiang Q, Claude JB, Wenger J. Plasmonic nano-optical trap stiffness measurements and design optimization. NANOSCALE 2021; 13:4188-4194. [PMID: 33576761 DOI: 10.1039/d0nr08635e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic nano-optical tweezers enable the non-invasive manipulation of nano-objects under low illumination intensities, and have become a powerful tool for nanotechnology and biophysics. However, measuring the trap stiffness of nanotweezers remains a complicated task, which hinders the development of plasmonic trapping. Here, we describe an experimental method to measure the trap stiffness based on the temporal correlation of the fluorescence from the trapped object. The method is applied to characterize the trap stiffness in different double nanohole apertures and explore the influence of their design parameters in relationship with numerical simulations. Optimizing the double nanohole design achieves a trap stiffness 10× larger than the previous state-of-the-art. The experimental method and the design guidelines discussed here offer a simple and efficient way to improve the performance of nano-optical tweezers.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| |
Collapse
|
28
|
Bouloumis TD, Kotsifaki DG, Han X, Chormaic SN, Truong VG. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures. NANOTECHNOLOGY 2021; 32:025507. [PMID: 32992307 DOI: 10.1088/1361-6528/abbca9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The manipulation of microparticles using optical forces has led to many applications in the life and physical sciences. To extend optical trapping towards the nano-regime, in this work we demonstrate trapping of single nanoparticles in arrays of plasmonic coaxial nano-apertures with various inner disk sizes and theoretically estimate the associated forces. A high normalized experimental trap stiffness of 3.50 fN nm-1 mW-1 μm-2 for 20 nm polystyrene particles is observed for an optimum design of 149 nm for the nanodisk diameter at a trapping wavelength of 980 nm. Theoretical simulations are used to interpret the enhancement of the observed trap stiffness. A quick particle trapping time of less than 8 s is obtained at a concentration of 14 × 1011 particles ml-1 with low incident laser intensity of 0.59 mW μm-2. This good trapping performance with fast delivery of nanoparticles to multiple trapping sites emerges from a combination of the enhanced electromagnetic near-field and spatial temperature increase. This work has applications in nanoparticle delivery and trapping with high accuracy, and bridges the gap between optical manipulation and nanofluidics.
Collapse
Affiliation(s)
- Theodoros D Bouloumis
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| | - Domna G Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| | - Xue Han
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| | - Viet Giang Truong
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| |
Collapse
|
29
|
Jiang Q, Rogez B, Claude JB, Baffou G, Wenger J. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping. NANO LETTERS 2020; 20:8811-8817. [PMID: 33237789 DOI: 10.1021/acs.nanolett.0c03638] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic nanotweezers use intense electric field gradients to generate optical forces able to trap nano-objects in liquids. However, part of the incident light is absorbed into the metal, and a supplementary thermophoretic force acting on the nano-object arises from the resulting temperature gradient. Plasmonic nanotweezers thus face the challenge of disentangling the intricate contributions of the optical and thermophoretic forces. Here, we show that commonly added surfactants can unexpectedly impact the trap performance by acting on the thermophilic or thermophobic response of the nano-object. Using different surfactants in double nanohole plasmonic trapping experiments, we measure and compare the contributions of the thermophoretic and the optical forces, evidencing a trap stiffness 20× higher using sodium dodecyl sulfate (SDS) as compared to Triton X-100. This work uncovers an important mechanism in plasmonic nanotweezers and provides guidelines to control and optimize the trap performance for different plasmonic designs.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Benoît Rogez
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Guillaume Baffou
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| |
Collapse
|
30
|
Peng Z, Chen Y, Wu T. Ultrafast Microdroplet Generation and High-Density Microparticle Arraying Based on Biomimetic Nepenthes Peristome Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47299-47308. [PMID: 33032397 DOI: 10.1021/acsami.0c14664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manipulation of massive droplets, particles, as well as cells has enabled wide applications. However, most existing technologies require complicated processes, operations, or external setup. This article demonstrates the employment of biomimetic Nepenthes peristome surfaces (NPS) in achieving ultrafast microdroplet generation and high-density microparticle arraying, with the assistance of curvature-induced Laplace pressure in slipping mode and evaporation-driven Marangoni effect in climbing mode, respectively. Different wetting phenomena on the biomimetic NPS were observed under variable contact angles and tilting angles, strongly affecting the microdroplet generation and microparticle array. As the optimal results, 5 μm-size microparticles were arrayed with 85% coverage rate in 65 s and 20 μm-size microdroplets were arrayed with 100% coverage rate in 3 s. In this study, this well-designed bionic surface shows excellent performances as an ultrafast, universal, and straightforward approach to capture and array micro-objects in aqueous solutions for various biological and chemical analyses.
Collapse
Affiliation(s)
- Zhiting Peng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Health Bioinformatics, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Health Bioinformatics, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
31
|
Xin H, Li Y, Liu YC, Zhang Y, Xiao YF, Li B. Optical Forces: From Fundamental to Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001994. [PMID: 32715536 DOI: 10.1002/adma.202001994] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Optical forces, generally arising from changes of field gradients or linear momentum carried by photons, form the basis for optical trapping and manipulation. Advances in optical forces help to reveal the nature of light-matter interactions, giving answers to a wide range of questions and solving problems across various disciplines, and are still yielding new insights in many exciting sciences, particularly in the fields of biological technology, material applications, and quantum sciences. This review focuses on recent advances in optical forces, ranging from fundamentals to applications for biological exploration. First, the basics of different types of optical forces with new light-matter interaction mechanisms and near-field techniques for optical force generation beyond the diffraction limit with nanometer accuracy are described. Optical forces for biological applications from in vitro to in vivo are then reviewed. Applications from individual manipulation to multiple assembly into functional biophotonic probes and soft-matter superstructures are discussed. At the end future directions for application of optical forces for biological exploration are provided.
Collapse
Affiliation(s)
- Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
32
|
Zhang J, Lu F, Zhang W, Yu W, Zhu W, Premaratne M, Mei T, Xiao F, Zhao J. Optical trapping of single nano-size particles using a plasmonic nanocavity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:475301. [PMID: 32870814 DOI: 10.1088/1361-648x/abaead] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Trapping and manipulating micro-size particles using optical tweezers has contributed to many breakthroughs in biology, materials science, and colloidal physics. However, it remains challenging to extend this technique to a few nanometers particles owing to the diffraction limit and the considerable Brownian motion of trapped nanoparticles. In this work, a nanometric optical tweezer is proposed by using a plasmonic nanocavity composed of the closely spaced silver coated fiber tip and gold film. It is found that the radial vector mode can produce a nano-sized near field with the electric-field intensity enhancement factor over 103through exciting the plasmon gap mode in the nanocavity. By employing the Maxwell stress tensor formalism, we theoretically demonstrate that this nano-sized near field results in a sharp quasi-harmonic potential well, capable of stably trapping 2 nm quantum dots beneath the tip apex with the laser power as low as 3.7 mW. Further analysis reveals that our nanotweezers can stably work in a wide range of particle-to-tip distances, gap sizes, and operation wavelengths. We envision that our proposed nanometric optical tweezers could be compatible with the tip-enhanced Raman spectroscopy to allow simultaneously manipulating and characterizing single nanoparticles as well as nanoparticle interactions with high sensitivity.
Collapse
Affiliation(s)
- Jiachen Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Fanfan Lu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Wending Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Weixing Yu
- CAS Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710119, People's Republic of China
| | - Weiren Zhu
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ting Mei
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Fajun Xiao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
- CAS Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710119, People's Republic of China
| | - Jianlin Zhao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| |
Collapse
|
33
|
Kotsifaki DG, Truong VG, Chormaic SN. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping. NANO LETTERS 2020; 20:3388-3395. [PMID: 32275440 DOI: 10.1021/acs.nanolett.0c00300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic nanostructures overcome Abbe's diffraction limit to create strong gradient electric fields, enabling efficient optical trapping of nanoparticles. However, it remains challenging to achieve stable trapping with low incident laser intensity. Here, we demonstrate Fano resonance-assisted plasmonic optical tweezers for single nanoparticle trapping in an array of asymmetrical split nanoapertures on a 50 nm gold thin film. A large normalized trap stiffness of 8.65 fN/nm/mW for 20 nm polystyrene particles at a near-resonance trapping wavelength of 930 nm was achieved. The trap stiffness on-resonance is enhanced by a factor of 63 compared to that of off-resonance due to the ultrasmall mode volume, enabling large near-field strengths and a cavity effect contribution. These results facilitate trapping with low incident laser intensity, thereby providing new options for studying transition paths of single molecules such as proteins.
Collapse
Affiliation(s)
- Domna G Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Viet Giang Truong
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
34
|
Liang Y, Yan S, Wang Z, Li R, Cai Y, He M, Yao B, Lei M. Simultaneous optical trapping and imaging in the axial plane: a review of current progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:032401. [PMID: 31995793 DOI: 10.1088/1361-6633/ab7175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Optical trapping has become a powerful tool in numerous fields such as biology, physics, chemistry, etc. In conventional optical trapping systems, trapping and imaging share the same objective lens, confining the region of observation to the focal plane. For the capture of optical trapping processes occurring in other planes, especially the axial plane (the one containing the z-axis), many methods have been proposed to achieve this goal. Here, we review the methods of acquiring the axial-plane information from which axial plane trapping is observed and discuss their advantages and limitations. To overcome the limitations existing in these methods, we developed an optical tweezers system that allows for simultaneous optical trapping and imaging in the axial plane. The versatility and usefulness of the system in axial-plane trapping and imaging are demonstrated by investigating its trapping performance with various optical fields, including Bessel, Airy, and snake-like beams. The potential applications of the reported technique are suggested to several research fields, including optical pulling, longitudinal optical binding, tomographic phase microscopy (TPM), and super-resolution microscopy.
Collapse
Affiliation(s)
- Yansheng Liang
- Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang Q, Rogez B, Claude JB, Moreau A, Lumeau J, Baffou G, Wenger J. Adhesion layer influence on controlling the local temperature in plasmonic gold nanoholes. NANOSCALE 2020; 12:2524-2531. [PMID: 31930256 DOI: 10.1039/c9nr08113e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gold films do not adhere well on glass substrates, so plasmonics experiments typically use a thin adhesion layer of titanium or chromium to ensure a proper adhesion between the gold film and the glass substrate. While the absorption of light into gold structures is largely used to generate heat and control the temperature at the nanoscale, the influence of the adhesion layer on this process is largely overlooked. Here, we quantify the role of the adhesion layer in determining the local temperature increase around a single nanohole illuminated by a focused infrared laser. Despite their nanometer thickness, adhesion layers can absorb a greater fraction of the incoming infrared light than the 100 nm thick gold layer leading to a significant increase of the local temperature. Different experimental designs are explored, offering new ways to promote or avoid the temperature increase inside nanoapertures. This knowledge further expands the plasmonic toolbox for temperature-controlled experiments including single molecule sensing, nanopore translocation, polymerization, or nano-optical trapping.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Benoît Rogez
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Antonin Moreau
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Julien Lumeau
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Guillaume Baffou
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| |
Collapse
|
36
|
Kotnala A, Kollipara PS, Li J, Zheng Y. Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow. NANO LETTERS 2020; 20:768-779. [PMID: 31834809 PMCID: PMC6952578 DOI: 10.1021/acs.nanolett.9b04876] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoaperture-based plasmonic tweezers have shown tremendous potential in trapping, sensing, and spectroscopic analysis of nano-objects with single-molecule sensitivity. However, the trapping process is often diffusion-limited and therefore suffers from low-throughput. Here, we present bubble- and convection-assisted trapping techniques, which use opto-thermally generated Marangoni and Rayleigh-Bénard convection flow to rapidly deliver particles from large distances to the nanoaperture instead of relying on normal diffusion, enabling a reduction of 1-2 orders of magnitude in particle-trapping time (i.e., time before a particle is trapped). At a concentration of 2 × 107 particles/mL, average particle-trapping times in bubble- and convection-assisted trapping were 7 and 18 s, respectively, compared with more than 300 s in the diffusion-limited trapping. Trapping of a single particle at an ultralow concentration of 2 × 106 particles/mL was achieved within 2-3 min, which would otherwise take several hours in the diffusion-limited trapping. With their quick delivery and local concentrating of analytes at the functional surfaces, our convection- and bubble-assisted trapping could lead to enhanced sensitivity and throughput of nanoaperture-based plasmonic sensors.
Collapse
Affiliation(s)
- Abhay Kotnala
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The university of Texas at Austin, Texas 78712, USA
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The university of Texas at Austin, Texas 78712, USA
| | - Jingang Li
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The university of Texas at Austin, Texas 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The university of Texas at Austin, Texas 78712, USA
| |
Collapse
|
37
|
Optical Trapping, Sizing, and Probing Acoustic Modes of a Small Virus. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prior opto-mechanical techniques to measure vibrational frequencies of viruses work on large ensembles of particles, whereas, in this work, individually trapped viral particles were studied. Double nanohole (DNH) apertures in a gold film were used to achieve optical trapping of one of the smallest virus particles yet reported, PhiX174, which has a diameter of 25 nm. When a laser was focused onto these DNH apertures, it created high local fields due to plasmonic enhancement, which allowed stable trapping of small particles for prolonged periods at low powers. Two techniques were performed to characterize the virus particles. The particles were sized via an established autocorrelation analysis technique, and the acoustic modes were probed using the extraordinary acoustic Raman (EAR) method. The size of the trapped particle was determined to be 25 ± 3.8 nm, which is in good agreement with the established diameter of PhiX174. A peak in the EAR signal was observed at 32 GHz, which fits well with the predicted value from elastic theory.
Collapse
|
38
|
Tan H, Hu H, Huang L, Qian K. Plasmonic tweezers for optical manipulation and biomedical applications. Analyst 2020; 145:5699-5712. [DOI: 10.1039/d0an00577k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This comprehensive minireview highlights the recent research on the subtypes, optical manipulation, and biomedical applications of plasmonic tweezers.
Collapse
Affiliation(s)
- Hongtao Tan
- Department of Pancreatobiliary Surgery
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- P. R. China
| | - Huiqian Hu
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Lin Huang
- Stem Cell Research Center
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
39
|
Zhou W, Chen M, Liu X, Zhang W, Cai F, Li F, Wu J, Wang J, Wang Y, Huang X, Lin Z, Zhou H, Meng L, Niu L, Zheng H. Selective photothermal ablation of cancer cells by patterned gold nanocages using surface acoustic waves. LAB ON A CHIP 2019; 19:3387-3396. [PMID: 31517364 DOI: 10.1039/c9lc00344d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The patterning of nanoparticles, which are promising photothermal agents, is of great importance to selectively and precisely ablate tissues by thermal effects. In this paper, we demonstrated that nano-sized gold particles (gold nanocages, AuNCS) with a hollow structure could be used to generate various wavefront patterns of surface acoustic waves (SAWs) and the aligned AuNC lines facilitated the destruction of cancer cells by the thermal effect with high spatial resolution. The hollow structure improved the acoustic sensitivity of AuNCs, making them more sensitive to the acoustic radiation force. Moreover, the multi-scale patterning of AuNCs could be achieved by the interference of multiple acoustic beams. Given the photothermal characteristics of AuNCs, selective temperature elevation within a micrometer-sized region could be realized when the patterned AuNCs were irradiated by a laser. The cancer cells where the patterned AuNCs were located were eliminated by thermal ablation, while other cells remained alive. In particular, the acoustic frequency used in this study was as low as 11. 35 MHz and was in the range of diagnostic ultrasound (less than 12 MHz), offering a potential to serve as a powerful tool in clinical applications.
Collapse
Affiliation(s)
- Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Plasmonic Tweezers towards Biomolecular and Biomedical Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With the capability of confining light into subwavelength scale, plasmonic tweezers have been used to trap and manipulate nanoscale particles. It has huge potential to be utilized in biomolecular research and practical biomedical applications. In this short review, plasmonic tweezers based on nano-aperture designs are discussed. A few challenges should be overcome for these plasmonic tweezers to reach a similar level of significance as the conventional optical tweezers.
Collapse
|
41
|
Lam MH, Briggs K, Kastritis K, Magill M, Madejski GR, McGrath JL, de Haan HW, Tabard-Cossa V. Entropic Trapping of DNA with a Nanofiltered Nanopore. ACS APPLIED NANO MATERIALS 2019; 2:4773-4781. [PMID: 32577609 PMCID: PMC7310961 DOI: 10.1021/acsanm.9b00606] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Elucidating the kinetics of DNA passage through a solid-state nanopore is a fertile field of research, and mechanisms for controlling capture, passage, and trapping of biopolymers are likely to find numerous technological applications. Here we present a nanofiltered nanopore device, which forms an entropic cage for DNA following first passage through the nanopore, trapping the translocated DNA and permitting recapture for subsequent reanalysis and investigation of kinetics of passage under confinement. We characterize the trapping properties of this nanodevice by driving individual DNA polymers into the nanoscale gap separating the nanofilter and the pore, forming an entropic cage similar to a "two pores in series" device, leaving polymers to diffuse in the cage for various time lengths, and attempting to recapture the same molecule. We show that the cage results in effectively permanent trapping when the radius of gyration of the target polymer is significantly larger than the radii of the pores in the nanofilter. We also compare translocation dynamics as a function of translocation direction in order to study the effects of confinement on DNA just prior to translocation, providing further insight into the nanopore translocation process. This nanofiltered nanopore device realizes simple fabrication of a femtoliter nanoreactor in which to study fundamental biophysics and biomolecular reactions on the single-molecule level. The device provides an electrically-permeable single-molecule trap with a higher entropic barrier to escape than previous attempts to fabricate similar structures.
Collapse
Affiliation(s)
- Michelle H. Lam
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | | | - Martin Magill
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Gregory R. Madejski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Hendrick W. de Haan
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | | |
Collapse
|
42
|
Fernandez-Cuesta I, West MM, Montinaro E, Schwartzberg A, Cabrini S. A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting. LAB ON A CHIP 2019; 19:2394-2403. [PMID: 31204419 DOI: 10.1039/c9lc00186g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plasmonic nanoantennas are ideal for single molecule detection since they nano-focus the light beyond diffraction and enhance the optical fields by several orders of magnitude. But delivering the molecules into these nanometric hot-spots is a real challenge. Here, we present a dynamic sensor, with label-free real-time detection capabilities, which can detect and count molecules and particles one by one in their native environment independently of their concentration. To this end, we have integrated a 35 nm gap plasmonic bowtie antenna with a 30 nm × 30 nm nanochannel. The channel runs through the antenna gap, and delivers the analyte directly into the hot spot. We show how the antenna probes into zeptoliter volumes inside the nanochannel by observing the dark field resonance shift during the filling process of a non-fluorescent liquid. Moreover, we detect and count single quantum dots, one by one, at ultra-high concentrations of up to 25 mg mL-1. The nano-focusing of light, reduces the observation volume in five orders of magnitude compared to the diffraction limited spot, beating the diffraction limit. These results prove the unique sensitivity of the device and in the future can be extended to detection of a variety of molecules for biomedical applications.
Collapse
|
43
|
Zaman MA, Padhy P, Hesselink L. Fokker-Planck analysis of optical near-field traps. Sci Rep 2019; 9:9557. [PMID: 31266994 PMCID: PMC6606609 DOI: 10.1038/s41598-019-45609-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 11/09/2022] Open
Abstract
The motion of a nanoparticle in the vicinity of a near-field optical trap is modeled using the Fokker-Planck equation. A plasmonic C-shaped engraving on a gold film is considered as the optical trap. The time evolution of the position probability density of the nanoparticle is calculated to analyze the trapping dynamics. A spatially varying diffusion tensor is used in the formulation to take into account the hydrodynamic interactions. The steady-state position distribution obtained from the Fokker-Planck equation is compared with experimental results and found to be in good agreement. Computational cost of the proposed method is compared with the conventionally used Langevin equation based approach. The proposed method is found to be computationally efficient (requiring 35 times less computation time) and scalable to more complex lab-on-a-chip systems.
Collapse
Affiliation(s)
| | - Punnag Padhy
- Stanford University, Electrical Engineering, Stanford, CA, 94305, USA
| | | |
Collapse
|
44
|
Ravindranath AL, Shariatdoust MS, Mathew S, Gordon R. Colloidal lithography double-nanohole optical trapping of nanoparticles and proteins. OPTICS EXPRESS 2019; 27:16184-16194. [PMID: 31163802 DOI: 10.1364/oe.27.016184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Double-nanoholes fabricated by colloidal lithography were used for trapping single colloidal particles and single proteins. A gap separation of 60 nm between the cusps of the double-nanohole was achieved in a gold film of 70 nm thickness sputter coated onglass. The cusp separation was reduced steadily down to 10 nm by plasma etching the colloidal particles prior to sputter coating. Scanning electron microscopy was used to locate a particular double-nanohole and it was registered for later microscopy experiments. 30 nm polystyrene particles, the rubisco protein and bovine serum albumin were trapped using a laser focused through the aperture. Compared to other methods that require top-down nanofabrication, this approach is inexpensive and produces high-quality samples.
Collapse
|
45
|
Raza MU, Peri SSS, Ma LC, Iqbal SM, Alexandrakis G. Self-induced back action actuated nanopore electrophoresis (SANE). NANOTECHNOLOGY 2018; 29:435501. [PMID: 30073973 DOI: 10.1088/1361-6528/aad7d1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We present a novel method to trap nanoparticles in double nanohole (DNH) nanoapertures integrated on top of solid-state nanopores (ssNP). The nanoparticles were propelled by an electrophoretic force from the cis towards the trans side of the nanopore but were trapped in the process when they reached the vicinity of the DNH-ssNP interface. The self-induced back action (SIBA) plasmonic force existing between the tips of the DNH opposed the electrophoretic force and enabled simultaneous optical and electrical sensing of a single nanoparticle for seconds. The novel SIBA actuated nanopore electrophoresis (SANE) sensor was fabricated using two-beam GFIS FIB. Firstly, Ne FIB milling was used to create the DNH features and was combined with end pointing to stop milling at the metal-dielectric interface. Subsequently, He FIB was used to drill a 25 nm nanopore through the center of the DNH. Proof of principle experiments to demonstrate the potential utility of the SANE sensor were performed with 20 nm silica and Au nanoparticles. The addition of optical trapping to electrical sensing extended translocation times by four orders of magnitude. The extended electrical measurement times revealed newly observed high frequency charge transients that were attributed to bobbing of the nanoparticle driven by the competing optical and electrical forces. Frequency analysis of this bobbing behavior hinted at the possibility of distinguishing single from multi-particle trapping events. We also discuss how SANE sensor measurement characteristics differ between silica and Au nanoparticles due to differences in their physical properties and how to estimate the charge around a nanoparticle. These measurements show promise for the SANE sensor as an enabling tool for selective detection of biomolecules and quantification of their interactions.
Collapse
Affiliation(s)
- Muhammad Usman Raza
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | | | | | | | | |
Collapse
|
46
|
Chen J, Wang S, Li X, Ng J. Mechanical effect of photonic spin-orbit interaction for a metallic nanohelix. OPTICS EXPRESS 2018; 26:27694-27704. [PMID: 30469831 DOI: 10.1364/oe.26.027694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/01/2018] [Indexed: 06/09/2023]
Abstract
Upon illumination by a circularly polarized plane wave, a nanohelix converts part of the incoming optical spin angular momentum into optical orbital angular momentum. Here, by combining partial wave analysis with band structure and eigenmode calculations, we studied the optical torque and light extinction for a gold nanohelix. It is found that spin-orbital angular momentum conversion is a necessary condition for inducing recoil optical torque, but not for light extinction. In other words, a particle can have a large light extinction cross section but not a strong torque, or vice versa. Our calculation also shows that broad frequency band negative optical torque can also exist in a nanohelix, which possesses screw-axis symmetry.
Collapse
|
47
|
Yoo D, Gurunatha KL, Choi HK, Mohr DA, Ertsgaard CT, Gordon R, Oh SH. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. NANO LETTERS 2018; 18:3637-3642. [PMID: 29763566 DOI: 10.1021/acs.nanolett.8b00732] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.
Collapse
Affiliation(s)
- Daehan Yoo
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Kargal L Gurunatha
- Department of Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Han-Kyu Choi
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Daniel A Mohr
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christopher T Ertsgaard
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Reuven Gordon
- Department of Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
48
|
Yoon SJ, Lee J, Han S, Kim CK, Ahn CW, Kim MK, Lee YH. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources. Nat Commun 2018; 9:2218. [PMID: 29880791 PMCID: PMC5992221 DOI: 10.1038/s41467-018-04689-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/16/2018] [Indexed: 11/08/2022] Open
Abstract
Detection of single nanoparticles or molecules has often relied on fluorescent schemes. However, fluorescence detection approaches limit the range of investigable nanoparticles or molecules. Here, we propose and demonstrate a non-fluorescent nanoscopic trapping and monitoring platform that can trap a single sub-5-nm particle and monitor it with a pair of floating nonlinear point sources. The resonant photon funnelling into an extremely small volume of ~5 × 5 × 7 nm3 through the three-dimensionally tapered 5-nm-gap plasmonic nanoantenna enables the trapping of a 4-nm CdSe/ZnS quantum dot with low intensity of a 1560-nm continuous-wave laser, and the pumping of 1560-nm femtosecond laser pulses creates strong background-free second-harmonic point illumination sources at the two vertices of the nanoantenna. Under the stable trapping conditions, intermittent but intense nonlinear optical spikes are observed on top of the second-harmonic signal plateau, which is identified as the 3.0-Hz Kramers hopping of the quantum dot trapped in the 5-nm gap.
Collapse
Affiliation(s)
- Seung Ju Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jungmin Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Sangyoon Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Chang-Kyu Kim
- Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung, 15073, South Korea
| | - Chi Won Ahn
- KAIST, National NanoFab Center (NNFC), Daejeon, 341401, South Korea
| | - Myung-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea.
| | - Yong-Hee Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| |
Collapse
|
49
|
Hacohen N, Ip CJX, Gordon R. Analysis of Egg White Protein Composition with Double Nanohole Optical Tweezers. ACS OMEGA 2018; 3:5266-5272. [PMID: 31458737 PMCID: PMC6641915 DOI: 10.1021/acsomega.8b00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/03/2018] [Indexed: 05/21/2023]
Abstract
We use a double nanohole optical tweezer to analyze the protein composition of egg white through analysis of many individual protein trapping events. The proteins are grouped by mass based on two metrics: standard deviation of the trapping laser intensity fluctuations from the protein diffusion and the time constant of these fluctuations coming from the autocorrelation. Quantitative analysis is demonstrated for artificial samples, and then, the approach is applied to real egg white. The composition found from real egg white corresponds well to past reports using gel electrophoresis. This approach differs from past works by allowing for individual protein analysis in heterogeneous solutions without the need for denaturing, labeling, or tethering.
Collapse
Affiliation(s)
- Noa Hacohen
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Candice J X Ip
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Reuven Gordon
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
50
|
Jiang B, Dai H, Zou Y, Chen X. Continuous detection of micro-particles by fiber Bragg grating Fabry-Pérot flow cytometer. OPTICS EXPRESS 2018; 26:12579-12584. [PMID: 29801296 DOI: 10.1364/oe.26.012579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
A novel method to detect different sizes of micro-particles using a fiber Bragg grating Fabry-Pérot (FBG-FP) flow cytometer is presented. The chip is composed of a FBG-FP cavity integrated in a microfluidic channel. Solution with three different sizes of polystyrene particles flowing through the channel induces variations in the transmission spectrum of the FBG-FP cavity. Theoretical and experimental data show that different sizes of particles reveal different resonant wavelengths with a good resonance shift sensitivity of 10-5. Additionally, the chip is easy to fabricate and features with non-contact and label-free operation. This study demonstrates a promising potential of the FBG-FP flow cytometer in medical and biological sensing.
Collapse
|