1
|
Li P, Bera S, Kumar-Saxena S, Pecht I, Sheves M, Cahen D, Selzer Y. Electron transport through two interacting channels in Azurin-based solid-state junctions. Proc Natl Acad Sci U S A 2024; 121:e2405156121. [PMID: 39110736 PMCID: PMC11331140 DOI: 10.1073/pnas.2405156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
The fundamental question of "what is the transport path of electrons through proteins?" initially introduced while studying long-range electron transfer between localized redox centers in proteins in vivo is also highly relevant to the transport properties of solid-state, dry metal-protein-metal junctions. Here, we report conductance measurements of such junctions, Au-(Azurin monolayer ensemble)-Bismuth (Bi) ones, with well-defined nanopore geometry and ~103 proteins/pore. Our results can be understood as follows. (1) Transport is via two interacting conducting channels, characterized by different spatial and time scales. The slow and spatially localized channel is associated with the Cu center of Azurin and the fast delocalized one with the protein's polypeptide matrix. Transport via the slow channel is by a sequential (noncoherent) process and in the second one by direct, off-resonant tunneling. (2) The two channels are capacitively coupled. Thus, with a change in charge occupation of the weakly coupled (metal center) channel, the broad energy level manifold, responsible for off-resonance tunneling, shifts, relative to the electrodes' Fermi levels. In this process, the off-resonance (fast) channel dominates transport, and the slow (redox) channel, while contributing only negligibly directly, significantly affects transport by intramolecular gating.
Collapse
Affiliation(s)
- Ping’an Li
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| | - Sudipta Bera
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Shailendra Kumar-Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur603203, Tamil Nadu, India
| | - Israel Pecht
- Department of Regenerative Biology and Immunology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - David Cahen
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Yoram Selzer
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
2
|
Hayakawa R, Wakayama Y. Vertical molecular transistors: a new strategy towards practical quantum devices. NANOTECHNOLOGY 2023; 34:502002. [PMID: 37800179 DOI: 10.1088/1361-6528/acfb0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Considerable effort has been dedicated to improving molecular devices since they were initially proposed by Aviram and Ratner in 1974. Organic molecules are small and have discrete molecular orbitals. These features can facilitate fascinating quantum transport phenomena, such as single-carrier tunneling, resonant tunneling, and quantum interference. The effective gate modulation of these quantum transport phenomena holds the promise of realizing a new computing architecture that differs from that of current Si electronics. In this article, we review the recent research progress on molecular transistors, specifically vertical molecular transistors (VMTs). First, we discuss the benefits of VMTs for future molecular-scale transistors compared with the currently dominant lateral molecular transistors. Subsequently, we describe representative examples of VMTs, where single molecules, self-assembled monolayers, and isolated molecules are used as transistor channels. Finally, we present our conclusions and perspectives about the use of VMTs for attractive quantum devices.
Collapse
Affiliation(s)
- Ryoma Hayakawa
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yutaka Wakayama
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
3
|
Li C, Kaspar C, Zhou P, Liu JC, Chahib O, Glatzel T, Häner R, Aschauer U, Decurtins S, Liu SX, Thoss M, Meyer E, Pawlak R. Strong signature of electron-vibration coupling in molecules on Ag(111) triggered by tip-gated discharging. Nat Commun 2023; 14:5956. [PMID: 37749099 PMCID: PMC10519934 DOI: 10.1038/s41467-023-41601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/05/2023] [Indexed: 09/27/2023] Open
Abstract
Electron-vibration coupling is of critical importance for the development of molecular electronics, spintronics, and quantum technologies, as it affects transport properties and spin dynamics. The control over charge-state transitions and subsequent molecular vibrations using scanning tunneling microscopy typically requires the use of a decoupling layer. Here we show the vibronic excitations of tetrabromotetraazapyrene (TBTAP) molecules directly adsorbed on Ag(111) into an orientational glassy phase. The electron-deficient TBTAP is singly-occupied by an electron donated from the substrate, resulting in a spin 1/2 state, which is confirmed by a Kondo resonance. The TBTAP•- discharge is controlled by tip-gating and leads to a series of peaks in scanning tunneling spectroscopy. These occurrences are explained by combining a double-barrier tunneling junction with a Franck-Condon model including molecular vibrational modes. This work demonstrates that suitable precursor design enables gate-dependent vibrational excitations of molecules on a metal, thereby providing a method to investigate electron-vibration coupling in molecular assemblies without a decoupling layer.
Collapse
Affiliation(s)
- Chao Li
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.
| | - Christoph Kaspar
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg, Germany
| | - Ping Zhou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Jung-Ching Liu
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Outhmane Chahib
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ulrich Aschauer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, University of Freiburg, Hermann-Herder-Str. 3, 79104, Freiburg, Germany
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.
| | - Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.
| |
Collapse
|
4
|
Zhang J, Qian L, Barin GB, Daaoub AHS, Chen P, Müllen K, Sangtarash S, Ruffieux P, Fasel R, Sadeghi H, Zhang J, Calame M, Perrin ML. Contacting individual graphene nanoribbons using carbon nanotube electrodes. NATURE ELECTRONICS 2023; 6:572-581. [PMID: 37636241 PMCID: PMC10449622 DOI: 10.1038/s41928-023-00991-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/09/2023] [Indexed: 08/29/2023]
Abstract
Graphene nanoribbons synthesized using bottom-up approaches can be structured with atomic precision, allowing their physical properties to be precisely controlled. For applications in quantum technology, the manipulation of single charges, spins or photons is required. However, achieving this at the level of single graphene nanoribbons is experimentally challenging due to the difficulty of contacting individual nanoribbons, particularly on-surface synthesized ones. Here we report the contacting and electrical characterization of on-surface synthesized graphene nanoribbons in a multigate device architecture using single-walled carbon nanotubes as the electrodes. The approach relies on the self-aligned nature of both nanotubes, which have diameters as small as 1 nm, and the nanoribbon growth on their respective growth substrates. The resulting nanoribbon-nanotube devices exhibit quantum transport phenomena-including Coulomb blockade, excited states of vibrational origin and Franck-Condon blockade-that indicate the contacting of individual graphene nanoribbons.
Collapse
Affiliation(s)
- Jian Zhang
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Liu Qian
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Gabriela Borin Barin
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | | | - Peipei Chen
- Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Pascal Ruffieux
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Hatef Sadeghi
- School of Engineering, University of Warwick, Coventry, UK
| | - Jin Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Michel Calame
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Mickael L. Perrin
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Quantum Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
6
|
Bian X, Chen Z, Sowa JK, Evangeli C, Limburg B, Swett JL, Baugh J, Briggs GAD, Anderson HL, Mol JA, Thomas JO. Charge-State Dependent Vibrational Relaxation in a Single-Molecule Junction. PHYSICAL REVIEW LETTERS 2022; 129:207702. [PMID: 36462006 DOI: 10.1103/physrevlett.129.207702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
The outcome of an electron-transfer process is determined by the quantum-mechanical interplay between electronic and vibrational degrees of freedom. Nonequilibrium vibrational dynamics are known to direct electron-transfer mechanisms in molecular systems; however, the structural features of a molecule that lead to certain modes being pushed out of equilibrium are not well understood. Herein, we report on electron transport through a porphyrin dimer molecule, weakly coupled to graphene electrodes, that displays sequential tunneling within the Coulomb-blockade regime. The sequential transport is initiated by current-induced phonon absorption and proceeds by rapid sequential transport via a nonequilibrium vibrational distribution of low-energy modes, likely related to torsional molecular motions. We demonstrate that this is an experimental signature of slow vibrational dissipation, and obtain a lower bound for the vibrational relaxation time of 8 ns, a value dependent on the molecular charge state.
Collapse
Affiliation(s)
- Xinya Bian
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Zhixin Chen
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Jakub K Sowa
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | - Bart Limburg
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jacob L Swett
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Jonathan Baugh
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - G Andrew D Briggs
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jan A Mol
- School of Physical and Chemical Sciences, Queen Mary University, London E1 4NS, United Kingdom
| | - James O Thomas
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
7
|
Pei T, Thomas JO, Sopp S, Tsang MY, Dotti N, Baugh J, Chilton NF, Cardona-Serra S, Gaita-Ariño A, Anderson HL, Bogani L. Exchange-induced spin polarization in a single magnetic molecule junction. Nat Commun 2022; 13:4506. [PMID: 35922414 PMCID: PMC9349289 DOI: 10.1038/s41467-022-31909-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Many spintronic devices rely on the presence of spin-polarized currents at zero magnetic field. This is often obtained by spin exchange-bias, where an element with long-range magnetic order creates magnetized states and displaces the hysteresis loop. Here we demonstrate that exchange-split spin states are observable and usable in the smallest conceivable unit: a single magnetic molecule. We use a redox-active porphyrin as a transport channel, coordinating a dysprosium-based single-molecule-magnet inside a graphene nano-gap. Single-molecule transport in magnetic field reveals the existence of exchange-split channels with different spin-polarizations that depend strongly on the field orientation, and comparison with the diamagnetic isostructural compound and milikelvin torque magnetometry unravels the role of the single-molecule anisotropy and the molecular orientation. These results open a path to using spin-exchange in molecular electronics, and offer a method to quantify the internal spin structure of single molecules in multiple oxidation states. The spin exchange, which is central to spintronics, has been restricted to devices with long-range magnetic ordering to date. Here, Pei et al. design a single-molecule-magnet and utilize its internal spin exchange to control the current through a single-molecule junction with high spin polarization (>95%).
Collapse
Affiliation(s)
- Tian Pei
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - James O Thomas
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK.,Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Simen Sopp
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Ming-Yee Tsang
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Nicola Dotti
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Jonathan Baugh
- Institute for Quantum Computing, University of Waterloo, 200 University Ave., N2L 3G1, Waterloo, ON, Canada
| | - Nicholas F Chilton
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Salvador Cardona-Serra
- Instituto de Ciencia Molecular, Universidad de València, 2 C/Catedrático José Beltrán, Paterna, Valencia, Spain
| | - Alejandro Gaita-Ariño
- Instituto de Ciencia Molecular, Universidad de València, 2 C/Catedrático José Beltrán, Paterna, Valencia, Spain
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Lapo Bogani
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK.
| |
Collapse
|
8
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
9
|
Du S, Hashikawa Y, Ito H, Hashimoto K, Murata Y, Hirayama Y, Hirakawa K. Inelastic Electron Transport and Ortho-Para Fluctuation of Water Molecule in H 2O@C 60 Single Molecule Transistors. NANO LETTERS 2021; 21:10346-10353. [PMID: 34854686 DOI: 10.1021/acs.nanolett.1c03604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light molecules such as H2O are the systems in which we can have access to quantum mechanical information on their constituent atoms. Here, we have investigated electron transport through H2O@C60 single molecule transistors (SMTs). The H2O@C60 SMTs exhibit Coulomb stability diagrams that show multiple tunneling-induced excited states below 30 meV. Furthermore, we have performed terahertz (THz) photocurrent spectroscopy on H2O@C60 SMTs and confirmed the same excitations. From comparison between experiment and theory, the excitations observed below 10 meV are identified to be the quantum rotational excitations of the water molecule. Surprisingly, the quantum rotational excitations of both para- and ortho-water molecule are observed simultaneously even for a single water molecule, indicating that the fluctuation between the ortho- and para-water states takes place in a time scale shorter than our measurement time (∼1 min), probably by the interaction between the encapsulated water molecule and conducting electrons.
Collapse
Affiliation(s)
- Shaoqing Du
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Haruka Ito
- Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Katsushi Hashimoto
- Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
- Centre for Spintronics Research Network, Tohoku University, Sendai 980-8578, Japan
- Center for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, Sendai 980-8577, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshiro Hirayama
- Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
- Centre for Spintronics Research Network, Tohoku University, Sendai 980-8578, Japan
- Center for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, Sendai 980-8577, Japan
| | - Kazuhiko Hirakawa
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
10
|
Deghi SE, Fernández-Alcázar LJ, Pastawski HM, Bustos-Marún RA. Current-induced forces in single-resonance systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:175303. [PMID: 33530077 DOI: 10.1088/1361-648x/abe266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
In recent years, there has been an increasing interest in nanoelectromechanical devices, current-driven quantum machines, and the mechanical effects of electric currents on nanoscale conductors. Here, we carry out a thorough study of the current-induced forces and the electronic friction of systems whose electronic effective Hamiltonian can be described by an archetypal model, a single energy level coupled to two reservoirs. Our results can help better understand the general conditions that maximize the performance of different devices modeled as a quantum dot coupled to two electronic reservoirs. Additionally, they can be useful to rationalize the role of current-induced forces in the mechanical deformation of one-dimensional conductors.
Collapse
Affiliation(s)
- Sebastián E Deghi
- Instituto de Física Enrique Gaviola and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Lucas J Fernández-Alcázar
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, CT-06459, United States of America
| | - Horacio M Pastawski
- Instituto de Física Enrique Gaviola and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Raúl A Bustos-Marún
- Instituto de Física Enrique Gaviola and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| |
Collapse
|
11
|
Jahangiri S, Arrazola JM, Delgado A. Quantum Algorithm for Simulating Single-Molecule Electron Transport. J Phys Chem Lett 2021; 12:1256-1261. [PMID: 33497214 DOI: 10.1021/acs.jpclett.0c03724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An accurate description of electron transport at a molecular level requires a precise treatment of quantum effects. These effects play a crucial role in determining the electron transport properties of single molecules, which can be challenging to simulate classically. Here we introduce a quantum algorithm to efficiently calculate electronic current through single-molecule junctions in the weak-coupling regime. We show that a quantum computer programmed to simulate vibronic transitions between different charge states of a molecule can be used to compute electron-transfer rates and electronic current. In the harmonic approximation, the algorithm can be implemented using Gaussian boson sampling devices, which are a near-term platform for photonic quantum computing. We apply the algorithm to simulate the current and conductance of a magnesium porphine molecule. The algorithm provides a means for better understanding the mechanism of electron transport at a molecular level, which paves the way for building practical molecular electronic devices.
Collapse
|
12
|
Bachellier N, Verlhac B, Garnier L, Zaldívar J, Rubio-Verdú C, Abufager P, Ormaza M, Choi DJ, Bocquet ML, Pascual JI, Lorente N, Limot L. Vibron-assisted spin excitation in a magnetically anisotropic molecule. Nat Commun 2020; 11:1619. [PMID: 32238814 PMCID: PMC7113279 DOI: 10.1038/s41467-020-15266-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
The electrical control and readout of molecular spin states are key for high-density storage. Expectations are that electrically-driven spin and vibrational excitations in a molecule should give rise to new conductance features in the presence of magnetic anisotropy, offering alternative routes to study and, ultimately, manipulate molecular magnetism. Here, we use inelastic electron tunneling spectroscopy to promote and detect the excited spin states of a prototypical molecule with magnetic anisotropy. We demonstrate the existence of a vibron-assisted spin excitation that can exceed in energy and in amplitude a simple excitation among spin states. This excitation, which can be quenched by structural changes in the magnetic molecule, is explained using first-principles calculations that include dynamical electronic correlations.
Collapse
Affiliation(s)
- N Bachellier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - B Verlhac
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| | - L Garnier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - J Zaldívar
- CIC nanoGUNE, 20018, Donostia-San Sebastián, Spain
| | | | - P Abufager
- Instituto de Física de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Av. Pellegrini 250 (2000), Rosario, Argentina
| | - M Ormaza
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
- Universidad del País Vasco, Dpto. Física Aplicada I, 20018, Donostia-San Sebastián, Spain
| | - D-J Choi
- Centro de Física de Materiales (CFM MPC) CSIC-EHU, 20018, Donostia-San San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - M-L Bocquet
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Universités, CNRS, 24 Rue Lhomond, 75005, Paris, France
| | - J I Pascual
- CIC nanoGUNE, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - N Lorente
- Centro de Física de Materiales (CFM MPC) CSIC-EHU, 20018, Donostia-San San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - L Limot
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| |
Collapse
|
13
|
Kendrick WJ, Jirásek M, Peeks MD, Greetham GM, Sazanovich IV, Donaldson PM, Towrie M, Parker AW, Anderson HL. Mechanisms of IR amplification in radical cation polarons. Chem Sci 2020; 11:2112-2120. [PMID: 34123299 PMCID: PMC8150116 DOI: 10.1039/c9sc05717j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022] Open
Abstract
Break down of the Born-Oppenheimer approximation is caused by mixing of electronic and vibrational transitions in the radical cations of some conjugated polymers, resulting in unusually intense vibrational bands known as infrared active vibrations (IRAVs). Here, we investigate the mechanism of this amplification, and show that it provides insights into intramolecular charge migration. Spectroelectrochemical time-resolved infrared (TRIR) and two-dimensional infrared (2D-IR) spectroscopies were used to investigate the radical cations of two butadiyne-linked conjugated porphyrin oligomers, a linear dimer and a cyclic hexamer. The 2D-IR spectra reveal strong coupling between all the IRAVs and the electronic π-π* polaron band. Intramolecular vibrational energy redistribution (IVR) and vibrational relaxation occur within ∼0.1-7 ps. TRIR spectra show that the transient ground state bleach (GSB) and excited state absorption (ESA) signals have anisotropies of 0.31 ± 0.07 and 0.08 ± 0.04 for the linear dimer and cyclic hexamer cations, respectively. The small TRIR anisotropy for the cyclic hexamer radical cation indicates that the vibrationally excited polaron migrates round the nanoring on a time scale faster than the measurement, i.e. within 0.5 ps, at 298 K. Density functional theory (DFT) calculations qualitatively reproduce the emergence of the IRAVs. The first singlet (S1) excited states of the neutral porphyrin oligomers exhibit similar IRAVs to the radical cations, implying that the excitons have similar electronic structures to polarons. Our results show that IRAVs originate from the strong coupling of charge redistribution to nuclear motion, and from the similar energies of electronic and vibrational transitions.
Collapse
Affiliation(s)
- William J Kendrick
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Michael Jirásek
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Martin D Peeks
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Paul M Donaldson
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| |
Collapse
|
14
|
Schaeverbeke Q, Avriller R, Frederiksen T, Pistolesi F. Single-Photon Emission Mediated by Single-Electron Tunneling in Plasmonic Nanojunctions. PHYSICAL REVIEW LETTERS 2019; 123:246601. [PMID: 31922843 DOI: 10.1103/physrevlett.123.246601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 05/24/2023]
Abstract
Recent scanning tunneling microscopy (STM) experiments reported single-molecule fluorescence induced by tunneling currents in the nanoplasmonic cavity formed by the STM tip and the substrate. The electric field of the cavity mode couples with the current-induced charge fluctuations of the molecule, allowing the excitation of photons. We investigate theoretically this system for the experimentally relevant limit of large damping rate κ for the cavity mode and arbitrary coupling strength to a single-electronic level. We find that for bias voltages close to the first inelastic threshold of photon emission, the emitted light displays antibunching behavior with vanishing second-order photon correlation function. At the same time, the current and the intensity of emitted light display Franck-Condon steps at multiples of the cavity frequency ω_{c} with a width controlled by κ rather than the temperature T. For large bias voltages, we predict strong photon bunching of the order of κ/Γ where Γ is the electronic tunneling rate. Our theory thus predicts that strong coupling to a single level allows current-driven nonclassical light emission.
Collapse
Affiliation(s)
- Q Schaeverbeke
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
- Donostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain
| | - R Avriller
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| | - T Frederiksen
- Donostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| | - F Pistolesi
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
| |
Collapse
|
15
|
Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat Commun 2019; 10:4628. [PMID: 31604934 PMCID: PMC6789103 DOI: 10.1038/s41467-019-12625-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/20/2019] [Indexed: 11/24/2022] Open
Abstract
Off-resonant charge transport through molecular junctions has been extensively studied since the advent of single-molecule electronics and is now well understood within the framework of the non-interacting Landauer approach. Conversely, gaining a qualitative and quantitative understanding of the resonant transport regime has proven more elusive. Here, we study resonant charge transport through graphene-based zinc-porphyrin junctions. We experimentally demonstrate an inadequacy of non-interacting Landauer theory as well as the conventional single-mode Franck–Condon model. Instead, we model overall charge transport as a sequence of non-adiabatic electron transfers, with rates depending on both outer and inner-sphere vibrational interactions. We show that the transport properties of our molecular junctions are determined by a combination of electron–electron and electron-vibrational coupling, and are sensitive to interactions with the wider local environment. Furthermore, we assess the importance of nuclear tunnelling and examine the suitability of semi-classical Marcus theory as a description of charge transport in molecular devices. The mechanism of nonadiabatic electron transfer in molecular systems is an important research topic for understanding various chemical reactions. Thomas et al. quantify resonant charge transport through single-molecule junctions as a model system for examining quantum and Marcus theories.
Collapse
|
16
|
Roy-Gobeil A, Miyahara Y, Bevan KH, Grutter P. Fully Quantized Electron Transfer Observed in a Single Redox Molecule at a Metal Interface. NANO LETTERS 2019; 19:6104-6108. [PMID: 31429580 DOI: 10.1021/acs.nanolett.9b02032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Long-range electron transfer is a ubiquitous process that plays an important role in electrochemistry, biochemistry, organic electronics, and single molecule electronics. Fundamentally, quantum mechanical processes, at their core, manifest through both electron tunneling and the associated transition between quantized nuclear vibronic states (intramolecular vibrational relaxation) mediated by electron-nuclear coupling. Here, we report on measurements of long-range electron transfer at the interface between a single ferrocene molecule and a gold substrate separated by a hexadecanethiol quantum tunneling barrier. These redox measurements exhibit quantized nuclear transitions mediated by electron-nuclear coupling at 4.7 K in vacuum. By detecting the electric force associated with redox events by atomic force microscopy (AFM), with increasing AFM oscillation amplitude, the intensity of the observed cantilever resonance frequency shift peak increases and then exhibits a series of discrete steps that are indicative of quantized nuclear transitions. The observed peak shapes agree well with a single-electron tunneling model with quantized nuclear state transitions associated with the conversion of the molecule between oxidized and reduced electronic states. This technique opens the door to simultaneously investigating quantized electron and nuclear dynamics in a diverse range of systems.
Collapse
Affiliation(s)
- Antoine Roy-Gobeil
- Department of Physics , McGill University , 3600 rue University , Montreal , Quebec H3A 2T8 , Canada
| | - Yoichi Miyahara
- Department of Physics , McGill University , 3600 rue University , Montreal , Quebec H3A 2T8 , Canada
| | - Kirk H Bevan
- Division of Materials Engineering, Faculty of Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Peter Grutter
- Department of Physics , McGill University , 3600 rue University , Montreal , Quebec H3A 2T8 , Canada
| |
Collapse
|
17
|
Limburg B, Thomas JO, Sowa JK, Willick K, Baugh J, Gauger EM, Briggs GAD, Mol JA, Anderson HL. Charge-state assignment of nanoscale single-electron transistors from their current-voltage characteristics. NANOSCALE 2019; 11:14820-14827. [PMID: 31355401 DOI: 10.1039/c9nr03754c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The electronic and magnetic properties of single-molecule transistors depend critically on the molecular charge state. Charge transport in single-molecule transistors is characterized by Coulomb-blocked regions in which the charge state of the molecule is fixed and current is suppressed, separated by high-conductance, sequential-tunneling regions. It is often difficult to assign the charge state of the molecular species in each Coulomb-blocked region due to variability in the work-function of the electrodes. In this work, we provide a simple and fast method to assign the charge state of the molecular species in the Coulomb-blocked regions based on signatures of electron-phonon coupling together with the Pauli-exclusion principle, simply by observing the asymmetry in the current in high-conductance regions of the stability diagram. We demonstrate that charge-state assignments determined in this way are consistent with those obtained from measurements of Zeeman splittings. Our method is applicable at 77 K, in contrast to magnetic-field-dependent measurements, which generally require low temperatures (below 4 K). Due to the ubiquity of electron-phonon coupling in molecular junctions, we expect this method to be widely applicable to single-electron transistors based on single molecules and graphene quantum dots. The correct assignment of charge states allows researchers to better understand the fundamental charge-transport properties of single-molecule transistors.
Collapse
Affiliation(s)
- Bart Limburg
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fu B, Hsu LY. Photoinduced anomalous Coulomb blockade and the role of triplet states in electron transport through an irradiated molecular transistor. II. Effects of electron-phonon coupling and vibrational relaxation. J Chem Phys 2019. [DOI: 10.1063/1.5112095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bo Fu
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60201, USA
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
19
|
Xiong Y, Luo S, Huang H, Ma Y, Zhang X. Exchange-dependent spin polarized transport and phase transition in a triple monomer molecule. Phys Chem Chem Phys 2019; 21:11158-11167. [PMID: 31095151 DOI: 10.1039/c9cp01350d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular junctions contribute significantly to the fundamental understanding of the quantum information technologies in molecular spintronics. In this paper, with the aid of the state of the art numerical renormalization group method, we find a triple monomer molecule structure with strong electron-electron interactions could be a potential candidate for a multifunctional spin polarizer when an external magnetic field along the z axis is applied. It is demonstrated that the polarizing scenarios depend closely on the inter-orbital exchange couplings, and results in several kinds of spin polarizers, e.g., the unidirectional, the bidirectional, the dual, and the ternary spin polarizers. We show in detail the related phase diagram, and conclude the Zeeman effect and the charge switching for the bonding, anti-bonding and non-bonding orbitals are responsible for the spin polarizing transport. We stress even when the energy levels are chosen beyond the Kondo regime, the structure still shows a promising platform for molecular spintronics components.
Collapse
Affiliation(s)
- Yongchen Xiong
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Shijun Luo
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Haiming Huang
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Yanan Ma
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Xiong Zhang
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| |
Collapse
|
20
|
de Bruijckere J, Gehring P, Palacios-Corella M, Clemente-León M, Coronado E, Paaske J, Hedegård P, van der Zant HSJ. Ground-State Spin Blockade in a Single-Molecule Junction. PHYSICAL REVIEW LETTERS 2019; 122:197701. [PMID: 31144938 DOI: 10.1103/physrevlett.122.197701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/21/2019] [Indexed: 05/19/2023]
Abstract
It is known that the quantum mechanical ground state of a nanoscale junction has a significant impact on its electrical transport properties. This becomes particularly important in transistors consisting of a single molecule. Because of strong electron-electron interactions and the possibility of accessing ground states with high spins, these systems are eligible hosts of a current-blockade phenomenon called a ground-state spin blockade. This effect arises from the inability of a charge carrier to account for the spin difference required to enter the junction, as that process would violate the spin selection rules. Here, we present a direct experimental demonstration of a ground-state spin blockade in a high-spin single-molecule transistor. The measured transport characteristics of this device exhibit a complete suppression of resonant transport due to a ground-state spin difference of 3/2 between subsequent charge states. Strikingly, the blockade can be reversibly lifted by driving the system through a magnetic ground-state transition in one charge state, using the tunability offered by both magnetic and electric fields.
Collapse
Affiliation(s)
- J de Bruijckere
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - P Gehring
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - M Palacios-Corella
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - M Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - E Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - J Paaske
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - P Hedegård
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - H S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
21
|
Tian G, Sun D, Zhang Y, Yu X. Franck–Condon Blockade and Aggregation‐Modulated Conductance in Molecular Devices Using Aggregation‐Induced Emission‐Active Molecules. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
| | - Dexian Sun
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
| | - Yaogang Zhang
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of Physics and Department of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of Physics and Department of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
22
|
Tian G, Sun D, Zhang Y, Yu X. Franck–Condon Blockade and Aggregation‐Modulated Conductance in Molecular Devices Using Aggregation‐Induced Emission‐Active Molecules. Angew Chem Int Ed Engl 2019; 58:5951-5955. [DOI: 10.1002/anie.201900731] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
| | - Dexian Sun
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
| | - Yaogang Zhang
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of Physics and Department of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of Physics and Department of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
23
|
Shishkov VY, Andrianov ES, Pukhov AA, Vinogradov AP, Lisyansky AA. Enhancement of the Raman Effect by Infrared Pumping. PHYSICAL REVIEW LETTERS 2019; 122:153905. [PMID: 31050521 DOI: 10.1103/physrevlett.122.153905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/09/2023]
Abstract
We propose a method for increasing Raman scattering from an ensemble of molecules by up to 4 orders of magnitude. Our method requires an additional coherent source of IR radiation with the half-frequency of the Stokes shift. This radiation excites the molecule electronic subsystem that in turn, via Fröhlich coupling, parametrically excites nuclear oscillations at a resonant frequency. This motion is coherent and leads to a boost of the Raman signal in comparison to the spontaneous signal because its intensity is proportional to the squared number of molecules in the illuminated volume.
Collapse
Affiliation(s)
- V Yu Shishkov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moskow 127055, Russia and Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141700, Moscow region, Russia
- Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
| | - E S Andrianov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moskow 127055, Russia and Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141700, Moscow region, Russia
| | - A A Pukhov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moskow 127055, Russia and Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141700, Moscow region, Russia
- Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
| | - A P Vinogradov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moskow 127055, Russia and Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141700, Moscow region, Russia
- Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
| | - A A Lisyansky
- Department of Physics, Queens College of the City University of New York, Flushing, New York 11367, USA and The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
24
|
Cornia A, Mannini M, Sessoli R, Gatteschi D. Propeller-Shaped Fe4
and Fe3
M Molecular Nanomagnets: A Journey from Crystals to Addressable Single Molecules. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801266] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea Cornia
- Department of Chemical and Geological Sciences and INSTM Research Unit; University of Modena and Reggio Emilia; 41125 Modena Italy
| | - Matteo Mannini
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
| | - Roberta Sessoli
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
- Research Area Firenze; Istituto di Chimica dei Composti Organometallici - ICCOM-CNR; 50019 Sesto Fiorentino (FI) Italy
| | - Dante Gatteschi
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
25
|
Le Roy JJ, Cremers J, Thomlinson IA, Slota M, Myers WK, Horton PH, Coles SJ, Anderson HL, Bogani L. Tailored homo- and hetero- lanthanide porphyrin dimers: a synthetic strategy for integrating multiple spintronic functionalities into a single molecule. Chem Sci 2018; 9:8474-8481. [PMID: 30568771 PMCID: PMC6256854 DOI: 10.1039/c8sc03762k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/17/2018] [Indexed: 01/24/2023] Open
Abstract
We present molecular magnetic systems that contain all elements necessary for spin-valve control in molecular spintronic devices in a single molecule.
We present the design, synthesis and magnetic properties of molecular magnetic systems that contain all elements necessary for spin-valve control in molecular spintronic devices in a single molecule. We investigate the static and dynamic magnetic properties and quantum spin properties of butadiyne-linked homo- and hetero-nuclear lanthanide-porphyrin dimers. A heterometallated porphyrin dimer containing both TbIII and DyIII centres is created rationally by the stepwise oxidative homocoupling of distinct lanthanide-porphyrin monomers. TbIII and DyIII mononuclear porphyrin complexes, homodimers and heterodimers all exhibit slow magnetic relaxation below 10 kelvin under a static magnetic field. The coherence times for GdIII porphyrin monomers and dimers are found to be in excess of 3.0 μs at 2 K, allowing distinct magnetic manipulations in low temperature transport experiments.
Collapse
Affiliation(s)
- Jennifer J Le Roy
- Department of Materials , University of Oxford , 16 Parks Rd , OX1 3PH , Oxford , UK .
| | - Jonathan Cremers
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Mansfield Road , Oxford OX1 3TA , UK
| | - Isabel A Thomlinson
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Mansfield Road , Oxford OX1 3TA , UK
| | - Michael Slota
- Department of Materials , University of Oxford , 16 Parks Rd , OX1 3PH , Oxford , UK .
| | - William K Myers
- Centre for Advanced ESR , Department of Chemistry , University of Oxford , Inorganic Chemistry Laboratory , South Parks Road , Oxford , OX1 3QR , UK
| | - Peter H Horton
- National Crystallography Service , School of Chemistry , University of Southampton , Southampton , SO17 1BJ , UK
| | - Simon J Coles
- National Crystallography Service , School of Chemistry , University of Southampton , Southampton , SO17 1BJ , UK
| | - Harry L Anderson
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Mansfield Road , Oxford OX1 3TA , UK
| | - Lapo Bogani
- Department of Materials , University of Oxford , 16 Parks Rd , OX1 3PH , Oxford , UK .
| |
Collapse
|
26
|
Xin N, Li X, Jia C, Gong Y, Li M, Wang S, Zhang G, Yang J, Guo X. Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. Angew Chem Int Ed Engl 2018; 57:14026-14031. [PMID: 30215882 DOI: 10.1002/anie.201807465] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 11/06/2022]
Abstract
Achieving gate control with atomic precision, which is crucial to the transistor performance on the smallest scale, remains a challenge. Herein we report a new class of aromatic-ring molecular nanotransistors based on graphene-molecule-graphene single-molecule junctions by using an ionic-liquid gate. Experimental phenomena and theoretical calculations confirm that this ionic-liquid gate can effectively modulate the alignment between molecular frontier orbitals and the Fermi energy level of graphene electrodes, thus tuning the charge-transport properties of the junctions. In addition, with a small gate voltage (|VG |≤1.5 V) ambipolar charge transport in electrochemically inactive molecular systems (EG >3.5 eV) is realized. These results offer a useful way to build high-performance single-molecule transistors, thus promoting the prospects for molecularly engineered electronic devices.
Collapse
Affiliation(s)
- Na Xin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yao Gong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingliang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shuopei Wang
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Guangyu Zhang
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
27
|
Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Bevan KH, Roy-Gobeil A, Miyahara Y, Grutter P. Relating Franck-Condon blockade to redox chemistry in the single-particle picture. J Chem Phys 2018; 149:104109. [DOI: 10.1063/1.5043480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kirk H. Bevan
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Antoine Roy-Gobeil
- Department of Physics, McGill University, 3600 Rue University, Montréal, Québec H3A 2T8, Canada
| | - Yoichi Miyahara
- Department of Physics, McGill University, 3600 Rue University, Montréal, Québec H3A 2T8, Canada
| | - Peter Grutter
- Department of Physics, McGill University, 3600 Rue University, Montréal, Québec H3A 2T8, Canada
| |
Collapse
|
29
|
Sadeghi H. Theory of electron, phonon and spin transport in nanoscale quantum devices. NANOTECHNOLOGY 2018; 29:373001. [PMID: 29926808 DOI: 10.1088/1361-6528/aace21] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
At the level of fundamental science, it was recently demonstrated that molecular wires can mediate long-range phase-coherent tunnelling with remarkably low attenuation over a few nanometre even at room temperature. Furthermore, a large mean free path has been observed in graphene and other graphene-like two-dimensional materials. These create the possibility of using quantum and phonon interference to engineer electron and phonon transport through nanoscale junctions for a wide range of applications such as molecular switches, sensors, piezoelectricity, thermoelectricity and thermal management. To understand transport properties of such devices, it is crucial to calculate their electronic and phononic transmission coefficients. The aim of this tutorial article is to outline the basic theoretical concepts and review the state-of-the-art theoretical and mathematical techniques needed to treat electron, phonon and spin transport in nanoscale molecular junctions. This helps not only to explain new phenomenon observed experimentally but also provides a vital design tool to develop novel nanoscale quantum devices.
Collapse
Affiliation(s)
- Hatef Sadeghi
- Physics Department, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
30
|
Dou W, Schinabeck C, Thoss M, Subotnik JE. A broadened classical master equation approach for treating electron-nuclear coupling in non-equilibrium transport. J Chem Phys 2018; 148:102317. [DOI: 10.1063/1.4992784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Schinabeck
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, University Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - Michael Thoss
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, University Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
31
|
Thoss M, Evers F. Perspective: Theory of quantum transport in molecular junctions. J Chem Phys 2018; 148:030901. [DOI: 10.1063/1.5003306] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| | - Ferdinand Evers
- Institute of Theoretical Physics, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
32
|
Gehring P, Harzheim A, Spièce J, Sheng Y, Rogers G, Evangeli C, Mishra A, Robinson BJ, Porfyrakis K, Warner JH, Kolosov OV, Briggs GAD, Mol JA. Field-Effect Control of Graphene-Fullerene Thermoelectric Nanodevices. NANO LETTERS 2017; 17:7055-7061. [PMID: 28982009 DOI: 10.1021/acs.nanolett.7b03736] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although it was demonstrated that discrete molecular levels determine the sign and magnitude of the thermoelectric effect in single-molecule junctions, full electrostatic control of these levels has not been achieved to date. Here, we show that graphene nanogaps combined with gold microheaters serve as a testbed for studying single-molecule thermoelectricity. Reduced screening of the gate electric field compared to conventional metal electrodes allows control of the position of the dominant transport orbital by hundreds of meV. We find that the power factor of graphene-fullerene junctions can be tuned over several orders of magnitude to a value close to the theoretical limit of an isolated Breit-Wigner resonance. Furthermore, our data suggest that the power factor of an isolated level is only given by the tunnel coupling to the leads and temperature. These results open up new avenues for exploring thermoelectricity and charge transport in individual molecules and highlight the importance of level alignment and coupling to the electrodes for optimum energy conversion in organic thermoelectric materials.
Collapse
Affiliation(s)
- Pascal Gehring
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Achim Harzheim
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jean Spièce
- Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | - Yuewen Sheng
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Gregory Rogers
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | | | - Aadarsh Mishra
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Benjamin J Robinson
- Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
- Materials Science Institute, Lancaster University , Lancaster, LA1 4YW, United Kingdom
| | - Kyriakos Porfyrakis
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jamie H Warner
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Oleg V Kolosov
- Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | - G Andrew D Briggs
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jan A Mol
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
33
|
Abstract
Understanding how small systems exchange energy with a heat bath is important to describe how their unique properties can be affected by the environment. In this contribution, we apply Landsberg's theory of temperature-dependent energy levels to describe the progressive thermalization of small systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a final state of thermal equilibrium. This produces standard thermodynamic results without invoking system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a system with a quantized spectrum than can be embedded in a thermal environment. A description of how the thermal environment affects the spectrum of a small system can be the first step in using environmental factors, such as temperature, as parameters in the design and operation of nanosystem properties.
Collapse
Affiliation(s)
- Rodrigo de Miguel
- Department of Teacher Education, Norwegian University of Science and Technology , 7491 Trondheim, Norway
| | - J Miguel Rubí
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona , 08029 Barcelona, Spain
| |
Collapse
|
34
|
Xu Q, Scuri G, Mathewson C, Kim P, Nuckolls C, Bouilly D. Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps. NANO LETTERS 2017; 17:5335-5341. [PMID: 28792226 DOI: 10.1021/acs.nanolett.7b01745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a robust approach to fabricate single-molecule transistors with covalent electrode-molecule-electrode chemical bonds, ultrashort (∼1 nm) molecular channels, and high coupling yield. We obtain nanometer-scale gaps from feedback-controlled electroburning of graphene constrictions and bridge these gaps with molecules using reaction chemistry on the oxidized graphene edges. Using these nanogaps, we are able to optimize the coupling chemistry to achieve high reconnection yield with ultrashort covalent single-molecule bridges. The length of the molecule is found to influence the fraction of covalently reconnected nanogaps. Finally, we discuss the tunneling nature of the covalent contacts using gate-dependent transport measurements, where we observe single electron transport via large energy Coulomb blockade even at room temperature. This study charts a clear path toward the assembling of ultraminiaturized electronics, sensors, and switches.
Collapse
Affiliation(s)
- Qizhi Xu
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Giovanni Scuri
- Department of Physics, Columbia University , New York, New York 10027, United States
| | - Carly Mathewson
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Philip Kim
- Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Delphine Bouilly
- Institute for Research on Immunology and Cancer (IRIC) and Department of Physics, Université de Montréal , Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
35
|
Hayakawa R, Chikyow T, Wakayama Y. Vertical resonant tunneling transistors with molecular quantum dots for large-scale integration. NANOSCALE 2017; 9:11297-11302. [PMID: 28761943 DOI: 10.1039/c7nr02463k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quantum molecular devices have a potential for the construction of new data processing architectures that cannot be achieved using current complementary metal-oxide-semiconductor (CMOS) technology. The relevant basic quantum transport properties have been examined by specific methods such as scanning probe and break-junction techniques. However, these methodologies are not compatible with current CMOS applications, and the development of practical molecular devices remains a persistent challenge. Here, we demonstrate a new vertical resonant tunneling transistor for large-scale integration. The transistor channel is comprised of a MOS structure with C60 molecules as quantum dots, and the structure behaves like a double tunnel junction. Notably, the transistors enabled the observation of stepwise drain currents, which originated from resonant tunneling via the discrete molecular orbitals. Applying side-gate voltages produced depletion layers in Si substrates, to achieve effective modulation of the drain currents and obvious peak shifts in the differential conductance curves. Our device configuration thus provides a promising means of integrating molecular functions into future CMOS applications.
Collapse
Affiliation(s)
- Ryoma Hayakawa
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | | | |
Collapse
|
36
|
Gaudenzi R, Misiorny M, Burzurí E, Wegewijs MR, van der Zant HSJ. Transport mirages in single-molecule devices. J Chem Phys 2017. [DOI: 10.1063/1.4975767] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- R. Gaudenzi
- Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
| | - M. Misiorny
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - E. Burzurí
- Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
| | - M. R. Wegewijs
- Peter Grünberg Institut, Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA-FIT, 52056 Aachen, Germany
- Institute for Theory of Statistical Physics, RWTH Aachen, 52056 Aachen, Germany
| | - H. S. J. van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
| |
Collapse
|
37
|
Pugh T, Vieru V, Chibotaru LF, Layfield RA. Magneto-structural correlations in arsenic- and selenium-ligated dysprosium single-molecule magnets. Chem Sci 2016; 7:2128-2137. [PMID: 29899940 PMCID: PMC5968533 DOI: 10.1039/c5sc03755g] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/15/2015] [Indexed: 11/21/2022] Open
Abstract
The structures and magnetic properties of the arsenic- and selenium-ligated dysprosium single-molecule magnets (SMMs) [Cp'3Dy(AsH2Mes)] (3-Dy), [(η5-Cp'2Dy){μ-As(H)Mes}]3 (4-Dy), [Li(thf)4]2[(η5-Cp'2Dy)3(μ3-AsMes)3Li] ([Li(thf)4]2[5-Dy]), and [(η5-Cp'2Dy){μ-SeMes}]3 (6-Dy) are described. The arsenic-ligated complexes 4-Dy and 5-Dy are the first SMMs to feature ligands with metalloid elements as the donor atoms. The arsenide-ligated complex 4-Dy and the selenolate-ligated complex 6-Dy show large anisotropy barriers in the region of 250 cm-1 in zero d.c. field, increasing to 300 cm-1 upon 5% magnetic dilution. Theoretical studies reveal that thermal relaxation in these SMMs occurs via the second-excited Kramers' doublet. In contrast, the arsinidene-ligated SMM 5-Dy gives a much smaller barrier of 23 cm-1, increasing to 35 cm-1 upon dilution. The field-dependence of the magnetization for 4-Dy and 5-Dy at 1.8 K show unusual plateaus around 10 kOe, which is due to the dominance of arsenic-mediated exchange over the dipolar exchange. The effects of the exchange interactions are more pronounced in 5-Dy, which is a consequence of a small but significant increase in the covalent contribution to the predominantly ionic dysprosium-arsenic bonds. Whereas the magnetically non-dilute dysprosium SMMs show only very narrow magnetization versus field hysteresis loops at 1.8 K, the impact of magnetic dilution is dramatic, with butterfly-shaped loops being observed up to 5.4 K in the case of 4-Dy. Our findings suggest that ligands with heavier p-block element donor atoms have considerable potential to be developed more widely for applications in molecular magnetism.
Collapse
Affiliation(s)
- Thomas Pugh
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Veacheslav Vieru
- Theory of Nanomaterials Group , Katholieke Universiteit Leuven , Celestijenlaan 200F , 3001 Heverlee , Belgium
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group , Katholieke Universiteit Leuven , Celestijenlaan 200F , 3001 Heverlee , Belgium
| | - Richard A Layfield
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| |
Collapse
|
38
|
Burzurí E, Island JO, Díaz-Torres R, Fursina A, González-Campo A, Roubeau O, Teat SJ, Aliaga-Alcalde N, Ruiz E, van der Zant HSJ. Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes. ACS NANO 2016; 10:2521-2527. [PMID: 26841282 DOI: 10.1021/acsnano.5b07382] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Graphene electrodes are promising candidates to improve reproducibility and stability in molecular electronics through new electrode-molecule anchoring strategies. Here we report sequential electron transport in few-layer graphene transistors containing individual curcuminoid-based molecules anchored to the electrodes via π-π orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule-electrode coupling; we argue that an intermediate electron-phonon coupling is the origin of these vibrational-assisted excitations. These experimental observations are complemented with density functional theory calculations to model electron transport and the interaction between electrons and vibrational modes of the curcuminoid molecule. We find that the calculated vibrational modes of the molecule are in agreement with the experimentally observed excitations.
Collapse
Affiliation(s)
- Enrique Burzurí
- Kavli Institute of Nanoscience, Delft University of Technology , Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Joshua O Island
- Kavli Institute of Nanoscience, Delft University of Technology , Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Raúl Díaz-Torres
- CSIC-ICMAB (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Alexandra Fursina
- Kavli Institute of Nanoscience, Delft University of Technology , Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Arántzazu González-Campo
- CSIC-ICMAB (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC, and Universidad de Zaragoza , Plaza San Francisco s/n, 50009 Zaragoza, Spain
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Núria Aliaga-Alcalde
- CSIC-ICMAB (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats) , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | | | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology , Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
39
|
Lau CS, Sadeghi H, Rogers G, Sangtarash S, Dallas P, Porfyrakis K, Warner J, Lambert CJ, Briggs GAD, Mol JA. Redox-Dependent Franck-Condon Blockade and Avalanche Transport in a Graphene-Fullerene Single-Molecule Transistor. NANO LETTERS 2016; 16:170-176. [PMID: 26633125 DOI: 10.1021/acs.nanolett.5b03434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report transport measurements on a graphene-fullerene single-molecule transistor. The device architecture where a functionalized C60 binds to graphene nanoelectrodes results in strong electron-vibron coupling and weak vibron relaxation. Using a combined approach of transport spectroscopy, Raman spectroscopy, and DFT calculations, we demonstrate center-of-mass oscillations, redox-dependent Franck-Condon blockade, and a transport regime characterized by avalanche tunnelling in a single-molecule transistor.
Collapse
Affiliation(s)
- Chit Siong Lau
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Hatef Sadeghi
- Quantum Technology Center, Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | - Gregory Rogers
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Sara Sangtarash
- Quantum Technology Center, Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | - Panagiotis Dallas
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Kyriakos Porfyrakis
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jamie Warner
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Colin J Lambert
- Quantum Technology Center, Physics Department, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | - G Andrew D Briggs
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jan A Mol
- Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
40
|
Gallego-Planas N, Martín-Rodríguez A, Ruiz E. Magnetic and transport properties of Fe4single-molecule magnets: a theoretical insight. Dalton Trans 2016; 45:18867-18875. [DOI: 10.1039/c6dt03460h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT methods have been employed to analyse the magnetic and transport properties of a family of Fe4complexes showing single-molecule magnet behaviour deposited on gold surfaces.
Collapse
Affiliation(s)
- Nuria Gallego-Planas
- Ingénierie Moléculaire et Matériaux Organiques
- UMR 6501
- Boulevard Lavoisier
- Université d'Angers
- F-49045 Angers
| | - Alejandro Martín-Rodríguez
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
41
|
Tesi L, Lunghi A, Atzori M, Lucaccini E, Sorace L, Totti F, Sessoli R. Giant spin–phonon bottleneck effects in evaporable vanadyl-based molecules with long spin coherence. Dalton Trans 2016; 45:16635-16643. [DOI: 10.1039/c6dt02559e] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The smaller the ligand the slower the low temperature magnetization dynamics of the crystals of vanadyl complexes.
Collapse
Affiliation(s)
- L. Tesi
- Dipartimento di Chimica “U. Schiff” and INSTM UdR Firenze
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino
- Italy
| | - A. Lunghi
- Dipartimento di Chimica “U. Schiff” and INSTM UdR Firenze
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino
- Italy
- School of Physics
| | - M. Atzori
- Dipartimento di Chimica “U. Schiff” and INSTM UdR Firenze
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino
- Italy
| | - E. Lucaccini
- Dipartimento di Chimica “U. Schiff” and INSTM UdR Firenze
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino
- Italy
| | - L. Sorace
- Dipartimento di Chimica “U. Schiff” and INSTM UdR Firenze
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino
- Italy
| | - F. Totti
- Dipartimento di Chimica “U. Schiff” and INSTM UdR Firenze
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino
- Italy
| | - R. Sessoli
- Dipartimento di Chimica “U. Schiff” and INSTM UdR Firenze
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino
- Italy
| |
Collapse
|
42
|
Souza AM, Rungger I, Schwingenschlögl U, Sanvito S. The image charge effect and vibron-assisted processes in Coulomb blockade transport: a first principles approach. NANOSCALE 2015; 7:19231-19240. [PMID: 26525140 DOI: 10.1039/c5nr04245c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a combination of density functional theory and of both non-equilibrium Green's function formalism and a Master equation approach to accurately describe quantum transport in molecular junctions in the Coulomb blockade regime. We apply this effective first-principles approach to reproduce the experimental results of Perrin et al., [Nat. Nanotechnol., 2013, 8, 282] for the transport properties of a Au-(Zn)porphyrin-Au molecular junction. We demonstrate that energy level renormalization due to the image charge effect is crucial to the prediction of the current onset in the current-voltage, I-V, curves as a function of electrode separation. Furthermore, we show that for voltages beyond that setting the current onset, the slope of the I-V characteristics is determined by the interaction of the charge carriers with molecular vibrations. This corresponds to current-induced local heating, which may also lead to an effective reduced electronic coupling. Overall our scheme provides a fully ab initio description of quantum transport in the Coulomb blockade regime in the presence of electron-vibron coupling.
Collapse
Affiliation(s)
- A M Souza
- School of Physics, CRANN and AMBER, Trinity College, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
43
|
Tian G, Duan S, Zhang GP, Hu W, Luo Y. The effect of Duschinsky rotation on charge transport properties of molecular junctions in the sequential tunneling regime. Phys Chem Chem Phys 2015; 17:23007-16. [PMID: 26272223 DOI: 10.1039/c5cp02736e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here a systematic theoretical study on the effect of Duschinsky rotation on charge transport properties of molecular junctions in the sequential tunneling regime. In the simulations we assume that only two electronic charging states each coupled to a two dimensional vibrational potential energy surface (PES) are involved in the transport process. The Duschinsky rotation effect is accounted by varying the rotational angle between the two sets of displaced PESs. Both harmonic potential and anharmonic Morse potential have been considered for the cases of the intermediate to strong electron-vibration couplings. Our calculations show that the inclusion of the Duschinsky rotation effect can significantly change the charge transport properties of a molecular junction. Such an effect makes the otherwise symmetric Coulomb diamond become asymmetric in harmonic potentials. Depending on the angle of the rotation, the low bias current could be significantly suppressed or enhanced. This effect is particularly prominent in the Franck-Condon (FC) blockade regime where the electron-vibration coupling is strong. These changes are caused by the variation of the FC factors which are closely related to the rotational angle between the two sets of PESs involved in the charge transport process. For a molecular junction with Morse potentials, the changes caused by Duschinsky rotation are much more complicated. Both the amplitude and shape of the Coulomb diamond are closely dependent on the rotational angle in the whole range from 0 to 2π. One interesting result is that with a rotation angle of π (and also π/2 for certain cases) symmetric Coulomb diamonds can even be formed from the intrinsically asymmetric Morse potential. These results could be important for the interpretation of experimental observations.
Collapse
Affiliation(s)
- Guangjun Tian
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The use of a gate electrode allows us to gain deeper insight into the electronic structure of molecular junctions. It is widely used for spectroscopy of the molecular levels and its excited states, for changing the charge state of the molecule and investigating higher order processes such as co-tunneling and the Kondo effect. Gate electrodes have been implemented in several types of nanoscale devices such as electromigration junctions, mechanically controllable break junctions, and devices with carbon-based electrodes. Here we review the state-of-the-art in the field of single-molecule transitors. We discuss the experimental challenges and describe the advances made for the different approaches.
Collapse
Affiliation(s)
- Mickael L Perrin
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | | | |
Collapse
|
45
|
Burzurí E, Gaudenzi R, van der Zant HSJ. Observing magnetic anisotropy in electronic transport through individual single-molecule magnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:113202. [PMID: 25721135 DOI: 10.1088/0953-8984/27/11/113202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We review different electron transport methods to probe the magnetic properties, such as the magnetic anisotropy, of an individual Fe4 SMM. The different approaches comprise first and higher order transport through the molecule. Gate spectroscopy, focusing on the charge degeneracy-point, is presented as a robust technique to quantify the longitudinal magnetic anisotropy of the SMM in different redox states. We provide statistics showing the robustness and reproducibility of the different methods. In addition, conductance measurements typically show high-energy excited states well beyond the ground spin multiplet of SMM. Some of these excitations have their origin in excited spin multiplets, others in vibrational modes of the molecule. The interplay between vibrations, charge and spin may yield a new approach for spin control.
Collapse
Affiliation(s)
- E Burzurí
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | | | | |
Collapse
|
46
|
Malavolti L, Lanzilotto V, Ninova S, Poggini L, Cimatti I, Cortigiani B, Margheriti L, Chiappe D, Otero E, Sainctavit P, Totti F, Cornia A, Mannini M, Sessoli R. Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets. NANO LETTERS 2015; 15:535-541. [PMID: 25489967 DOI: 10.1021/nl503925h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate that Fe4 molecules can be deposited on gold by thermal sublimation in ultra-high vacuum with retention of single molecule magnet behavior. A magnetic hysteresis comparable to that found in bulk samples is indeed observed when a submonolayer film is studied by X-ray magnetic circular dichroism. Scanning tunneling microscopy evidences that Fe4 molecules are assembled in a two-dimensional lattice with short-range hexagonal order and coexist with a smaller contaminant. The presence of intact Fe4 molecules and the retention of their bistable magnetic behavior on the gold surface are supported by density functional theory calculations.
Collapse
Affiliation(s)
- Luigi Malavolti
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit, University of Florence , 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cimatti I, Ninova S, Lanzilotto V, Malavolti L, Rigamonti L, Cortigiani B, Mannini M, Magnano E, Bondino F, Totti F, Cornia A, Sessoli R. UHV deposition and characterization of a mononuclear iron(III) β-diketonate complex on Au(111). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2139-48. [PMID: 25551042 PMCID: PMC4273306 DOI: 10.3762/bjnano.5.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
The adsorption of the sterically hindered β-diketonate complex Fe(dpm)3, where Hdpm = dipivaloylmethane, on Au(111) was investigated by ultraviolet photoelectron spectroscopy (UPS) and scanning tunnelling microscopy (STM). The high volatility of the molecule limited the growth of the film to a few monolayers. While UPS evidenced the presence of the β-diketonate ligands on the surface, the integrity of the molecule on the surface could not be assessed. The low temperature STM images were more informative and at submonolayer coverage they showed the presence of regular domains characterized by a flat morphology and height of ≈0.3 nm. Along with these domains, tetra-lobed features adsorbed on the kinks of the herringbone were also observed. DFT-simulated images of the pristine molecule and its possible decomposition products allowed to assess the partial fragmentation of Fe(dpm)3 upon adsorption on the Au(111) surface. Structural features with intact molecules were only observed for the saturation coverage. An ex situ prepared thick film of the complex was also investigated by X-ray magnetic circular dichroism (XMCD) and features typical of high-spin iron(III) in octahedral environment were observed.
Collapse
Affiliation(s)
- Irene Cimatti
- Laboratory of Molecular Magnetism, Department of Chemistry "Ugo Schiff", University of Florence & INSTM RU of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Silviya Ninova
- Laboratory of Molecular Magnetism, Department of Chemistry "Ugo Schiff", University of Florence & INSTM RU of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Valeria Lanzilotto
- Laboratory of Molecular Magnetism, Department of Chemistry "Ugo Schiff", University of Florence & INSTM RU of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Luigi Malavolti
- Laboratory of Molecular Magnetism, Department of Chemistry "Ugo Schiff", University of Florence & INSTM RU of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Luca Rigamonti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia & INSTM RU of Modena and Reggio Emilia, Via G. Campi 183, 41125 Modena, Italy
| | - Brunetto Cortigiani
- Laboratory of Molecular Magnetism, Department of Chemistry "Ugo Schiff", University of Florence & INSTM RU of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Matteo Mannini
- Laboratory of Molecular Magnetism, Department of Chemistry "Ugo Schiff", University of Florence & INSTM RU of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Elena Magnano
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Federica Bondino
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Federico Totti
- Laboratory of Molecular Magnetism, Department of Chemistry "Ugo Schiff", University of Florence & INSTM RU of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Cornia
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia & INSTM RU of Modena and Reggio Emilia, Via G. Campi 183, 41125 Modena, Italy
| | - Roberta Sessoli
- Laboratory of Molecular Magnetism, Department of Chemistry "Ugo Schiff", University of Florence & INSTM RU of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
48
|
Simine L, Segal D. Electron transport in nanoscale junctions with local anharmonic modes. J Chem Phys 2014; 141:014704. [DOI: 10.1063/1.4885051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|