1
|
Bhattacharya S, Li J, Yang W, Kanai Y. BSE@ GW Prediction of Charge Transfer Exciton in Molecular Complexes: Assessment of Self-Energy and Exchange-Correlation Dependence. J Phys Chem A 2024; 128:6072-6083. [PMID: 39011742 DOI: 10.1021/acs.jpca.4c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The Bethe-Salpeter equation using the GW approximation to the self-energy (BSE@GW) is a computationally attractive method for studying electronic excitation from first principles within the many-body Green's function theory framework. We examine its dependence on the underlying exchange-correlation (XC) approximation as well as on the GW approximation for predicting the charge transfer exciton formation at representative type-II interfaces between molecular systems of tetrachloro-1,2-benzoquinone (TCBQ) and acene derivatives. For the XC approximation, we consider several widely used generalized gradient approximation (GGA) and hybrid GGA functionals. For the GW self-energy approximation, we examine the recently proposed renormalized singles approach by Yang and coauthors [J. Phys. Chem. Lett. 2019, 10 (3), 447-452; J. Chem. Theory Comput. 2022, 18, 7570-7585] in addition to other commonly employed approximated GW schemes. We demonstrate a reliable prediction of the charge transfer exciton within the BSE@GW level of theory.
Collapse
Affiliation(s)
- Sampreeti Bhattacharya
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jiachen Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
2
|
Samuthirapandi K, Durairaj P, Sarkar S. Interfacial Charge Transfer in Photoexcited QD-Molecule Composite of Tetrahedral CdSe Quantum Dot Coupled with Carbazole. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31045-31055. [PMID: 38857441 DOI: 10.1021/acsami.4c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Photoexcited charge transfer dynamics in CdSe quantum dots (QDs) coupled with carbazole were explored to model QD-molecule systems for light-harvesting applications. The absorption spectra of QDs with different sizes, i.e., Cd35Se20X30L30 (T1), Cd56Se35X42L42 (T2), and Cd84Se56X56L56 (T3) were simulated with quantum dynamical methods, which qualitatively match the reported experimental spectra. The carbazole is attached with a 3-amino group at the apex position of T1 (namely T1-3A-Cz), establishing proper electronic communication between T1 and carbazole. The spectra of T1-3A-Cz is 0.22 eV red-shifted compared to T1. A time-dependent perturbation was applied in tune with the lowest energy peak (3.63 eV) of T1-3A-Cz to investigate the charge transfer dynamics, which revealed an ultrafast charge separation within the femtosecond time scale. The electronic structure showed a favorable energy alignment between T1 and carbazole in T1-3A-Cz. The LUMO of carbazole was situated below the conduction band of the QD, while the HOMO of carbazole mixed perfectly with the top of the valence band of the QD, developing the interfacial charge transfer states. These states promoted the photoexcited electron transfer directly from the CdSe core to carbazole. A rapid and enhanced charge separation occurred with the laser field strength increasing from 0.001 to 0.005 V/Å. However, T1 connected to the other positions of carbazole did not show charge separation effectively. The photoinduced charge transfer is negligible in the case of T2-carbazole systems due to poor electronic coupling, and it is not observed in T3-carbazole systems. So, the T1-3A-Cz model acts as a perfect donor-acceptor QD-molecule nanocomposite that can harvest photon energy efficiently. Further enhancement of charge transfer can be achieved by coupling more carbazoles to the T1 QD (e.g., T1-3A-Cz2) due to the extension of hole delocalization between T1 and the carbazoles.
Collapse
Affiliation(s)
| | - Pandiselvi Durairaj
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Sunandan Sarkar
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
3
|
Zhou Y, Garoufalis CS, Baskoutas S, Zeng Z, Jia Y. Twisting Enabled Charge Transfer Excitons in Epitaxially Fused Quantum Dot Molecules. NANO LETTERS 2022; 22:4912-4918. [PMID: 35639504 DOI: 10.1021/acs.nanolett.2c01459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A heterojunction with type-II band alignment has long been considered as a prerequisite to realize charge transfer (CT) excitons which are highly appealing for exploration of quantum many-body phenomena, such as excitonic Bose-Einstein condensation and superfluidity. Herein, we have shown CT excitons can be activated via twisting in epitaxially fused heterodimer quantum dot (QD) molecules with quasi type-II band alignment, and even in QD homodimer molecules, therefore breaking the constraint of band alignment. The enabling power of twisting has been revealed. It modulates the orbital spatial localization toward charge separation that is mandatory for CT excitons. Meanwhile, it manifests an effective band offset that counterbalances the distinct many-body effects felt by excitons of different nature, thus ensuring the successful generation of CT excitons. The present work extends the realm of twistroincs into zero-dimensional materials and opens a novel pathway of manipulating the properties of QD materials and closely related molecular systems.
Collapse
Affiliation(s)
- Yamei Zhou
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, and School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China
| | | | - Sotirios Baskoutas
- Materials Science Department, University of Patras, 26504 Patras, Greece
| | - Zaiping Zeng
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, and School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, and School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Liu C, Kloppenburg J, Yao Y, Ren X, Appel H, Kanai Y, Blum V. All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals. J Chem Phys 2020; 152:044105. [DOI: 10.1063/1.5123290] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chi Liu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jan Kloppenburg
- Institute of Condensed Matter and Nanoscience, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Yi Yao
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Xinguo Ren
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Heiko Appel
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
5
|
Hong Y, Wu Y, Wu S, Wang X, Zhang J. Overview of Computational Simulations in Quantum Dots. Isr J Chem 2019. [DOI: 10.1002/ijch.201900026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yang Hong
- Department of ChemistryUniversity of Nebraska-Lincoln Lincoln NE 68588 USA
| | | | - Shuimu Wu
- SPIC Power Plant Operation Technology (Beijing) CO., Ltd Beijing 102209 China
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong University Jinan 250061 China
| | - Jingchao Zhang
- Holland Computing CenterUniversity of Nebraska-Lincoln Lincoln NE 68588 USA
| |
Collapse
|
6
|
Jiang D, Du X, Chen D, Zhou L, Chen W, Li Y, Hao N, Qian J, Liu Q, Wang K. One-pot hydrothermal route to fabricate nitrogen doped graphene/Ag-TiO2: Efficient charge separation, and high-performance "on-off-on" switch system based photoelectrochemical biosensing. Biosens Bioelectron 2016; 83:149-55. [PMID: 27108257 DOI: 10.1016/j.bios.2016.04.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 11/16/2022]
Abstract
Charge separation is crucial for increasing the performances of semiconductor-based materials in many photoactive applications. In this paper, we designed novel nanocomposites consisting of TiO2 nanocrystals, Ag nanoparticles (NPs) and nitrogen doped graphene (NGR) via a facile one-pot hydrothermal route. The as-prepared ternary nanocomposites exhibited enhanced photoelectrochemical (PEC) performances owing to the introduction of Ag NPs and NGR, which increase the excitons' lifetime and improve the charge transfer. In particular, it is shown by means of the transient-state surface photocurrent responses that the photocurrent intensity of the as-fabricated composites exhibited 18.2 times higher than that of pristine TiO2. Based on the robust photocurrent signal, a new kind of "on-off-on" PEC aptasensor was established with the assistance of Pb(2+) aptamer, which integrates the advantages of low background signal and high sensitivity. Under optimal conditions, a wide linear response for Pb(2+) detection was obtained from 1pM to 5nM as well as a detection limit down to 0.3pM. With its simplicity, selectivity, and sensitivity, this proposed strategy shows great promise for Pb(2+) detection in food and environment analysis.
Collapse
Affiliation(s)
- Ding Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaojiao Du
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Danyang Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Zhou
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Chen
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaqi Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
7
|
Long R, Prezhdo OV. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment. NANO LETTERS 2015; 15:4274-4281. [PMID: 26061416 DOI: 10.1021/nl5046268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and QD modes. The electron dynamics is exponential, whereas evolution of the injected hole through the low density manifold of states of the polymer is highly nonexponential. The time scale of the electron-hole recombination at the interface is intermediate between those in pristine polymer and QD and is closer to that in the polymer. The detailed atomistic insights into the photoinduced charge and energy dynamics at the polymer/QD interface provide valuable guidelines for optimization of solar light harvesting and photovoltaic efficiency in modern nanoscale materials.
Collapse
Affiliation(s)
| | - Oleg V Prezhdo
- §Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|